1
|
Zhu C, Zhang L, Heidari M, Sun S, Chang S, Xie Q, Ai Y, Dong K, Zhang H. Small RNA deep sequencing revealed microRNAs' involvement in modulating cellular senescence and immortalization state. Poult Sci 2023; 102:102474. [PMID: 36689784 PMCID: PMC9876980 DOI: 10.1016/j.psj.2022.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Unlike rodent cells, spontaneous immortalization of avian cells and human cells is a very rare event. According to patent publications and current literature, there are no more than 4 spontaneously immortalized chicken embryo fibroblast (CEF) cell lines established up to date. One of those cell lines is ADOL (Avian Disease and Oncology Laboratory) ZS-1 cell line, which was established by continuous passaging of the CEFs derived from the specific pathogen free (SPF) 0.TVB*S1 (commonly known as rapid feathering susceptible or RFS) genetic line of chickens. The RFS genetic line of chickens was developed and has been maintained on the SPF chicken farm of USDA-ARS facility, ADOL, in East Lansing, Michigan, which is known as one of a few lines of chickens that are free of any known avian endogenous virus genes. To explore potential roles that epigenetic factors may play in modulating cellular senescence processes and spontaneous immortalization state, total RNAs extracted from samples of the RFS primary CEFs, RFS CEFs reached the 21st passage, and the ZS-1 cells were subjected to small RNA sequencing. Collectively, a total of 531 miRNAs was identified in the 3 types of samples. In contrast to the primary CEF samples, 50 miRNAs were identified with significantly differential expression only in the 21st passage samples; a different subset of 63 differentially expressed miRNAs was identified only in the ZS-1 samples; the majority of differentially expressed miRNAs identified in both the 21st passage CEF and the ZS-1 samples were more or less directionally consistent. Gene Ontology analysis results suggested that the epigenetic factor, miRNAs, plays a role in modulating the cellular senescence and spontaneous immortalization processes through various bioprocesses and key pathways including ErbB and MAPK signaling pathways. These findings provided the experimental and bioinformatic evidence for a better understanding on the epigenetic factor of miRNAs in association with cellular senescence and spontaneous immortalization process in avian cells.
Collapse
Affiliation(s)
- Chen Zhu
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA,Michigan State University, East Lansing, MI 48824, USA
| | - Lei Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA,Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| |
Collapse
|
2
|
Tournier JN, Kononchik J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021; 13:569. [PMID: 33800626 PMCID: PMC8066276 DOI: 10.3390/v13040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The eradication of infectious diseases has been achieved only once in history, in 1980, with smallpox. Since 1988, significant effort has been made to eliminate poliomyelitis viruses, but eradication is still just out of reach. As the goal of viral disease eradication approaches, the ability to recreate historically eradicated viruses using synthetic biology has the potential to jeopardize the long-term sustainability of eradication. However, the emergence of the severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 pandemic has highlighted our ability to swiftly and resolutely respond to a potential outbreak. This virus has been synthetized faster than any other in the past and is resulting in vaccines before most attenuated candidates reach clinical trials. Here, synthetic biology has the opportunity to demonstrate its truest potential to the public and solidify a footing in the world of vaccines.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- CNRS UMR-3569, Innovative Vaccine Laboratory, Virology Department, Institut Pasteur, 75015 Paris, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Joseph Kononchik
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Toxicology and Chemical Risk Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
3
|
Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. J Virol 2019; 93:JVI.00475-19. [PMID: 31068425 DOI: 10.1128/jvi.00475-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
The benefits of mucosal vaccines over injected vaccines are difficult to ascertain, since mucosally administered vaccines often induce serum antibody responses of lower magnitude than those induced by injected vaccines. This study aimed to determine if mucosal vaccination using a modified vaccinia virus Ankara expressing human immunodeficiency virus type 1 (HIV-1) gp120 (MVAgp120) prime and a HIV-1 gp120 protein boost could be optimized to induce serum antibody responses similar to those induced by an intramuscularly (i.m.) administered MVAgp120 prime/gp120 boost to allow comparison of an i.m. immunization regimen to a mucosal vaccination regimen for the ability to protect against a low-dose rectal simian-human immunodeficiency virus (SHIV) challenge. A 3-fold higher antigen dose was required for intranasal (i.n.) immunization with gp120 to induce serum anti-gp120 IgG responses not significantly different than those induced by i.m. immunization. gp120 fused to the adenovirus type 2 fiber binding domain (gp120-Ad2F), a mucosal targeting ligand, exhibited enhanced i.n. immunogenicity compared to gp120. MVAgp120 was more immunogenic after i.n. delivery than after gastric or rectal delivery. Using these optimized vaccines, an i.n. MVAgp120 prime/combined i.m. (gp120) and i.n. (gp120-Ad2F) boost regimen (i.n./i.m.-plus-i.n.) induced serum anti-gp120 antibody titers similar to those induced by the intramuscular prime/boost regimen (i.m./i.m.) in rabbits and nonhuman primates. Despite the induction of similar systemic anti-HIV-1 antibody responses, neither the i.m./i.m. nor the i.n./i.m.-plus-i.n. regimen protected against a repeated low-dose rectal SHIV challenge. These results demonstrate that immunization regimens utilizing the i.n. route are able to induce serum antigen-specific antibody responses similar to those induced by systemic immunization.IMPORTANCE Mucosal vaccination is proposed as a method of immunization able to induce protection against mucosal pathogens that is superior to protection provided by parenteral immunization. However, mucosal vaccination often induces serum antigen-specific immune responses of lower magnitude than those induced by parenteral immunization, making the comparison of mucosal and parenteral immunization difficult. We identified vaccine parameters that allowed an immunization regimen consisting of an i.n. prime followed by boosters administered by both i.n. and i.m. routes to induce serum antibody responses similar to those induced by i.m. prime/boost vaccination. Additional studies are needed to determine the potential benefit of mucosal immunization for HIV-1 and other mucosally transmitted pathogens.
Collapse
|
4
|
Chea LS, Wyatt LS, Gangadhara S, Moss B, Amara RR. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol 2019; 93:e01648-18. [PMID: 30541829 PMCID: PMC6384055 DOI: 10.1128/jvi.01648-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/17/2018] [Indexed: 01/18/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA), an attenuated poxvirus, has been developed as a potential vaccine vector for use against cancer and multiple infectious diseases, including human immunodeficiency virus (HIV). MVA is highly immunogenic and elicits strong cellular and humoral responses in preclinical models and humans. However, there is potential to further enhance the immunogenicity of MVA, as MVA-infected cells undergo rapid apoptosis, leading to faster clearance of recombinant antigens and potentially blunting a greater response. Here, we generated MVA-B13R by replacing the fragmented 181R/182R genes of MVA with a functional anti-apoptotic gene, B13R, and confirmed its anti-apoptotic function against chemically induced apoptosis in vitro In addition, MVA-B13R showed a significant delay in induction of apoptosis in muscle cells derived from mice and humans, as well as in plasmacytoid dendritic cells (pDCs) and CD141+ DCs from rhesus macaques, compared to the induction of apoptosis in MVA-infected cells. MVA-B13R expressing simian immunodeficiency virus (SIV) Gag and Pol and HIV envelope (SHIV) (MVA-B13R/SHIV) produced higher levels of envelope in the supernatants than MVA/SHIV-infected DF-1 cells in vitro Immunization of BALB/c mice showed induction of higher levels of envelope-specific antibody-secreting cells and memory B cells, higher IgG antibody titers, and better persistence of antibody titers with MVA-B13R/SHIV than with MVA/SHIV. Gene set enrichment analysis of draining lymph node cells from day 1 after immunization showed negative enrichment for interferon responses in MVA-B13R/SHIV-immunized mice compared to the responses in MVA/SHIV-immunized mice. Taken together, these results demonstrate that restoring B13R functionality in MVA significantly delays MVA-induced apoptosis in muscle and antigen-presenting cells in vitro and augments vaccine-induced humoral immunity in mice.IMPORTANCE MVA is an attractive viral vector for vaccine development due to its safety and immunogenicity in multiple species and humans even under conditions of immunodeficiency. Here, to further improve the immunogenicity of MVA, we developed a novel vector, MVA-B13R, by replacing the fragmented anti-apoptotic genes 181R/182R with a functional version derived from vaccinia virus, B13R Our results show that MVA-B13R significantly delays apoptosis in antigen-presenting cells and muscle cells in vitro and augments vaccine-induced humoral immunity in mice, leading to the development of a novel vector for vaccine development against infectious diseases and cancer.
Collapse
Affiliation(s)
- Lynette S Chea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Roy S, Jaeson MI, Li Z, Mahboob S, Jackson RJ, Grubor-Bauk B, Wijesundara DK, Gowans EJ, Ranasinghe C. Viral vector and route of administration determine the ILC and DC profiles responsible for downstream vaccine-specific immune outcomes. Vaccine 2019; 37:1266-1276. [PMID: 30733092 DOI: 10.1016/j.vaccine.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
This study demonstrates that route and viral vector can significantly influence the innate lymphoid cells (ILC) and dendritic cells (DC) recruited to the vaccination site, 24 h post delivery. Intranasal (i.n.) vaccination induced ST2/IL-33R+ ILC2, whilst intramuscular (i.m.) induced IL-25R+ and TSLPR+ (Thymic stromal lymphopoietin protein receptor) ILC2 subsets. However, in muscle a novel ILC subset devoid of the known ILC2 markers (IL-25R- IL-33R- TSLPR-) were found to express IL-13, unlike in lung. Different viral vectors also influenced the ILC-derived cytokines and the DC profiles at the respective vaccination sites. Both i.n. and i.m. recombinant fowlpox virus (rFPV) priming, which has been associated with induction of high avidity T cells and effective antibody differentiation exhibited low ILC2-derived IL-13, high NKp46+ ILC1/ILC3 derived IFN-γ and low IL-17A, together with enhanced CD11b+ CD103- conventional DCs (cDC). In contrast, recombinant Modified Vaccinia Ankara (rMVA) and Influenza A vector priming, which has been linked to low avidity T cells, induced opposing ILC derived-cytokine profiles and enhanced cross-presenting DCs. These observations suggested that the former ILC/DC profiles could be a predictor of a balanced cellular and humoral immune outcome. In addition, following i.n. delivery Rhinovirus (RV) and Adenovius type 5 (Ad5) vectors that induced elevated ILC2-derived IL-13, NKp46+ ILC1/ILC3-derived-IFN-γ and no IL-17A, predominantly recruited CD11b- B220+ plasmacytoid DCs (pDC). Knowing that pDC are involved in antibody differentiation, we postulate that i.n. priming with these vectors may favour induction of effective humoral immunity. Our data also revealed that vector-specific replication status and/or presence or absence of immune evasive genes can significantly alter the ILC and DC activity. Collectively, our findings suggest that understanding the route- and vector-specific ILC and DC profiles at the vaccination site may help tailor/design more efficacious viral vector-based vaccines, according to the pathogen of interest.
Collapse
Affiliation(s)
- S Roy
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - M I Jaeson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - S Mahboob
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - R J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - B Grubor-Bauk
- Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - D K Wijesundara
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia; Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - E J Gowans
- Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
6
|
Alharbi NK. Poxviral promoters for improving the immunogenicity of MVA delivered vaccines. Hum Vaccin Immunother 2018; 15:203-209. [PMID: 30148692 DOI: 10.1080/21645515.2018.1513439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-deficient poxvirus, attenuated in chick embryo fibroblast primary cells. It has been utilised as a viral vector to develop many vaccines against cancer and infectious diseases such as malaria, HIV/AIDS, influenza, and tuberculosis, MERS-CoV, and Ebola virus infection. There is accumulating data from many preclinical and clinical studies that highlights the excellent safety and immunogenicity of MVA. However, due to the complex nature of many pathogens and their pathogenicity, MVA vectored vaccine candidates need to be optimised to improve their immunogenicity. One of the main approaches to improve MVA immunogenicity focuses on optimising poxviral promoters that drive recombinant vaccine antigens, encoded within recombinant MVA vector genome. A number of promoters were described or optimised to improve the development of MVA based vaccines such as p7.5, pF11, and mH5 promoters. This review focuses on poxviral promoters, their optimisation, genetic stability, and clinical use.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- a Infectious Disease Research Department , King Abdullah International Medical Research Center (KAIMRC) , Riyadh , Saudi Arabia
| |
Collapse
|
7
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
8
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
9
|
Alharbi NK, Spencer AJ, Hill AVS, Gilbert SC. Deletion of Fifteen Open Reading Frames from Modified Vaccinia Virus Ankara Fails to Improve Immunogenicity. PLoS One 2015; 10:e0128626. [PMID: 26053118 PMCID: PMC4459983 DOI: 10.1371/journal.pone.0128626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a highly attenuated strain of vaccinia virus, which has been used as a recombinant vaccine vector in many vaccine development programmes. The loss of many immunosuppressive and host-range genes resulted in a safe and immunogenic vaccine vector. However it still retains some immunomodulatory genes that may reduce MVA immunogenicity. Earlier reports demonstrated that the deletion of the A41L, B15R, C6L, or C12L open reading frames (ORFs) enhanced cellular immune responses in recombinant MVA (rMVA) by up to 2-fold. However, previously, we showed that deletion of the C12L, A44L, A46R, B7R, or B15R ORFs from rMVA, using MVA-BAC recombineering technology, did not enhance rMVA immunogenicity at either peak or memory cellular immune responses. Here, we extend our previous study to examine the effect of deleting clusters of genes on rMVA cellular immunogenicity. Two clusters of fifteen genes were deleted in one rMVA mutant that encodes either the 85A antigen of Mycobacterium tuberculosis or an immunodominant H2-Kd-restricted murine malaria epitope (pb9). The deletion mutants were tested in prime only or prime and boost vaccination regimens. The responses showed no improved peak or memory CD8+ T cell frequencies. Our results suggest that the reported small increases in MVA deletion mutants could not be replicated with different antigens, or epitopes. Therefore, the gene deletion strategy may not be taken as a generic approach for improving the immunogenicity of MVA-based vaccines, and should be carefully assessed for every individual recombinant antigen.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, United Kingdom
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
10
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
11
|
Shawky H, Maghraby AS, Solliman MED, El-Mokadem MT, Sherif MM, Arafa A, Bahgat MM. Expression, immunogenicity and diagnostic value of envelope proteins from an Egyptian hepatitis C virus isolate. Arch Virol 2015; 160:945-58. [PMID: 25631616 DOI: 10.1007/s00705-015-2334-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/02/2015] [Indexed: 12/28/2022]
Abstract
The present work aimed at 1) characterization of the E1 and E2 proteins (HCV-E) from an Egyptian hepatitis C virus genotype 4a (HCV-4a) isolate at the molecular and immunological level, 2) in silico identification of the B- and T-cell epitopes responsible for the immunogenicity of HCV-E, and 3) evaluation of the diagnostic potential of both the recombinant HCV-E and antibodies raised using mammalian expression constructs encoding the protein. The region encoding the E1 and E2 proteins was amplified by RT-PCR from RNA isolated from blood of a human infected with HCV-4 and cloned into the pSC-TA plasmid, and the sequence was verified and used to construct a neighbor-joining phylogenetic tree. The translated nucleotide sequence was used to predict the HCV-E secondary structure using the PREDICT-PROTEIN server and PSI-PRED. A 3D model of HCV-E was generated using the online tool 3Dpro. B- and T-cell epitopes were predicted using the online tools BCPred and Epijen v1.0, respectively. The HCV-E-encoding sequence was later subcloned into the mammalian expression plasmid pQE, and the constructs that were generated were used to immunize mice in the absence and presence of adjuvants of plant origin. The maximum sequence identity obtained by nucleotide and protein BLAST analysis with previously published HCV-E sequences was 85 and 77 %, respectively. The B-cell epitope CFTPSPVVV at position 203 and the T-cell epitope ALSTGLIHL at position 380 were found to be highly conserved among all HCV genotypes. Both ELISA and Western blotting experiments on crude and purified recombinant HCV envelope proteins using mouse antisera raised using the HCV-E mammalian expression construct confirmed the specific antigenicity of the expressed protein. The antibodies raised in mice using the HCV-E-encoding construct could efficiently capture circulating antigens in patients' sera with good sensitivity that correlated with liver enzyme levels (r = 0.4052, P < 0.0001 for ALT; r = -0.5439, P = 0.0019 for AST). Moreover, combining the HCV-E-encoding construct with extracts prepared from Echinacea purpurea and Nigella sativa prior to immunizing mice significantly (P < 0.05) increased both the humoral (14.9- to 20-fold increase in antibodies) and the cellular (CD4(+) and cytotoxic CD8(+)- T lymphocytes) responses compared to mice that received the DNA construct alone or PBS-treated mice. Both recombinant HCV-E protein preparations and antibodies raised using the HCV-E-encoding mammalian expression construct represent useful diagnostic tools that can report on active HCV infection. Also, the immunostimulatory effects induced by the two plant extracts used at the cellular and humoral level highlight the potential of natural products for inducing protection against HCV infection. The neutralizing capacity of the induced antibodies is a subject of future investigations. Furthermore, the predicted B- and T-cell epitopes may be useful for tailoring future diagnostics and candidate vaccines against various HCV genotypes.
Collapse
Affiliation(s)
- Heba Shawky
- The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Giza, 12622, Egypt,
| | | | | | | | | | | | | |
Collapse
|
12
|
Virological and immunological characterization of novel NYVAC-based HIV/AIDS vaccine candidates expressing clade C trimeric soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as virus-like particles. J Virol 2014; 89:970-88. [PMID: 25355891 DOI: 10.1128/jvi.02469-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.
Collapse
|
13
|
Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J Virol 2014; 88:3392-410. [PMID: 24390336 DOI: 10.1128/jvi.02723-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED A modified vaccinia virus Ankara poxvirus vector expressing the HIV-1 Env, Gag, Pol, and Nef antigens from clade B (MVA-B) is currently being tested in clinical trials. To improve its immunogenicity, we have generated and characterized the immune profile of MVA-B containing a deletion of the vaccinia viral gene N2L, which codes for an inhibitor of IRF3 (MVA-B ΔN2L). Deletion of N2L had no effect on virus growth kinetics or on the expression of HIV-1 antigens; hence, the N2 protein is not essential for MVA replication. The innate immune responses triggered by MVA-B ΔN2L revealed an increase in beta interferon, proinflammatory cytokines, and chemokines. Mouse prime-boost protocols showed that MVA-B ΔN2L improves the magnitude and polyfunctionality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, with most of the HIV-1 responses mediated by CD8(+) T cells. In the memory phase, HIV-1-specific CD8(+) T cells with an effector phenotype were predominant and in a higher percentage with MVA-B ΔN2L than with MVA-B. In both immunization groups, CD4(+) and CD8(+) T cell responses were directed mainly against Env. Furthermore, MVA-B ΔN2L in the memory phase enhanced levels of antibody against Env. For the vector immune responses, MVA-B ΔN2L induced a greater magnitude and polyfunctionality of VACV-specific CD8(+) T memory cells than MVA-B, with an effector phenotype. These results revealed the immunomodulatory role of N2L, whose deletion enhanced the innate immunity and improved the magnitude and quality of HIV-1-specific T cell adaptive and memory immune responses. These findings are relevant for the optimization of poxvirus vectors as vaccines. IMPORTANCE On the basis of the limited efficacy of the RV144 phase III clinical trial, new optimized poxvirus vectors as vaccines against HIV/AIDS are needed. Here we have generated and characterized a new HIV/AIDS vaccine candidate on the basis of the poxvirus MVA vector expressing HIV-1 Env, Gag, Pol, and Nef antigens (MVA-B) and containing a deletion in the vaccinia virus N2L gene. Our findings revealed the immunomodulatory role of N2L and proved that its deletion from the MVA-B vector triggered an enhanced innate immune response in human macrophages and monocyte-derived dendritic cells. Furthermore, in immunized mice, MVA-B ΔN2L induced improvements in the magnitude and quality of adaptive and memory HIV-1-specific CD4(+) and CD8(+) T cell immune responses, together with an increase in the memory phase of levels of antibody against Env. Thus, the selective deletion of the N2L viral immunomodulatory gene is important for the optimization of MVA vectors as HIV-1 vaccines.
Collapse
|
14
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Perdiguero B, Gómez CE, Di Pilato M, Sorzano COS, Delaloye J, Roger T, Calandra T, Pantaleo G, Esteban M. Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C. PLoS One 2013; 8:e74831. [PMID: 24069354 PMCID: PMC3775734 DOI: 10.1371/journal.pone.0074831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/06/2013] [Indexed: 01/07/2023] Open
Abstract
Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Melamed S, Wyatt LS, Kastenmayer RJ, Moss B. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. Vaccine 2013; 31:4569-77. [PMID: 23928462 DOI: 10.1016/j.vaccine.2013.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/17/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.
Collapse
Affiliation(s)
- Sharon Melamed
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
17
|
García-Arriaza J, Arnáez P, Gómez CE, Sorzano CÓS, Esteban M. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways. PLoS One 2013; 8:e66894. [PMID: 23826170 PMCID: PMC3694958 DOI: 10.1371/journal.pone.0066894] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 02/01/2023] Open
Abstract
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Arnáez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J Virol 2012; 86:12605-15. [PMID: 22973033 DOI: 10.1128/jvi.00246-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 10(8) PFU) or low-dose (1 × 10(7) PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates.
Collapse
|
19
|
Pollara JJ, Spesock AH, Pickup DJ, Laster SM, Petty ITD. Production of prostaglandin E₂ in response to infection with modified vaccinia Ankara virus. Virology 2012; 428:146-55. [PMID: 22534090 DOI: 10.1016/j.virol.2012.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/26/2012] [Indexed: 11/26/2022]
Abstract
Prostaglandin E₂ (PGE₂) is an arachidonic acid (AA)-derived signaling molecule that can influence host immune responses to infection or vaccination. In this study, we investigated PGE₂ production in vitro by cells infected with the poxvirus vaccine strain, modified vaccinia Ankara virus (MVA). Human THP-1 cells, murine bone marrow-derived dendritic cells, and murine C3HA fibroblasts all accumulated PGE₂ to high levels in culture supernatants upon infection with MVA. We also demonstrated that MVA induced the release of AA from infected cells, and this was, most unusually, independent of host cytosolic phospholipase A₂ activity. The accumulation of AA and PGE₂ was dependent on viral gene expression, but independent of canonical NF-κB signaling via p65/RelA. The production of PGE₂ required host cyclooxygenase-2 (COX-2) activity, and COX-2 protein accumulated during MVA infection. The results of this study provide insight into a novel aspect of MVA biology that may affect the efficacy of MVA-based vaccines.
Collapse
Affiliation(s)
- Justin J Pollara
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
20
|
Regulatory, biosafety and safety challenges for novel cells as substrates for human vaccines. Vaccine 2012; 30:2715-27. [DOI: 10.1016/j.vaccine.2012.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 12/24/2022]
|
21
|
Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2012; 10:1221-40. [PMID: 21854314 DOI: 10.1586/erv.11.79] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Three Blackfan Circle, E/CLS-1006, Boston, MA 02215, USA.
| | | |
Collapse
|
22
|
Abstract
Modified vaccinia virus Ankara (MVA) has become a widely used vector for vaccine and laboratory purposes. Despite significant advances in recombinant MVA technology, the isolation of recombinant viruses remains a tedious and difficult process. This chapter describes the use of an efficient and easy-to-use selection system adapted for MVA. The system is based on the requirement of the viral gene F13L for efficient virus spread in cell culture, which results in a severe block in virus transmission when F13L gene is deleted (Blasco R, Moss B. J Virol 65:5910-5920, 1991; Blasco R, Moss B. J Virol 66:4170-4179, 1992). The insertion of foreign genes in the MVA genome is accomplished by recombination of a transfected plasmid carrying the foreign genes and the F13L with the genome of an F13L knockout virus. Subsequently, selection of virus recombinants is carried out by serial passage and/or plaque purification of viruses that have recovered the F13L gene.
Collapse
|
23
|
Ricci PS, Schäfer B, Kreil TR, Falkner FG, Holzer GW. Selection of recombinant MVA by rescue of the essential D4R gene. Virol J 2011; 8:529. [PMID: 22152060 PMCID: PMC3293099 DOI: 10.1186/1743-422x-8-529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) has become a promising vaccine vector due to its immunogenicity and its proven safety in humans. As a general approach for stringent and rapid selection of recombinant MVA, we assessed marker rescue of the essential viral D4R gene in an engineered deletion mutant that is fully replication defective in wild-type cells. Recombinant, replicating virus was obtained by re-introduction of the deleted viral gene as a dominant selection marker into the deletion mutant.
Collapse
Affiliation(s)
- Patricia S Ricci
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | - Birgit Schäfer
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | | | - Falko G Falkner
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | - Georg W Holzer
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| |
Collapse
|
24
|
Abstract
Both advanced-stage lung cancer and malignant pleural mesothelioma are associated with a poor prognosis. Advances in treatment regimens for both diseases have had only a modest effect on their progressive course. Gene therapy for thoracic malignancies represents a novel therapeutic approach and has been evaluated in several clinical trials. Strategies have included induction of apoptosis, tumor suppressor gene replacement, suicide gene expression, cytokine-based therapy, various vaccination approaches, and adoptive transfer of modified immune cells. This review considers the clinical results, limitations, and future directions of gene therapy trials for thoracic malignancies.
Collapse
Affiliation(s)
- Anil Vachani
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mesothelioma represents an especially good target for gene therapy since few effective therapies exist, the disease remained relatively localized until late in its course, the tumor can be accessed relatively easily through the chest wall, and the thin layer of mesothelial cells offers a large surface area for efficient, rapid, and diffuse gene transfer. Gene therapy trials in mesothelioma have shown safety, and some limited evidence of efficacy. We present a review of clinical trials that have been performed in mesothelioma and describe several new approaches currently being pursued.
Collapse
Affiliation(s)
- Anil Vachani
- Thoracic Oncology Research Laboratory, University of Pennsylvania, 1016E Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104-6160, USA.
| | | | | |
Collapse
|
26
|
Shen YJ, Shephard E, Douglass N, Johnston N, Adams C, Williamson C, Williamson AL. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV). Virol J 2011; 8:265. [PMID: 21624130 PMCID: PMC3117847 DOI: 10.1186/1743-422x-8-265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 05/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Capripoxvirus, Lumpy skin disease virus (LSDV) has a restricted host-range and is being investigated as a novel HIV-1 vaccine vector. LSDV does not complete its replication cycle in non-ruminant hosts. METHODS The safety of LSDV was tested at doses of 104 and 106 plaque forming units in two strains of immunocompromised mice, namely RAG mice and CD4 T cell knockout mice. LSDV expressing HIV-1 subtype C Gag, reverse transcriptase (RT), Tat and Nef as a polyprotein (Grttn), (rLSDV-grttn), was constructed. The immunogenicity of rLSDV-grttn was tested in homologous prime-boost regimens as well as heterologous prime-boost regimes in combination with a DNA vaccine (pVRC-grttn) or modified vaccinia Ankara vaccine (rMVA-grttn) both expressing Grttn. RESULTS Safety was demonstrated in two strains of immunocompromised mice.In the immunogenicity experiments mice developed high magnitudes of HIV-specific cells producing IFN-gamma and IL-2. A comparison of rLSDV-grttn and rMVA-grttn to boost a DNA vaccine (pVRC-grttn) indicated a DNA prime and rLSDV-grttn boost induced a 2 fold (p < 0.01) lower cumulative frequency of Gag- and RT-specific IFN-γ CD8 and CD4 cells than a boost with rMVA-grttn. However, the HIV-specific cells induced by the DNA vaccine prime rLSDV-grttn boost produced greater than 3 fold (p < 0.01) more IFN- gamma than the HIV-specific cells induced by the DNA vaccine prime rMVA-grttn boost. A boost of HIV-specific CD4 cells producing IL-2 was only achieved with the DNA vaccine prime and rLSDV-grttn boost. Heterologous prime-boost combinations of rLSDV-grttn and rMVA-grttn induced similar cumulative frequencies of IFN- gamma producing Gag- and RT-specific CD8 and CD4 cells. A significant difference (p < 0.01) between the regimens was the higher capacity (2.1 fold) of Gag-and RT-specific CD4 cells to produce IFN-γ with a rMVA-grttn prime - rLSDV-grttn boost. This regimen also induced a 1.5 fold higher (p < 0.05) frequency of Gag- and RT-specific CD4 cells producing IL-2. CONCLUSIONS LSDV was demonstrated to be non-pathogenic in immunocompromised mice. The rLSDV-grttn vaccine was immunogenic in mice particularly in prime-boost regimens. The data suggests that this novel vaccine may be useful for enhancing, in particular, HIV-specific CD4 IFN- gamma and IL-2 responses induced by a priming vaccine.
Collapse
Affiliation(s)
- Yen-Ju Shen
- Institute of Infectious Disease and Molecular Medicine, UCT, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. RECENT FINDINGS Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. SUMMARY To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.
Collapse
|
28
|
Vachani A, Moon E, Wakeam E, Albelda SM. Gene therapy for mesothelioma and lung cancer. Am J Respir Cell Mol Biol 2010; 42:385-93. [PMID: 20160042 DOI: 10.1165/rcmb.2010-0026rt] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Both malignant pleural mesothelioma and advanced stage lung cancer are associated with a poor prognosis. Unfortunately, current treatment regimens have had only a modest effect on their progressive course. Gene therapy for thoracic malignancies represents a novel therapeutic approach and has been evaluated in a number of clinical trials over the last two decades. Using viral vectors or anti-sense RNA, strategies have included induction of apoptosis, tumor suppressor gene replacement, suicide gene expression, cytokine-based therapy, various vaccination approaches, and adoptive transfer of modified immune cells. This review will consider the clinical results, limitations, and future directions of gene therapy trials for thoracic malignancies.
Collapse
Affiliation(s)
- Anil Vachani
- University of Pennsylvania, 1016B Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|