1
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
2
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
3
|
Garley M, Nowak K, Jabłońska E. Neutrophil microRNAs. Biol Rev Camb Philos Soc 2024; 99:864-877. [PMID: 38148491 DOI: 10.1111/brv.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils are considered 'first-line defence' cells as they can be rapidly recruited to the site of the immune response. As key components of non-specific immune mechanisms, neutrophils use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to fight pathogens. Recently, immunoregulatory abilities of neutrophils associated with the secretion of several mediators, including cytokines and extracellular vesicles (EVs) containing, among other components, microRNAs (miRNAs), have also been reported. EVs are small structures released by cells into the extracellular space and are present in all body fluids. Microvesicles show the composition and status of the releasing cell, its physiological state, and pathological changes. Currently, EVs have gained immense scientific interest as they act as transporters of epigenetic information in intercellular communication. This review summarises findings from recent scientific reports that have evaluated the utility of miRNA molecules as biomarkers for effective diagnostics or even as start-points for new therapeutic strategies in neutrophil-mediated immune reactions. In addition, this review describes the current state of knowledge on miRNA molecules, which are endogenous regulators of gene expression besides being involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| |
Collapse
|
4
|
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Noncoding RNA 2024; 10:18. [PMID: 38525737 PMCID: PMC10961783 DOI: 10.3390/ncrna10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Sara Carpi
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Saadi MI, Nikandish M, Ghahramani Z, Valandani FM, Ahmadyan M, Hosseini F, Rahimian Z, Jalali H, Tavasolian F, Abdolyousefi EN, Kheradmand N, Ramzi M. miR-155 and miR-92 levels in ALL, post-transplant aGVHD, and CMV: possible new treatment options. J Egypt Natl Canc Inst 2023; 35:18. [PMID: 37332027 DOI: 10.1186/s43046-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/22/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a malignancy that leads to altered blast cell proliferation, survival, and maturation and eventually to the lethal accumulation of leukemic cells. Recently, dysregulated expression of various micro-RNAs (miRNAs) has been reported in hematologic malignancies, especially ALL. Cytomegalovirus infection can induce ALL in otherwise healthy individuals, so a more detailed evaluation of its role in ALL-endemic areas like Iran is required. METHODS In this cross-sectional study, 70 newly diagnosed adults with ALL were recruited. The expression level of microRNA-155(miR-155) and microRNA-92(miR-92) was evaluated by real-time SYBR Green PCR. The correlations between the miRNAs mentioned above and the severity of disease, CMV infection, and acute graft vs. host disease after hematopoietic stem cell transplantation (HSCT) were assessed. B cell and T cell ALL distinction in the level of miRNAs was provided. RESULTS After the statistical analysis, our results indicated a marked increase in the expression of miR-155 and miR-92 in ALL patients vs. healthy controls (*P = 0.002-*P = 0.03, respectively). Also, it was shown that the expression of miR-155 and miR-92 was higher in T cell ALL compared to B cell ALL (P = 0.01-P = 0.004, respectively), CMV seropositivity, and aGVHD. CONCLUSION Our study suggests that the plasma signature of microRNA expression may act as a powerful marker for diagnosis and prognosis, providing knowledge outside cytogenetics. Elevation of miR-155 in plasma can be a beneficial therapeutic target for ALL patients, with consideration of higher plasma levels of miR-92 and miR-155 in CMV + and post-HSCT aGVHD patients.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Mohsen Nikandish
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Fatemeh Mardani Valandani
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Maryam Ahmadyan
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Fakhroddin Hosseini
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran
| | - Zahra Rahimian
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Heeva Jalali
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Pasdaran Blvd, Sanandaj, Kurdistan, Iran
| | - Fataneh Tavasolian
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran
| | - Nadiya Kheradmand
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran.
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Mohammad Rasul Allah Research Tower, Opposite the Education School, Khalili Ave, Shiraz, Fars, Iran.
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Namazi Sq., Zand St., Shiraz, Iran.
| |
Collapse
|
6
|
Xuan M, Wu Y, Wang H, Ye Z, Wu H, Chen Y, Yang H, Tang H. Effect of mir-92a-3p on hydroquinone induced changes in human lymphoblastoid cell cycle and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1420-1430. [PMID: 36988267 DOI: 10.1002/tox.23775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
Hydroquinone (HQ), one of the metabolites of benzene in humans, has significant hepatotoxic properties. Chronic exposure to HQ can lead to leukemia. In a previous study by this group, we constructed a model of malignant transformation of human lymphoblastoid cells (TK6) induced by chronic exposure to HQ with significant subcutaneous tumorigenic capacity in nude mice. miR-92a-3p is a tumor factor whose role in HQ-induced malignant transformation is not yet clear. In the present study, raw signal analysis and dual-luciferase reporter gene results suggested that miR-92a-3p could target and regulate TOB1, and the expression level of miR-92a-3p was significantly upregulated in the long-term HQ-induced TK6 malignant transformation model, while the anti-proliferative factor TOB1 was significantly downregulated. To investigate the mechanism behind this, we inhibited miR-92a-3p in a malignant transformation model and found a decrease in cell viability, a decrease in MMP-9 protein levels, a G2/M phase block in the cell cycle, and an upregulation of the expression of G2/M phase-related proteins cyclinB1 and CDK1. Inhibition of miR-92a-3p in combination with si-TOB1 restored cell viability, inhibited cyclin B1 and CDK1 protein levels, and attenuated the G2/M phase block. Taken together, miR-92a-3p reduced the cell proliferation rate of HQ19 and caused cell cycle arrest by targeting TOB1, which in turn contributed to the altered malignant phenotype of the cells. This study suggests that miR-92a-3p is likely to be a biomarker for long-term HQ-induced malignant transformation of TK6 and could be a potential therapeutic target for leukemia caused by long-term exposure to HQ.
Collapse
Affiliation(s)
- Mei Xuan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhongming Ye
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haipeng Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
7
|
Gupta DG, Varma N, Kumar A, Naseem S, Sachdeva MUS, Sreedharanunni S, Binota J, Bose P, Khadwal A, Malhotra P, Varma S. Genomic and proteomic characterization of Philadelphia-like B-lineage acute lymphoblastic leukemia: A report of Indian patients. Cancer 2023; 129:1217-1226. [PMID: 36738086 DOI: 10.1002/cncr.34665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The gold standard for the identification of Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) patients is gene expression profiling. Because of its diverse nature, its identification is extremely difficult and expensive. On the genomic and proteomic landscape of Ph-like ALL patients, there is a paucity of published literature from developing countries. METHODS The authors used digital barcoded nCounter NanoString gene expression profiling for its detection, followed by molecular and proteomic characterization using fluorescence in situ hybridization and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The authors found 32.05% Ph-like ALL patients and their median age at presentation was considerably higher than Ph-negative ALL cases (p = .0306). Furthermore, we identified 20% CRLF2 overexpressed cases having 8.33% CRLF2-IGH translocation with concomitant R683S mutation and 8.33% CRLF2-P2RY8 translocation. In 80% of CRLF2 downregulated cases, we identified 10% as having JAK2 rearrangement. Minimal residual disease-positivity was more common in Ph-like ALL cases (55.55% vs. 25% in Ph-negative ALL cases). Immunoglobulin J chain (Jchain), small nuclear ribonucleoprotein SmD1 (SNRPD1), immunoglobulin κ constant (IGKC), NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 2 (NDUFA2), histone H2AX (H2AFX), charged multivesicular body protein 4b (CHMP4B), and carbonyl reductase (NADPH) (CBR1) proteins were identified to be substantially expressed in Ph-like ALL patients, using LC-MS/MS. Gene enrichment analysis indicated that involvement of spliceosomal mediated messenger RNA splicing pathway and four microRNAs was statistically significant in Ph-like ALL patients. CONCLUSIONS For the first time, we have described incidence, molecular, and proteomic characterization of Ph-like ALL, in developing nations. PLAIN LANGUAGE SUMMARY In developing countries, detecting Philadelphia (Ph)-like B-lineage acute lymphoblastic leukemia is complicated and challenging due to its diverse genetic landscape. There is no well-defined and cost-effective methodology for its detection. The incidence of this high-risk subtype is very high in adult cases, and there is an urgent need for its accurate detection. We have developed an online PHi-RACE classifier for its rapid detection, followed by delineating the genomic and proteomic landscape of Ph-like acute lymphoblastic leukemias for the first time in Indian patients.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Parveen Bose
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alka Khadwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Exosome-Encapsulated miR-31, miR-192, and miR-375 Serve as Clinical Biomarkers of Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:7335456. [PMID: 36844871 PMCID: PMC9950326 DOI: 10.1155/2023/7335456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 02/18/2023]
Abstract
In recent years, microRNAs (miRNAs) derived from exosomes have been attracting attention as novel clinical biomarkers in a variety of cancers. In this study, plasma samples from 60 gastric cancer (GC) patients and 63 healthy individuals were collected, and the exosomal microRNAs (ex-miRNAs) were isolated. We determined the specific ex-miRNAs through miRNA microarray and a database of differentially expressed miRNAs called dbDEMC. Then, the expression levels of exosomal miR-31, miR-192, and miR-375 were analyzed by quantitative polymerase chain reaction (qRT-PCR). Compared to the matched controls, exosomal miR-31, miR-375, and miR-192 were significantly upregulated in GC patients. Also, they were found to be associated with gender, with miR-192 being significantly upregulated in male GC patients. Kaplan-Meier analysis indicated that high expressions of exosomal miR-31, miR-375, and miR-192 were positively correlated with poor clinical outcomes of GC patients. Cox univariate and multivariate analysis found that ex-miR-375 expression and TNM stage were independent prognostic factors of overall survival (OS). Our findings revealed that exosomal miR-31, miR-192, and miR-375 might serve as noninvasive, sensitive, and specific biomarkers for the diagnosis and prognosis of GC patients.
Collapse
|
9
|
Alotaibi F. Exosomal microRNAs in cancer: Potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Front Genet 2023; 14:1052731. [PMID: 36873941 PMCID: PMC9982116 DOI: 10.3389/fgene.2023.1052731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes are small extracellular vesicles with a lipid bilayer structure secreted from different cell types which can be found in various body fluids including blood, pleural fluid, saliva and urine. They carry different biomolecules including proteins, metabolites, and amino acids such as microRNAs which are small non-coding RNAs that regulate gene expression and promote cell-to-cell communication. One main function of the exosomal miRNAs (exomiRs) is their role in cancer pathogenesis. Alternation in exomiRs expression could indicate disease progression and can regulate cancer growth and facilitate drug response/resistance. It can also influence the tumour microenvironment by controlling important signaling that regulating immune checkpoint molecules leading to activation of T cell anti-tumour immunity. Therefore, they can be used as potential novel cancer biomarkers and innovative immunotherapeutic agents. This review highlights the use of exomiRs as potential reliable biomarkers for cancer diagnosis, treatment response and metastasis. Finally, discuses their potential as immunotherapeutic agents to regulate immune checkpoint molecules and promote T cell anti-tumour immunity.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Hasheminasabgorji E, Mishan MA, Tabari MAK, Bagheri A. miR-638: A Promising Cancer Biomarker with Therapeutic Potential. Curr Mol Med 2023; 23:377-389. [PMID: 35382724 DOI: 10.2174/1566524022666220405125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is an unmet need to improve the diagnosis of cancer with precise treatment strategies. Therefore, more powerful diagnostic, prognostic, and therapeutic biomarkers are needed to overcome tumor cells. microRNAs (miRNAs, miRs), as a class of small non-coding RNAs, play essential roles in cancer through the tumor-suppressive or oncogenic effects by post-transcriptional regulation of their targets. Many studies have provided shreds of evidence on aberrantly expressed miRNAs in numerous cancers and have shown that miRNAs could play potential roles as diagnostic, prognostic, and even therapeutic biomarkers in patients with cancers. Findings have revealed that miR-638 over or underexpression might play a critical role in cancer initiation, development, and progression. However, the mechanistic effects of miR-638 on cancer cells are still controversial. CONCLUSION In the present review, we have focused on the diagnostic, prognostic, and therapeutic potentials of miR-638 and discussed its mechanistic roles in various types of cancers.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Burgos CF, Cikutovic R, Alarcón M. MicroRNA expression in male infertility. Reprod Fertil Dev 2022; 34:805-818. [PMID: 35760398 DOI: 10.1071/rd21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Male infertility is a multifactorial disorder that involves different physiopathological mechanisms and multiple genes. In this sense, we analyse the role of miRNAs in this pathology. Gene expression analysis can provide relevant information to detect biomarkers, signalling pathways, pathologic mechanisms, and potential therapeutic targets for the disease. In this review, we describe four miRNA microarrays related to patients who present infertility diseases, including azoospermia, asthenozoospermia, and oligoasthenozoospermic. We selected 13 miRNAs with altered expressions in testis tissue (hsa-miR-122-5p, hsa-miR-145-5p, hsa-miR-16-5p, hsa-miR-193a-3p, hsa-miR-19a-3p, hsa-miR-23a-3p, hsa-miR-30b-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, hsa-miR-374b-5p, hsa-miR-449a, hsa-miR-574-3p and hsa-miR-92a-3p), and systematically examine the mechanisms of four relevant miRNAs (hsa-miR-16-5p, hsa-miR-19a-3p, hsa-miR-92a-3p and hsa-miR-30b-5p) which we found that regulated a large number of proteins. An interaction network was generated, and its connections allowed us to identify signalling pathways and interactions between proteins associated with male infertility. In this way, we confirm that the most affected and relevant pathway is the PI3K-Akt signalling.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepcion, Chile
| | - R Cikutovic
- Universidad de Talca, Talca, 360000 Maule, Chile
| | - M Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
12
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
14
|
Gibriel AA, Ismail MF, Sleem H, Zayed N, Yosry A, El-Nahaas SM, Shehata NI. Diagnosis and staging of HCV associated fibrosis, cirrhosis and hepatocellular carcinoma with target identification for miR-650, 552-3p, 676-3p, 512-5p and 147b. Cancer Biomark 2022; 34:413-430. [DOI: 10.3233/cbm-210456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Chronic HCV infection progresses to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The latter represents the third most common cause for cancer mortality. Currently, there is no reliable non-invasive biomarker for diagnosis of HCV mediated disorders. OBJECTIVE: Profiling expression signature for circulatory miRNAs in the plasma of 167 Egyptian patients (40 healthy, 48 HCV fibrotic, 39 HCV cirrhotic and 40 HCV-HCC cases). METHODS: QRTPCR was used to quantify expression signature for circulatory miRNAs. RESULTS: MiR-676 and miR-650 were powerful in discriminating cirrhotic and late fibrosis from HCC. MiR-650 could distinguish mild (f0-f1) and advanced (f2-f3) fibrosis from HCC cases. MiR-650 and miR-147b could distinguish early fibrosis from healthy controls meanwhile miR-676 and miR-147b could effectively distinguish between mild chronic and (f1-f3) cases from healthy individuals. All studied miRNAs, except miR-512, can differentiate between (f0-f3) cases and healthy controls. Multivariate logistic regression revealed three potential miRNA panels for effective differentiation of HCC, cirrhotic and chronic liver cases. MiR-676-3p and miR-512-5p were significantly correlated in (f1-f3) fibrosis meanwhile miR-676 and miR-512 could differentiate between cirrhosis and (f0-f3) cases. Both miR-650 and miR-512-5p were positively correlated in the cirrhotic group and in (f0-f4) group. Putative targets for investigated miRNAs were also determined. CONCLUSIONS: Investigated miRNAs could assist in staging and diagnosis of HCV associated disorders.
Collapse
Affiliation(s)
- Abdullah Ahmed Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Manal Fouad Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hameis Sleem
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saeed M. El-Nahaas
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
15
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
16
|
Yazdanpanah Z, Kazemipour N, Kalantar SM, Vahidi Mehrjardi MY. Plasma miR-21 as a potential predictor in prediabetic individuals with a positive family history of type 2 diabetes mellitus. Physiol Rep 2022; 10:e15163. [PMID: 35076188 PMCID: PMC8787720 DOI: 10.14814/phy2.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 04/18/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heritable metabolic perturbation, rapidly growing across the world. Primary recognition of susceptible individuals with a family history of type 2 diabetes (FHD) in the prediabetes stage could delay the onset of T2DM or reduce complications induced by diabetes. This study aims to evaluate the expression levels of miR-21, miR-126 as noninvasive predictive biomarkers in individuals with genetic predisposition and investigate the correlation of miRNAs and cardiometabolic risk factors. Our study demonstrated that miR-21 expression has a notable elevate in both groups of T2DM and pre-T2DM. miR-21 expression was distinguished in the pre-T2DM and T2DM from the nondiabetic individuals by ROC curve analysis with AUC of 0.77 (95% CI 0.65-0.90; p = 0.0004) and AUC of 0.78 (95% CI 0.64-0.92; p = 0.0042), respectively. The relative gene expression of miR-126 was nearly equal among groups. miR-21 expression was positively associated with glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and triglyceride (TG) and might have diagnostic value for T2DM and pre-T2DM. This study has revealed that the expression level of miR-21 can be considered as a non-invasive and rapid tool for distinguishing pre-T2DM and T2DM counterparts from healthy individuals.
Collapse
Affiliation(s)
- Zakieh Yazdanpanah
- Biochemistry DivisionDepartment of Basic ScienceSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Nasrin Kazemipour
- Biochemistry DivisionDepartment of Basic ScienceSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Seyed Mehdi Kalantar
- Department of Medical GeneticMedical SchoolShahid Sadoughi University of Medical ScienceYazdIran
| | | |
Collapse
|
17
|
Deng W, Pan M, Zhu S, Chao R, Wang L. Emerging roles of microRNAs in acute lymphoblastic leukemia and their clinical prospects. Expert Rev Hematol 2021; 14:987-992. [PMID: 34784832 DOI: 10.1080/17474086.2021.2007763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Targeted therapy with microRNAs (miRNAs) has been a significant challenge in recent years. Studying the role and mechanism through which miRNAs regulate various cancer processes is very critical in cancer treatment, including acute lymphoblastic leukemia (ALL). AREAS COVERED This review summarizes the diverse roles of miRNAs in ALL and provides new perspectives in miRNA-based therapeutic strategies. EXPERT OPINION MiRNAs belong to a kind of endogenous non-coding small RNA with the length of 19 ~ 25 nucleotides. They inhibit the expression of target genes and participate in almost all essential physiological processes such as cell proliferation, apoptosis, differentiation, and inflammatory responses. Many miRNAs are abnormally expressed in tumor cells, suggesting that they might be related to the occurrence and development of tumor. ALL is a common hematological malignancy in children. Its clinical manifestation, morphology, immunophenotype, and genetic characteristics are highly heterogeneous. A number of miRNAs have been found to be abnormally expressed in ALL and related to the biological characteristics, clinical features, diagnosis, and treatment in ALL patients. The understanding of miRNAs could help reveal ALL pathogenesis and identify accurate molecular markers for ALL diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Ming Pan
- Department of Hematology, Wuwei People's Hospital, Wuwei, Gansu, China
| | - Shengdong Zhu
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Rong Chao
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
19
|
Garcia A, Dunoyer-Geindre S, Fontana P. Do miRNAs Have a Role in Platelet Function Regulation? Hamostaseologie 2021; 41:217-224. [PMID: 34192780 DOI: 10.1055/a-1478-2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs known to repress mRNA translation and subsequent protein production. miRNAs are predicted to modulate many targets and are involved in regulating various cellular processes. Identifying their role in cell function regulation may allow circulating miRNAs to be used as diagnostic or prognostic markers of various diseases. Increasing numbers of clinical studies have shown associations between circulating miRNA levels and platelet reactivity or the recurrence of cardiovascular events. However, these studies differed regarding population selection, sample types used, miRNA quantification procedures, and platelet function assays. Furthermore, they often lacked functional validation of the miRNA identified in such studies. The latter step is essential to identifying causal relationships and understanding if and how miRNAs regulate platelet function. This review describes recent advances in translational research dedicated to identifying miRNAs' roles in platelet function regulation.
Collapse
Affiliation(s)
- A Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - P Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
20
|
Fayed D, Donia T, El-Shanshory M, Ali EMM, Mohamed TM. Evaluation of MicroRNA92, MicroRNA638 in Acute Lymphoblastic Leukemia of Egyptian Children. Asian Pac J Cancer Prev 2021; 22:1567-1572. [PMID: 34048187 PMCID: PMC8408408 DOI: 10.31557/apjcp.2021.22.5.1567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
Objective: miRNA considers a small non-coding RNA molecule that has tumor suppressor or oncogenic functions and regulates gene expression. miRNA may be involved in the pathogenesis of acute lymphoblastic leukemia (ALL). miRNA was evaluated in patients with ALL to correlate their importance in the clinical prediction and the response to chemotherapy. Subject and methods: The study population included 30 healthy control and 71 children with ALL is divided into 4 groups: healthy, newly diagnosed, remitted, and relapsed groups. We quantify miRNA 92a, miRNA 638 expression using real-time PCR in childhood ALL. Results: plasma miRNA 92a and miRNA 638 expressions were elevated in ALL cases at the time of diagnosis (2.51 and 2.19 folds), and relapsed (2.1 and 1.61 folds) than that of patients with remitted ALL. There was a positive correlation between miRNA 92a and miRNA 638 patients with ALL. Also, total leukocyte and blast correlated with miRNA 92a and miRNA 638 unlike hemoglobin, and platelets didn’t correlate with miRNA 92a and miRNA 638. The sensitivity of miRNA 92a and miRNA 638 were 41.5% and 54.7% respectively while the specificity was 100 % of miRNA 92a and miRNA 638. Conclusion: miRNA 92a and miRNA 638 are recommended to be used as potential predictive and follow-up markers in children with ALL remitted and relapsed cases.
Collapse
Affiliation(s)
- Dina Fayed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Donia
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed El-Shanshory
- Department of Pediatric, Hematology Unit, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
22
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
23
|
Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating Methods for Isolation and Quantification of Exosomes: A Review. Mol Biotechnol 2021; 63:249-266. [PMID: 33492613 PMCID: PMC7940341 DOI: 10.1007/s12033-021-00300-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are the smallest extracellular vesicles present in most of the biological fluids. They are found to play an important role in cell signaling, immune response, tumor metastasis, etc. Studies have shown that these vesicles also have diagnostic and therapeutic roles for which their accurate detection and quantification is essential. Due to the complexity in size and structure of exosomes, even the gold standard methods face challenges. This comprehensive review discusses the various standard methods such as ultracentrifugation, ultrafiltration, size-exclusion chromatography, precipitation, immunoaffinity, and microfluidic technologies for the isolation of exosomes. The principle of isolation of each method is described, as well as their specific advantages and disadvantages. Quantification of exosomes by nanoparticle tracking analysis, flow cytometry, tunable resistive pulse sensing, electron microscopy, dynamic light scattering, and microfluidic devices are also described, along with the applications of exosomes in various biomedical domains.
Collapse
Affiliation(s)
- Talitha Keren Kurian
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| |
Collapse
|
24
|
Adam-Artigues A, Garrido-Cano I, Simón S, Ortega B, Moragón S, Lameirinhas A, Constâncio V, Salta S, Burgués O, Bermejo B, Henrique R, Lluch A, Jerónimo C, Eroles P, Cejalvo JM. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open 2021; 6:100039. [PMID: 33477007 PMCID: PMC7820029 DOI: 10.1016/j.esmoop.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, microRNAs have been demonstrated to be potential non-invasive biomarkers for diagnosis, prognosis assessment or prediction of response to treatment in cancer. In this study, we evaluate the potential of miR-30b-5p as a biomarker for early diagnosis of breast cancer (BC) in tissue and plasma. METHODS Expression of miR-30b-5p was determined in a series of 112 BC and 40 normal breast tissues. Circulating miR-30b-5p levels in plasma samples were determined in a discovery cohort of 38 BC patients and 40 healthy donors and in a validation cohort of 83 BC patients and 83 healthy volunteers. miR-30b-5p expression was measured by quantitative real-time PCR and receiver operating characteristics curve analysis was carried out. RESULTS The miR-30b-5p expression was significantly lower in BC tissue than in healthy breast samples. In contrast, circulating miR-30b-5p levels were significantly higher in BC patients compared with healthy donors. Furthermore, circulating miR-30b-5p levels were significantly higher in patients with positive axillary lymph node and de novo metastatic patients. Receiver operating characteristics curve analysis demonstrated a good diagnostic potential of miR-30b-5p to detect BC even at an early stage of the disease. CONCLUSION Thus, we highlight the potential of miR-30b-5p as a non-invasive, fast, reproducible and cost-effective diagnostic biomarker of BC.
Collapse
Affiliation(s)
| | | | - S Simón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - B Ortega
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - S Moragón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - A Lameirinhas
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | - V Constâncio
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - S Salta
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - O Burgués
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - B Bermejo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - R Henrique
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - A Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Medicine, Universitat de València, Valencia, Spain
| | - C Jerónimo
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - P Eroles
- Biomedical Research Institute INCLIVA, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Physiology, Universitat de València, València, Spain.
| | - J M Cejalvo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
25
|
Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res 2020; 5:153-166. [PMID: 32923747 PMCID: PMC7480227 DOI: 10.1016/j.ncrna.2020.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for coronavirus disease (COVID-19), potentially have severe kidney adverse effects. This organ expressed angiotensin-converting enzyme 2 (ACE2), the transmembrane protein which facilitate the entering of the virus into the cell. Therefore, early detection of the kidney manifestations of COVID-19 is crucial. Previous studies showed ACE2 role in various indications of this disease, especially in kidney effects. The MicroRNAs (miRNAs) in this organ affected ACE2 expression. Therefore, this review aims at summarizing the literature of a novel miRNA-based therapy and its potential applications in COVID-19-associated nephropathy. Furthermore, previous studies were analyzed for the kidney manifestations of COVID-19 and the miRNAs role that were published on the online databases, namely MEDLINE (PubMed) and Scopus. Several miRNAs, particularly miR-18 (which was upregulated in nephropathy), played a crucial role in ACE2 expression. Therefore, the antimiR-18 roles were summarized in various primate models that aided in developing the therapy for ACE2 related diseases.
Collapse
Affiliation(s)
- Ahmedz Widiasta
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Yunia Sribudiani
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Indonesia
| | - Dany Hilmanto
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Nanan Sekarwana
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Dedi Rachmadi
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| |
Collapse
|
26
|
Garrido-Cano I, Constâncio V, Adam-Artigues A, Lameirinhas A, Simón S, Ortega B, Martínez MT, Hernando C, Bermejo B, Lluch A, Lopes P, Henrique R, Jerónimo C, Cejalvo JM, Eroles P. Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer. Int J Mol Sci 2020; 21:ijms21197427. [PMID: 33050096 PMCID: PMC7582935 DOI: 10.3390/ijms21197427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p’s deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Anna Adam-Artigues
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Soraya Simón
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Belen Ortega
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Ana Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Paula Lopes
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- COST Action CA15204, 1210 Brussels, Belgium
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| |
Collapse
|
27
|
Fukada M, Matsuhashi N, Takahashi T, Sugito N, Heishima K, Akao Y, Yoshida K. Tumor Tissue MIR92a and Plasma MIRs21 and 29a as Predictive Biomarkers Associated with Clinicopathological Features and Surgical Resection in a Prospective Study on Colorectal Cancer Patients. J Clin Med 2020; 9:jcm9082509. [PMID: 32759718 PMCID: PMC7465950 DOI: 10.3390/jcm9082509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer-related microRNAs (miRNAs) are emerging as non-invasive biomarkers for colorectal cancer (CRC). This study aimed to analyze the correlation between the levels of tissue and plasma miRNAs and clinicopathological characteristics and surgical resection. This study was a prospective study of CRC patients who underwent surgery. Forty-four sample pairs of tissue and plasma were analyzed. The miRNA levels were evaluated by RT-qPCR. The level of tumor tissue MIR92a showed a significant difference in CRC with lymph node metastasis, stage ≥ III, and high lymphatic invasion. In preoperative plasma, there were significant differences in CRC with stage ≥ III (MIR29a) and perineural invasion (MIR21). In multivariate analysis of lymphatic invasion, the levels of both preoperative plasma MIR29a and tumor tissue MIR92a showed significant differences. Furthermore, in cases with higher plasma miRNA level, the levels of plasma MIRs21 and 29a were significantly decreased after the operation. In this study, there were significant differences in miRNAs levels with respect to the sample type, clinicopathological features, and surgical resection. The levels of tumor tissue MIR92a and preoperative plasma MIR29a may have the potential as a biomarker for prognosis. The plasma MIRs21 and 29a level has the potential to be a predictive biomarker for treatment efficacy.
Collapse
Affiliation(s)
- Masahiro Fukada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Takao Takahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
- Correspondence: ; Tel.: +81-058-230-6235
| |
Collapse
|
28
|
Feng S, Sun H, Zhu W. MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol 2020; 23:450-458. [PMID: 32654106 DOI: 10.1007/s12094-020-02439-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Increasing evidence suggested that microRNA plays an important role in ovarian cancer. In this study, the role of miR-92 in ovarian cancer was investigated. METHODS In this study, miR-92 expression in clinical sample was evaluated, role of miR-92 was investigated in vitro, and underlying mechanism was investigated using Chip, co-IP, and western blot. RESULTS In this study, we show that miR-92 is overexpressed in ovarian cancer tissue compared with normal cancer tissue. Transfection of miR-92 increased proliferation of ovarian cancer cell, and increased migration capacity and colony formation were observed after miR-92 transfection; we found that expression of LATS2 was decreased by miR-92, and this was further confirmed by luciferase assay, which proved that miR-92 is targeting 3' of the endogenous LATS2 gene. Downregulation of LATS2 resulted in increased translocation of YAP1 and upregulation of PD-L1, which subsequently suppressed NK cell function and promoted T cell apoptosis. Moreover, co-transfection of YAP1-targeted shRNA could relieve miR-92-induced immune suppression effect. Mechanically, immunoprecipitation (IP) was used to show that LATS2 interacted with YAP1 and subsequently limited nuclear translocation of YAP1; chromatin immunoprecipitation (ChIP) was used to confirm that YAP1 could bind to enhancer region of PD-L1 to enhance transcription activity of PD-L1. CONCLUSIONS Our data revealed a novel mechanism which finally resulted in immune suppression in ovarian cancer.
Collapse
Affiliation(s)
- S Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - H Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - W Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
29
|
He W, Pang L, Gong S, Wang X, Hou L. Nei Endonuclease VIII-like 2 Gene rs8191670 Polymorphism affects the Sensitivity of Non-small Cell Lung Cancer to Cisplatin by binding with MiR-548a. J Cancer 2020; 11:4801-4809. [PMID: 32626527 PMCID: PMC7330683 DOI: 10.7150/jca.47495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 11/05/2022] Open
Abstract
Background: Nei endonuclease VIII-like 2 (NEIL2) is a gene encoding DNA repair enzyme, which is involved in the base excision repair (BER) pathway in mammalian cells. Cisplatin is a common cytotoxic anti-tumor agent in clinic by destroying normal structure of DNA and inducing cell apoptosis. However, how NEIL2 affects the sensitivity of NSCLC to cisplatin is still unclear. Methods: The clinical data from 206 patients diagnosed pathologically were collected. The DNA sequencing of NEIL2 gene 3'UTR and the PFS curve of NSCLC patients receiving cisplatin-based chemotherapy were performed. Western blot analysis and immunohistochemistry were used to detect NEIL2 protein expression. Human NSCLC cell lines A549 and H1299 were cultured and evaluated for cell viability. RT-PCR was performed for quantitative detection of miR-548a. 3'UTR reporter plasmid was constructed and luciferase reporter assay was used to verify the target gene regulated by miR-548a. Results: In this study, we found that the Neil2 gene had the polymorphism (T/C) in rs8191670 and it is associated with the PFS of advanced NSCLC patients. MiR-548a targets NEIL2 3'UTR to suppress its expression. Upregulation of NEIL2 expression or downregulation of miR-548a could reduce the sensitivity of NSCLC cells to cisplatin. Conclusion: Our results demonstrated that NEIL2 gene rs8191670 polymorphism affects the PFS of advanced NSCLC patients, and the underlying molecular mechanisms may be that miR-548a can regulate NEIL2 expression by binding to its 3'UTR seed region containing rs8191670.
Collapse
Affiliation(s)
- Wei He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lina Pang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lixia Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
Rashed RA, Hassan NM, Hussein MM. MicroRNA-92a as a marker of treatment response and survival in adult acute myeloid leukemia patients. Leuk Lymphoma 2020; 61:2475-2481. [PMID: 32536234 DOI: 10.1080/10428194.2020.1775218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This prospective study assessed circulating miR-92a levels in acute myeloid leukemia (AML) at diagnosis and after induction therapy and followed patients for a maximum of 30 months. The study included 63 consecutive adult AML patients. Circulating miR-92a levels were assessed using real-time polymerase chain reaction (RT-PCR). There was significant rise of miR-92a expression after induction (median (range): 0.297 (0.001-3.438)) in comparison to the reported levels at diagnosis (median (range): 0.236 (0.001-3.305)). Post-induction levels of miR-92a are significantly higher in patients who achieved CR in comparison to patients without CR (median (range): 0.408 (0.017-3.438) vs. 0.01 (0.001-1.010), p<.001). Cox hazard regression analysis identified miR-92a as a significant predictor of OS and DFS in univariate and multivariate analyses. In conclusion, baseline circulating miR-92a in AML patients may be a useful prognostic marker of treatment response and survival over 2.5 years follow up.
Collapse
Affiliation(s)
- Reham A Rashed
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa M Hussein
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Ueda S, Takanashi M, Sudo K, Kanekura K, Kuroda M. miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. J Transl Med 2020; 100:863-873. [PMID: 32066826 DOI: 10.1038/s41374-020-0409-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
In patients with breast cancer, primary chemotherapy often fails due to survival of chemoresistant breast cancer stem cells (BCSCs) which results in recurrence and metastasis of the tumor. However, the factors determining the chemoresistance of BCSCs have remained to be investigated. Here, we profiled a series of differentially expressed microRNAs (miRNAs) between parental adherent breast cancer cells and BCSC-mimicking mammosphere-derived cancer cells, and identified hsa-miR-27a as a negative regulator for survival and chemoresistance of BCSCs. In the mammosphere, we found that the expression of hsa-miR-27a was downregulated, and ectopic overexpression of hsa-miR-27a reduced both number and size of mammospheres. In addition, overexpression of hsa-miR-27a sensitized breast cancer cells to anticancer drugs by downregulation of genes essential for detoxification of reactive oxygen species (ROS) and impairment of autophagy. Therefore, enhancing the hsa-miR-27a signaling pathway can be a potential therapeutic modality for breast cancer.
Collapse
Affiliation(s)
- Shinobu Ueda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Katsuko Sudo
- Preclinical Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
32
|
Spagnuolo M, Costantini M, Ferriero M, Varmi M, Sperduti I, Regazzo G, Cicchillitti L, Díaz Méndez AB, Cigliana G, Pompeo V, Russo A, Laquintana V, Mastroianni R, Piaggio G, Anceschi U, Brassetti A, Bove A, Tuderti G, Flammia RS, Gallucci M, Simone G, Rizzo MG. Urinary expression of let-7c cluster as non-invasive tool to assess the risk of disease progression in patients with high grade non-muscle invasive bladder Cancer: a pilot study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:68. [PMID: 32303246 PMCID: PMC7164295 DOI: 10.1186/s13046-020-01550-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND High grade non-muscle-invasive bladder cancer (HG-NMIBC) is a heterogeneous disease with variable risk of progression. Urinary microRNAs are promising biomarkers for BC detection and surveillance. Let-7c-5p miRNA, clustered with miR-99a-5p and -125b-5p, is deregulated in cancer, including BC. The aim of this study is to evaluate urinary let-7c cluster expression in Ta/T1 HG-NMIBC patients and its impact on progression-free survival (PFS). METHODS Quantitative Real-Time-Polymerase-Chain-Reaction (qRT-PCR) was used to analyze the let-7c cluster expression in 57 urine and 49 neoplastic paired tissue samples prospectively collected from transurethral resection (TUR) HG-NMIBC patients. Twenty urine and 10 bladder tissue samples were collected and analyzed as normal controls. QRT-PCR was also used to detect intra-/extra-cellular let-7c cluster in BC cells. Receiver Operating Characteristic (ROC) curves were used to identify urinary miRNAs cut-off values predicting T-stage and PFS. Uni/multivariable Cox regression was performed to identify predictors of PFS. A nomogram predicting progression risk and a decision curve analysis (DCA) were performed. RESULTS Urinary let-7c was significantly up-regulated in patients compared with controls, while the whole cluster was down-regulated in tumor tissues. Supporting these findings, in vitro comparison of extra-/intra-cellular ratios of cluster levels between BC cells, showed a higher ratio for let-7c in HG-NMIBC versus low-grade cells. Urinary let-7c cluster expression was increased in higher T-stage and was an independent predictor of progression. Lower EORTC-score and downregulation of urinary cluster were predictors of higher PFS on univariable Cox regression, while on multivariable analysis only cluster expression was an independent progression predictor. On DCA, a benefit was evident for patients with a PFS probability > 20%. CONCLUSIONS Urinary let-7c cluster evaluation may improve prognosis, identifying patients at risk of progression and addressing early radical treatment.
Collapse
Affiliation(s)
- Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Costantini
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Mariaconsiglia Ferriero
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Marco Varmi
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Isabella Sperduti
- Biostatistical Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Lucia Cicchillitti
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Ana Belén Díaz Méndez
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giovanni Cigliana
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Pathology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Vincenzo Pompeo
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Andrea Russo
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Valentina Laquintana
- Department of Research, Advanced Diagnostics and Technological Innovation, Pathology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Riccardo Mastroianni
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Umberto Anceschi
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Aldo Brassetti
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Alfredo Bove
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Gabriele Tuderti
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Rocco Simone Flammia
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy
| | - Michele Gallucci
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy.,Department of Urology, "Sapienza" University, Rome, Italy
| | - Giuseppe Simone
- Department of Experimental Clinical Oncology, Urology Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, 00144, Rome, Italy. .,Department of Clinical and Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
33
|
MicroRNA Expression Profiling of Normal and Malignant Human Colonic Stem Cells Identifies miRNA92a as a Regulator of the LRIG1 Stem Cell Gene. Int J Mol Sci 2020; 21:ijms21082804. [PMID: 32316543 PMCID: PMC7216254 DOI: 10.3390/ijms21082804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have a critical role in regulating stem cells (SCs) during development, and because aberrant expression of miRNAs occurs in various cancers, our goal was to determine if dysregulation of miRNAs is involved in the SC origin of colorectal cancer (CRC). We previously reported that aldehyde dehydrogenase (ALDH) is a marker for normal and malignant human colonic SCs and tracks SC overpopulation during colon tumorigenesis. MicroRNA expression was studied in ALDH-positive SCs from normal and malignant human colon tissues by Nanostring miRNA profiling. Our findings show that: (1) A unique miRNA signature distinguishes ALDH-positive CRC cells from ALDH-positive normal colonic epithelial cells, (2) Expression of four miRNAs (miRNA200c, miRNA92a, miRNA20a, miRNA93) are significantly altered in CRC SCs compared to normal colonic SCs, (3) miRNA92a expression is also upregulated in ALDH-positive HT29 CRC SCs as compared to ALDH-negative SCs, (4) miRNA92a targets the 3′UTR of LRIG1 SC gene, and (5) miRNA92a modulates proliferation of HT29 CRC cells. Thus, our findings indicate that overexpression of miRNA92a contributes to the SC origin of CRC. Strategies designed to modulate miRNA expression, such as miRNA92a, may provide ways to target malignant SCs and to develop more effective therapies against CRC.
Collapse
|
34
|
Buhagiar A, Borg J, Ayers D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Noncoding RNA Res 2020; 5:22-26. [PMID: 32110743 PMCID: PMC7033436 DOI: 10.1016/j.ncrna.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Haematological malignancies encompass all variations of leukaemia at both the chronic and acute level, together with the specific cell type induced into tumourigenesis. Current diagnostic protocols for leukaemic conditions rely heavily on cytomorphology and other histological examinations from bone marrow aspirates, with the latter being a highly invasive surgical procedure for the patient. The discovery of microRNAs as one of the key gene regulatory networks in the past two decades has enabled researchers to investigate the possibility of exploiting the identification of dysregulated expression profiles for specific microRNAs present in the leukaemic patient's bloodstream as novel liquid biopsy diagnostic tools. This review article serves to consolidate recent global research efforts aiming to achieve such scopes.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
35
|
A microRNA Expression Profile as Non-Invasive Biomarker in a Large Arrhythmogenic Cardiomyopathy Cohort. Int J Mol Sci 2020; 21:ijms21041536. [PMID: 32102357 PMCID: PMC7073183 DOI: 10.3390/ijms21041536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a clinically and genetically heterogeneous myocardial disease. Half of AC patients harbour private desmosomal gene variants. Although microRNAs (miRNAs) have emerged as key regulator molecules in cardiovascular diseases and their involvement, correlated to phenotypic variability or to non-invasive biomarkers, has been advanced also in AC, no data are available in larger disease cohorts. Here, we propose the largest AC cohort unbiased by technical and biological factors. MiRNA profiling on nine right ventricular tissue, nine blood samples of AC patients, and four controls highlighted 10 differentially expressed miRNAs in common. Six of these were validated in a 90-AC patient cohort independent from genetic status: miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-182-5p, and miR-183-5p. This six-miRNA set showed high discriminatory diagnostic power in AC patients when compared to controls (AUC-0.995), non-affected family members of AC probands carrying a desmosomal pathogenic variant (AUC-0.825), and other cardiomyopathy groups (Hypertrophic Cardiomyopathy: AUC-0.804, Dilated Cardiomyopathy: AUC-0.917, Brugada Syndrome: AUC-0.981, myocarditis: AUC-0.978). AC-related signalling pathways were targeted by this set of miRNAs. A unique set of six-miRNAs was found both in heart-tissue and blood samples of AC probands, supporting its involvement in disease pathogenesis and its possible role as a non-invasive AC diagnostic biomarker.
Collapse
|
36
|
Kumar S, Sharawat SK, Ali A, Gaur V, Malik PS, Kumar S, Mohan A, Guleria R. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non-small cell lung cancer patients. Curr Probl Cancer 2020; 44:100540. [PMID: 32007320 DOI: 10.1016/j.currproblcancer.2020.100540] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Identification of noninvasive blood-based biomarkers is of utmost importance for the early diagnosis and predicting prognosis of advance stage lung cancer patients. MicroRNAs (miRNAs) has been implicated in numerous diseases, however, their role as diagnostic and prognostic biomarkers in Indian lung cancer patients has not been evaluated yet. METHODS For the identification of differentially expressed miRNAs in the serum of non-small cell lung cancer (NSCLC) patients, we performed small RNA sequencing. We validated the expression of 10 miRNAs in 75 NSCLC patients and 40 controls using quantitative reverse transcription polymerase chain reaction (PCR). miRNA expression was correlated with survival and therapeutic response. RESULTS We identified 16 differentially expressed miRNAs in the serum of NSCLC patients as compared to controls. We observed significant downregulation of miR-15a-5p, miR-320a, miR-25-3p, miR-192-5p, let-7d-5p, let-7e-5p, miR-148a-3p, and miR-92a-3p in the serum of NSCLC patients. The expression of miR-375 and miR-10b-5p was significantly downregulated in lung squamous cell carcinoma patients than controls. The expression of miR-320a, miR-25-3p, and miR-148a-3p significantly correlated with stage. None of the miRNAs were correlated with survival outcome and therapeutic response. CONCLUSIONS We conclude that the relative abundance of miRNAs in serum may be explored for the development of miRNA-based assays for better diagnosis and prognosis of NSCLC. Moreover, further studies are warranted to elucidate the role of some of the less explored miRNAs, such as miR-375 and miR-320a, in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashraf Ali
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Sadeghzadeh S, Dehghani Ashkezari M, Seifati SM, Vahidi Mehrjardi MY, Dehghan Tezerjani M, Sadeghzadeh S, Ladan SAB. Circulating miR-15a and miR-222 as Potential Biomarkers of Type 2 Diabetes. Diabetes Metab Syndr Obes 2020; 13:3461-3469. [PMID: 33061506 PMCID: PMC7537850 DOI: 10.2147/dmso.s263883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, considerable attention has been paid to the role of microRNAs (miRs) as biomarkers in type 2 diabetes (T2D). The aim of the study was to evaluate the expression levels of miR-15a and miR-222 in diabetic, pre-diabetic, and healthy individuals. MATERIALS AND METHODS Ninety individuals, who were referred to the Yazd diabetic center, were enrolled in this study and then classified into three groups as healthy, pre-T2D, and diabetic based on the clinical manifestations. Real-time PCR was performed to explore miRs expression in the plasma samples of the studied population. The correlation between the biochemical characteristic and the expression of these miRs as well as specificity and sensitivity of different clinical markers in healthy and pre-diabetic groups was evaluated. RESULTS miR-222 expression was significantly upregulated in the pre-T2D cases compared to the control subjects (P<0.001), while no significant difference was found between the pre-T2D and T2D groups (P<0.05). The expression of miR-15a was statistically downregulated in the pre-T2D and T2D subjects (P<0.05). The receiver operating characteristic (ROC) curve analysis of miR-15a expression with a cutoff point of 1.12 resulted in the area under the curve (AUC) of 85% (95% CI 0.865-0.912; P<0.001) with 84% and 85% sensitivity and specificity, respectively. Similarly, for miR-222, the cutoff point of 4.03 and AUC of 86% (95% CI 0.875-0.943; P<0.001) discriminated against the pre-T2D and control subjects via the sensitivity and specificity of 86% and 87%, respectively. Moreover, miR-15a values showed a negative correlation with FG (R=-0.32, P=0.005); however, miR-222 values were positively correlated with FG (R=0.25, P=0.03) in the pre-T2D group. Furthermore, miR-222 values were correlated with OGTT in the pre-T2D group (R=0.27, P=0.001). In addition, LDL-C had a negative correlation with miR-222 values in the pre-T2D group (R=-0.23, P=0.02). CONCLUSION This study indicated that the plasma expression levels of miR-222 and miR-15a can be considered as non-invasive, fast tools to separate the pre-T2D individuals from their healthy counterparts. Accordingly, this information could be used to predict the development of the disease as well as a direction for optimal therapy, thus refining outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Salman Sadeghzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mahmood Dehghani Ashkezari
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
- Correspondence: Mahmood Dehghani Ashkezari Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran Email
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Medical School, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Dehghan Tezerjani
- Abortion Research Center, Yazd Institute of Reproductive Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sadeghzadeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Amir Behtash Ladan
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| |
Collapse
|
38
|
Pan X, He T, Peng X, Li H, Zhang F, Lai Y. miR-638 acts as an oncogene and predicts poor prognosis in renal cell carcinoma. Am J Transl Res 2020; 12:3645-3659. [PMID: 32774724 PMCID: PMC7407746 DOI: pmid/32774724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the function and prognostic value of miR-638 in renal cell carcinoma (RCC). METHODS Expression of miR-638 in RCC tissues and corresponding noncancerous tissues were examined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). To explore the effects of miR-638 on cell migration, invasion, viability, and apoptosis of RCC cells, wound scratch, transwell, MTT, CCK-8, and flow cytometry assays were performed. Kaplan-Meier and Cox regression analyses were used to evaluate the relationship between miR-638 expression and prognosis of RCC patients. Potential target genes of miR-638 were predicted and validated via multiple bioinformatics analyses. RESULTS miR-638 was upregulated in RCC tissues when compared with corresponding noncancerous tissues (P < 0.05). Upregulation of miR-638 expression by transfection with a synthetic miR-638 mimic promoted cell migration, invasion, and viability and suppressed cell apoptosis. Moreover, Kaplan-Meier analysis revealed that upregulation of miR-638 associated with shorter overall survival (OS; P = 0.001). Cox univariate and multivariate regression analysis suggested that miR-638 expression is an independent predictive factor for the prognosis of RCC patients (P = 0.004). KCNQ1, DNAJC6, and PNP were identified as potential target genes of miR-638. CONCLUSIONS The results of this study demonstrated that miR-638 functions as an oncogene in RCC and has the potential to be a prognostic biomarker for RCC.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, Jiangsu, P. R. China
| | - Tao He
- Department of Urology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, P. R. China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Fangting Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| |
Collapse
|
39
|
Gado MM, Mousa NO, Badawy MA, El Taweel MA, Osman A. Assessment of the Diagnostic Potential of miR-29a-3p and miR-92a-3p as Circulatory Biomarkers in Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3625-3633. [PMID: 31870103 PMCID: PMC7173384 DOI: 10.31557/apjcp.2019.20.12.3625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a set of Myeloproliferative neoplasms that are identified by excessive growth of myeloid blasts and production of abnormal blood cells. AML is the most common type of acute leukemia that occurs in adults. In addition, AML progresses rapidly and is considered a fatal disease. Thus, there is an urgent need to find new targets for molecularly designed therapies. In This study, we evaluated the circulatory levels of microRNA-29a-3p (miR-29a-3p) and miR-92a-3p beside exploring the expression pattern of their target gene myeloid cell leukemia sequence1 (MCL1) to investigate the role of these molecules in AML pathophysiology and to assess their ability to diagnose AML patients. Methods: 40 adult AML patients along with 20 healthy subjects were enrolled in this study. Plasma were separated from venous blood samples, collected on EDTA, of all individuals were used to assess circulating miRNAs’ levels. In the meantime, total RNA was extracted from isolated leukocytes and was used to quantify target mRNA transcript levels. Results: Our data revealed that the circulating levels of miR-29a-3p and miR-92a-3p exhibited significant reduction in 90% and 100% of AML patients, respectively, when compared to the control group (p<0.001). On the other hand, the transcript level of the target gene of these miRNAs, MCL1, showed a sharp increase in 77.5% (p<0.001) of AML patients, along with a negative correlation with its regulatory miRNAs, miR-29a-3p and miR-92a-3p. Conclusion: Our data validates the negative regulatory role of miR-29a-3p and miR-92a-3p to the expression levels of MCL1 in peripheral blood and indicates that these miRNAs can be used as non-invasive diagnostic markers. Furthermore, our study highlights the therapeutic potential of miR-29a-3p and miR-92a-3p to target and downregulate a very important gene (MCL1), which is highly implicated in the pathogenesis of AML.
Collapse
Affiliation(s)
- Marwa M Gado
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt
| | - Nahla O Mousa
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt.,Biotechnology Program, Biology Department, The American University in Cairo, Cairo, Egypt
| | - M A Badawy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A El Taweel
- Clinical Pathology Department, National Cancer institute, Cairo university, Giza, Egypt
| | - Ahmed Osman
- 5Biochemistry Department, faculty of science, Ain Shams university, Abbasyia, Cairo, Egypt.,Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab, Alexandria, Egypt
| |
Collapse
|
40
|
Mohammadi A, Kelly OB, Smith MI, Kabakchiev B, Silverberg MS. Differential miRNA Expression in Ileal and Colonic Tissues Reveals an Altered Immunoregulatory Molecular Profile in Individuals With Crohn's Disease versus Healthy Subjects. J Crohns Colitis 2019; 13:1459-1469. [PMID: 31001642 PMCID: PMC6821350 DOI: 10.1093/ecco-jcc/jjz076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs [miRNAs] are key modulators of gene expression in Crohn's disease [CD] and may drive tissue-specific molecular alterations underlying CD susceptibility. In this study, we analysed differential miRNA expression between CD and healthy subjects across ileal and colonic tissues. METHODS A cohort of CD and healthy control [HC] subjects was recruited and clinical data collected. Endoscopically quiescent CD [CDq] was defined as inactive or mild by the Simple Endoscopic Score for CD. Total RNA was extracted from endoscopic biopsies taken from the terminal ileum and sigmoid colon. miRNA expression was quantified using NanoString Technologies. Statistical significance was assessed across biopsy site and diagnosis per miRNA, and corrected for multiple testing. RESULTS In total, 23 CDq and 38 HC subjects were enrolled; 112 samples were included in the analysis, 51 from the ileum and 61 from the colon. We found 47 miRNAs differentially expressed by biopsy site in healthy tissue. Nine miRNAs were differentially expressed across HC and CDq, accounting for biopsy location. One of these, miR-223-3p, showed age and sex effects. We identified miRNA expression driven by diagnosis targeting genes involved in chemokine and cytokine signalling. miR-31-5p expression was driven by location and may be a biomarker for location subtypes in CD. CONCLUSIONS We identified differentially expressed miRNAs in healthy ileal and colonic tissues. We discovered spatial miRNA expression patterns in CD and HC, suggesting site-specific regulation in subjects with no or minimal intestinal inflammation. These miRNAs target genes involved in immunoregulatory processes, suggesting a functional, tissue-specific role in CD.
Collapse
Affiliation(s)
- Aylia Mohammadi
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Orlaith B Kelly
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Conte M, Dell'Aversana C, Sgueglia G, Carissimo A, Altucci L. HDAC2-dependent miRNA signature in acute myeloid leukemia. FEBS Lett 2019; 593:2574-2584. [PMID: 31254352 PMCID: PMC6790563 DOI: 10.1002/1873-3468.13521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting‐edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2‐mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2‐downregulated AML cells, we identified miR‐96‐5p and miR‐92a‐3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.
Collapse
Affiliation(s)
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Annamaria Carissimo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
42
|
Ruff SM, Ayabe RI, Malekzadeh P, Good ML, Wach MM, Gonzales MK, Tirosh A, Nilubol N, Pacak K, Kebebew E, Patel D. MicroRNA-210 May Be a Preoperative Biomarker of Malignant Pheochromocytomas and Paragangliomas. J Surg Res 2019; 243:1-7. [PMID: 31146085 DOI: 10.1016/j.jss.2019.04.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Currently, no reliable predictive clinical or laboratory tests exist that can accurately distinguish between benign and malignant pheochromocytomas or paragangliomas (PPGLs). The aim of this study was to investigate if serum microRNA-210 (miR-210) levels could be a marker of malignancy in patients with PPGLs. METHODS Preoperative serum from patients with PPGLs was collected on the day of surgery. Clinical demographics, germline mutation status, primary tumor size, postoperative biochemical response, and the development of malignant disease were prospectively collected. Total microRNA was extracted from preoperative serum samples, and miR-210 levels were measured by quantitative real-time reverse transcription-polymerase chain reaction and normalized to miR-16. Prognostic variables were compared using univariable and multivariable analyses. RESULTS Of the 35 patients, 10 (29%) were diagnosed with malignant PPGLs and 25 patients (71%) were diagnosed with benign PPGLs (median follow-up 72.5 mo). Sixty-nine percent of patients had a pheochromocytoma (n = 24/35) compared with 31% of patients with paraganglioma (n = 11/35). The most common germline mutation was succinate dehydrogenase complex subunit B (SDHB) (n = 10). On univariable analysis, lower serum miR-210 expression level (2.3 ± 0.5 versus 3.1 ± 1.2, P = 0.013) and larger primary tumor size (6.7 ± 5.0 cm versus 4.1 ± 2.3 cm, P = 0.043) were significantly associated with malignant disease. No significant prognostic variables were found on multivariable analysis. CONCLUSIONS In this pilot study, low serum miR-210 expression levels and large primary tumors were identified to be markers of PPGL malignancy on univariable analysis. Given the initial encouraging results in a small cohort, further investigation is warranted to determine if serum miR-210 levels are prognostic.
Collapse
Affiliation(s)
- Samantha M Ruff
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Reed I Ayabe
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parisa Malekzadeh
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Meghan L Good
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael M Wach
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa K Gonzales
- Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Amit Tirosh
- Neuroendocrine Tumors Service, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Karel Pacak
- Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, California
| | - Dhaval Patel
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
43
|
Drokow EK, Sun K, Ahmed HAW, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:4313-4326. [PMID: 31190996 PMCID: PMC6520596 DOI: 10.2147/cmar.s199126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recent studies have validated microRNAs (miRNAs) as a diagnostic biomarker for haematological cancers. This study aimed to estimate the overall diagnostic accuracy of circulating miRNAs in haematological malignancies. Materials and Methods: Multiple databases (Google Scholar, PubMed, EMBASE, Cochrane Library,) were searched until 19th August 2017. Results: The meta-analysis included 50 studies from 20 publications. The diagnostic accuracy was assessed by pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve area (AUC) by random effect model. We used QUADAS (Quality Assessment for diagnostic accuracy studies) to evaluate the quality of the included studies. To perform the meta-analysis, we used Meta-Disk 1.4, Revman 5.3 and Stata 12.0 software. High diagnostic accuracy was demonstrated, with a sensitivity of 0.81, a specificity of 0.85, a PLR of 5.28, an NLR of 0.22, a DOR of 30.39, and an AUC of 0.91. Subgroup analyses showed better outcomes for the African population, combined miRNAs and leukaemia patients compared with other subgroups. Conclusion: Our results indicated that circulating miRNAs especially combined miRNA can be used as a diagnostic marker in haematological cancers.
Collapse
Affiliation(s)
- Emmanuel Kwateng Drokow
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Gloria Selorm Akpabla
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Mingyue Shi
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| |
Collapse
|
44
|
Shidal C, Singh NP, Nagarkatti P, Nagarkatti M. MicroRNA-92 Expression in CD133 + Melanoma Stem Cells Regulates Immunosuppression in the Tumor Microenvironment via Integrin-Dependent Activation of TGFβ. Cancer Res 2019; 79:3622-3635. [PMID: 31015227 DOI: 10.1158/0008-5472.can-18-2659] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
Abstract
In addition to being refractory to treatment, melanoma cancer stem cells (CSC) are known to suppress host antitumor immunity, the underlying mechanisms of which need further elucidation. In this study, we established a novel role for miR-92 and its associated gene networks in immunosuppression. CSCs were isolated from the B16-F10 murine melanoma cell line based on expression of the putative CSC marker CD133 (Prominin-1). CD133+ cells were functionally distinct from CD133- cells and showed increased proliferation in vitro and enhanced tumorigenesis in vivo. CD133+ CSCs also exhibited a greater capacity to recruit immunosuppressive cell types during tumor formation, including FoxP3+ Tregs, myeloid-derived suppressor cells (MDSC), and M2 macrophages. Using microarray technology, we identified several miRs that were significantly downregulated in CD133+ cells compared with CD133- cells, including miR-92. Decreased expression of miR-92 in CSCs led to higher expression of target molecules integrin αV and α5 subunits, which, in turn, enhanced TGFβ activation, as evidenced by increased phosphorylation of SMAD2. CD133+ cells transfected with miR-92a mimic and injected in vivo showed significantly decreased tumor burden, which was associated with reduced immunosuppressive phenotype intratumorally. Using The Cancer Genome Atlas database of patients with melanoma, we also noted a positive correlation between integrin α5 and TGFβ1 expression levels and an inverse association between miR-92 expression and integrin alpha subunit expression. Collectively, this study suggests that a miR-92-driven signaling axis involving integrin activation of TGFβ in CSCs promotes enhanced tumorigenesis through induction of intratumoral immunosuppression. SIGNIFICANCE: CD133+ cells play an active role in suppressing melanoma antitumor immunity by modulating miR-92, which increases influx of immunosuppressive cells and TGFβ1 expression.
Collapse
Affiliation(s)
- Chris Shidal
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina.
| |
Collapse
|
45
|
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, Liu J. Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol 2019; 15:763-776. [PMID: 30501399 DOI: 10.2217/fon-2018-0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study was aimed to investigate the expression profiles and biological function of plasma miRNAs at different phases of chronic myeloid leukemia (CML). Materials & methods: Differentially expressed miRNAs were identified by microarray. The candidate miRNAs were validated by quantitative real-time PCR at chronic phase, accelerated phase and blast crisis. The functional analysis of miRNAs was carried out by using DAVID. Results: The putative targets of dysregulated miRNAs were involved in important signaling pathways. Plasma let-7b-5p and miR-451a expression was lower in CML patients, and plasma miR-451a gradually decreased from chronic phase to accelerated phase and blast crisis. Conclusion: Dysregulated plasma miRNAs maybe play regulatory roles in pathogenesis of CML. Let-7b-5p and miR-451a can be used as potential biomarkers for the diagnosis and prognosis of CML.
Collapse
Affiliation(s)
- Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, PR China
| | - Yawen Jiang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Xu Han
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| |
Collapse
|
46
|
Liolios T, Kastora SL, Colombo G. MicroRNAs in Female Malignancies. Cancer Inform 2019; 18:1176935119828746. [PMID: 30792572 PMCID: PMC6376555 DOI: 10.1177/1176935119828746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous 22-nucleotide RNAs that can play a fundamental regulatory role in the gene expression of various organisms. Current research suggests that miRNAs can assume pivotal roles in carcinogenesis. In this article, through bioinformatics mining and computational analysis, we determine a single miRNA commonly involved in the development of breast, cervical, endometrial, ovarian, and vulvar cancer, whereas we underline the existence of 7 more miRNAs common in all examined malignancies with the exception of vulvar cancer. Furthermore, we identify their target genes and encoded biological functions. We also analyze common biological processes on which all of the identified miRNAs act and we suggest a potential mechanism of action. In addition, we analyze exclusive miRNAs among the examined malignancies and bioinformatically explore their functionality. Collectively, our data can be employed in in vitro assays as a stepping stone in the identification of a universal machinery that is derailed in female malignancies, whereas exclusive miRNAs may be employed as putative targets for future chemotherapeutic agents or cancer-specific biomarkers.
Collapse
Affiliation(s)
- Themis Liolios
- Hellenic Republic National and
Kapodistrian, University of Athens, Faculty of Biology, Athens, Greece
| | | | - Giorgia Colombo
- University of Aberdeen, School of
Medicine and Dentistry, Aberdeen, UK
| |
Collapse
|
47
|
Langford GJ, Raeburn J, Ferrier DC, Hands PJW, Shaver MP. Morpholino Oligonucleotide Cross-Linked Hydrogels as Portable Optical Oligonucleotide Biosensors. ACS Sens 2019; 4:185-191. [PMID: 30592402 DOI: 10.1021/acssensors.8b01208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Morpholino Oligonucleotides (MOs), an uncharged DNA analogue, are functionalized with an acrylamide moiety and incorporated into polymer hydrogels as responsive cross-links for microRNA sequence detection. The MO cross-links can be selectively cleaved by a short target analyte single-stranded DNA (ssDNA) sequence based on microRNA, inducing a distinct swelling response measured optically. The MO cross-links offer significant improvement over DNA based systems through improved thermal stability, no salt requirement and 1000-fold improved sensitivity over a comparative biosensor, facilitating a wider range of sensing conditions. Analysis was also achieved using a mobile phone camera, demonstrating portability.
Collapse
Affiliation(s)
- Geraint J. Langford
- School of Chemistry, David Brewster Road, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Jaclyn Raeburn
- School of Chemistry, David Brewster Road, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - David C. Ferrier
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom
| | - Philip J. W. Hands
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom
| | - Michael P. Shaver
- School of Chemistry, David Brewster Road, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
48
|
Bhat SA, Majid S, Hassan T. MicroRNAs and its emerging role as breast cancer diagnostic marker- A review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2019. [DOI: 10.1016/j.abst.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Lin CC, Law BF, Siegel PD, Hettick JM. Circulating miRs-183-5p, -206-3p and -381-3p may serve as novel biomarkers for 4,4'-methylene diphenyl diisocyanate exposure. Biomarkers 2018; 24:76-90. [PMID: 30074411 DOI: 10.1080/1354750x.2018.1508308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Occupational exposure to the most widely used diisocyanate, 4,4'-methylene diphenyl diisocyanate (MDI), is a cause of occupational asthma (OA). Early recognition of MDI exposure and sensitization is essential for the prevention of MDI-OA. OBJECTIVE Identify circulating microRNAs (miRs) as novel biomarkers for early detection of MDI exposure and prevention of MDI-OA. MATERIALS AND METHODS Female BALB/c mice were exposed to one of three exposure regimens: dermal exposure to 1% MDI in acetone; nose-only exposure to 4580 ± 1497 μg/m3 MDI-aerosol for 60 minutes; or MDI dermal exposure/sensitization followed by MDI-aerosol inhalation challenge. Blood was collected and miRCURY™ miRs qPCR Profiling Service was used to profile circulate miRs from dermally exposed mice. Candidate miRs were identified and verified from mice exposed to three MDI-exposure regimens by TaqMan® miR assays. RESULTS Up/down-regulation patterns of circulating mmu-miRs-183-5p, -206-3p and -381-3p were identified and verified. Circulating mmu-miR-183-5p was upregulated whereas mmu-miRs-206-3p and -381-3p were downregulated in mice exposed via all three MDI exposure regimens. DISCUSSION AND CONCLUSION Upregulation of circulating miR-183-5p along with downregulation of circulating miRs-206-3p and -381-3p may serve as putative biomarkers of MDI exposure and may be considered as potential candidates for validation in exposed human worker populations.
Collapse
Affiliation(s)
- Chen-Chung Lin
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Brandon F Law
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Paul D Siegel
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Justin M Hettick
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| |
Collapse
|
50
|
Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji‐Asgarzadeh K, Safarzadeh E, Mokhtarzadeh A, Duijf PHG, Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2018; 234:10002-10017. [DOI: 10.1002/jcp.27885] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology Faculty of Medicine, Ardabil University of Medical Sciences Ardabil Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H. G. Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland Brisbane Queensland Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|