1
|
Almaguer-Melian W, Mercerón-Martínez D, Alacán-Ricardo L, Piña AEV, Hsieh C, Bergado-Rosado JA, Sacktor TC. Amygdala stimulation transforms short-term memory into remote memory by persistent activation of atypical protein kinase C in the anterior cingulate cortex. Neuroscience 2025; 569:288-297. [PMID: 39900220 DOI: 10.1016/j.neuroscience.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although many studies have addressed the role of the amygdala in modulating long-term memory, it is not known whether weak training plus amygdala stimulation can transform a short-term memory into a remote memory. Object place recognition (OPR) memory after strong training remains hippocampus-dependent through the persistent action of protein kinase Mzeta (PKMζ) for at least 6 days, but it is unknown whether weak training plus amygdala stimulation can transform short-term memory into an even longer memory, and whether such memory is stored through more persistent action of PKMζ in hippocampus. We trained male rats (150 total in our study) to acquire OPR and 15 min or 5 h later induced a brief pattern of electrical stimulation in basolateral amygdala (BLA). Our results reveal that a short-term memory lasting < 4h can be converted into remote memory lasting at least 3 weeks if the BLA is activated 15 min, but not 5 h after learning. To examine how this remote memory is maintained, we injected ZIP, an inhibitor of atypical protein kinase Cs (aPKCs), PKMζ and PKCι/λ, into either hippocampal CA1, dentate gyrus (DG), or anterior cingulate cortex (ACC). Our data reveal amygdala stimulation produces consolidation into remote memory, not by persistent aPKC activation in the hippocampal formation, but in ACC. Our data establish a powerful modulating role of the BLA in forming remote memory and open a path in the search for neurological restoration of memory, based on enhancing synaptic plasticity in aging or neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica CIREN La Habana Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón Universidad Médica de La Habana La Habana Cuba
| | | | - Changchi Hsieh
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA
| | | | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University NY USA; Departments of Neurology and Anesthesiology, State University of New York Downstate Health Sciences University NY USA.
| |
Collapse
|
2
|
Jeong S, K Davis C, Vemuganti R. Mechanisms of time-restricted feeding-induced neuroprotection and neuronal plasticity in ischemic stroke as a function of circadian rhythm. Exp Neurol 2025; 383:115045. [PMID: 39510297 DOI: 10.1016/j.expneurol.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Time-restricted feeding (TRF) is known to promote longevity and brain function, and potentially prevent neurological diseases. Animal studies show that TRF enhances brain-derived neurotrophic factor (BDNF) signaling and regulates autophagy and neuroinflammation, supporting synaptic plasticity, neurogenesis and neuroprotection. Feeding/fasting paradigms influence the circadian cycle, with TRF aligning circadian cycle-related gene expression, and thus altering physiological processes. Emerging evidence highlights the role of gut microbiota in neuronal plasticity, based on the observation that TRF significantly alters gut microbiota composition. Hence, the gut-brain axis may be crucial for maintaining cognitive functions and presents a potential therapeutic target for TRF-mediated neuroprotection. In the context of ischemic stroke where neuronal damage is extensive, TRF can be a preconditioning strategy to enhance synaptic plasticity and neuronal resilience, thus improving outcomes after stroke. This review discussed the link between TRF and circadian regulation in neuronal plasticity and its implications for recovery after stroke.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
3
|
Riboldi JG, Correa J, Renfijes MM, Tintorelli R, Viola H. Arc and BDNF mediated effects of hippocampal astrocytic glutamate uptake blockade on spatial memory stages. Commun Biol 2024; 7:1032. [PMID: 39174690 PMCID: PMC11341830 DOI: 10.1038/s42003-024-06586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glutamate is involved in fundamental functions, including neuronal plasticity and memory. Astrocytes are integral elements involved in synaptic function, and the GLT-1 transporter possesses a critical role in glutamate uptake. Here, we study the role of GLT-1, specifically located in astrocytes, in the consolidation, expression, reconsolidation and persistence of spatial object recognition memory in rats. Administration of dihydrokainic acid (DHK), a selective GLT-1 inhibitor, into the dorsal hippocampus around a weak training which only induces short-term memory, promotes long-term memory formation. This promotion is prevented by hippocampal administration of protein-synthesis translation inhibitor, blockade of Activity-regulated cytoskeleton-associated protein (Arc) translation or Brain-Derived Neurotrophic Factor (BDNF) action, which are plasticity related proteins necessary for memory consolidation. However, DHK around a strong training, which induces long-term memory, does not affect memory consolidation. Administration of DHK before the test session impairs the expression of long-term memory, and this effect is dependent of Arc translation. Furthermore, DHK impairs reconsolidation if applied before a reactivation session, and this effect is independent of Arc translation. These findings reveal specific consequences on spatial memory stages developed under hippocampal GLT-1 blockade, shedding light on the intricate molecular mechanisms, governed in part for the action of glia.
Collapse
Affiliation(s)
- Juan Gabriel Riboldi
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Matías M Renfijes
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Vafaei Z, Khodagholi F, Nategh M, Nikseresht S, Hashemirad SR, Raise-Abdullahi P, Vafaei AA, Motamedi F. Involvement of relaxin-family peptide-3 receptor (RXFP3) in the ventral dentate gyrus of the hippocampus in spatial and fear memory in rats. Peptides 2024; 178:171244. [PMID: 38788901 DOI: 10.1016/j.peptides.2024.171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide-3 receptors (RXFP3), have been implicated in modulating learning and memory processes, but their specific roles remain unclear. This study utilized behavioral and molecular approaches to investigate the effects of putatively reversible blockade of RXFP3 in the ventral dentate gyrus (vDG) of the hippocampus on spatial and fear memory formation in rats. Male Wistar rats received bilateral vDG cannula implantation and injections of the RXFP3 antagonist, R3(BΔ23-27)R/I5 (400 ng/0.5 μL per side), or vehicle at specific time points before acquisition, consolidation, or retrieval phases of the Morris water maze and passive avoidance learning tasks. RXFP3 inhibition impaired acquisition in the passive avoidance task but not the spatial learning task. However, both memory consolidation and retrieval were disrupted in both tasks following RXFP3 antagonism. Ventral hippocampal levels of the consolidation-related kinase p70-S6 kinase (p70S6K) were reduced RXFP3 blockade. These findings highlight a key role for ventral hippocampal RXFP3 signaling in the acquisition, consolidation, and retrieval of spatial and emotional memories, extending previous work implicating this neuropeptide system in hippocampal memory processing.
Collapse
Affiliation(s)
- Zohreh Vafaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nategh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Nikseresht
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| | - Seyed Reza Hashemirad
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Polishchuk A, Cilleros-Mañé V, Balanyà-Segura M, Just-Borràs L, Forniés-Mariné A, Silvera-Simón C, Tomàs M, Jami El Hirchi M, Hurtado E, Tomàs J, Lanuza MA. BDNF/TrkB signalling, in cooperation with muscarinic signalling, retrogradely regulates PKA pathway to phosphorylate SNAP-25 and Synapsin-1 at the neuromuscular junction. Cell Commun Signal 2024; 22:371. [PMID: 39044222 PMCID: PMC11265447 DOI: 10.1186/s12964-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cβ, it regulates PKA regulatory subunits RIα and RIIβ, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Balanyà-Segura
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Laia Just-Borràs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Anton Forniés-Mariné
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
| | - Carolina Silvera-Simón
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Meryem Jami El Hirchi
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Erica Hurtado
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Josep Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Maria A Lanuza
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain.
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
6
|
AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GES. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res 2024; 49:533-547. [PMID: 38006577 PMCID: PMC10884085 DOI: 10.1007/s11064-023-04064-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
7
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Trask J, MacCallum PE, Rideout H, Preisser EL, Blundell JJ. Rapamycin attenuates reconsolidation of a backwards-conditioned aversive stimuli in female mice. Psychopharmacology (Berl) 2024; 241:601-612. [PMID: 38311691 DOI: 10.1007/s00213-024-06544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
RATIONALE The mammalian target of rapamycin (mTOR) kinase is known to mediate consolidation and reconsolidation of aversive memories. Most studies in this area use a forward conditioning paradigm in which the conditioned stimulus (CS) precedes the unconditioned stimulus (US). Little is known, however, about the neurobiological underpinnings of backwards (BW) conditioning paradigms, particularly in female mice. In BW conditioning, the CS does not become directly associated with the US; it instead evokes conditioned fear by reactivating a memory of the conditioning context and indirectly retrieving a memory of the aversive US. OBJECTIVES We sought to examine BW conditioned fear memory processes in female mice. First, we examined whether freezing to a BW CS is mediated by fear to the conditioning context. Second, we tested whether blocking consolidation of a BW CS attenuated memory of the CS and conditioning context. Finally, we tested whether blocking reconsolidation of a BW CS attenuated memory of the conditioning context. RESULTS We show that conditioned freezing to a BW CS is mediated by fear to the conditioning context. Furthermore, rapamycin-an mTOR inhibitor, when given immediately following BW conditioning, impairs consolidation of both cued and contextual fear memory. Similarly, rapamycin given following retrieval of a BW CS blocks context recall. Rapamycin is acting on reconsolidation as CS retrieval is necessary to see the effects of rapamycin on context memory recall. CONCLUSIONS Our study provides novel evidence that indirect retrieval cues are sensitive to rapamycin in female mice. The capacity to indirectly reactivate memories and render them susceptible to disruption is critical in the translation of reconsolidation-based approaches to the clinic.
Collapse
Affiliation(s)
- Jared Trask
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Haley Rideout
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jacqueline J Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
9
|
Almaguer-Melian W, Mercerón-Martinez D, Alberti-Amador E, Alacán-Ricardo L, de Bardet JC, Orama-Rojo N, Vergara-Piña AE, Herrera-Estrada I, Bergado JA. Learning induces EPO/EPOr expression in memory relevant brain areas, whereas exogenously applied EPO promotes remote memory consolidation. Synapse 2024; 78:e22282. [PMID: 37794768 DOI: 10.1002/syn.22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Daymara Mercerón-Martinez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Esteban Alberti-Amador
- Laboratorio de Biología Molecular del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón, Universidad Médica de La Habana, Havana, Cuba
| | - Javier Curi de Bardet
- Laboratorio de Biología Molecular del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Norma Orama-Rojo
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | | | | | - Jorge A Bergado
- Department of Psychology, Universidad del Sinú "Elías Bechara Zainum, ", Montería, Colombia
| |
Collapse
|
10
|
Gao J, Zhao L, Li D, Li Y, Wang H. Enriched environment ameliorates postsurgery sleep deprivation-induced cognitive impairments through the AMPA receptor GluA1 subunit. Brain Behav 2023; 13:e2992. [PMID: 37095708 PMCID: PMC10275526 DOI: 10.1002/brb3.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As a common postsurgery complication, sleep deprivation (SD) can severely deteriorate the cognitive function of patients. Enriched environment (EE) exposure can increase children's cognitive ability, and whether EE exposure could be utilized to alleviate postsurgery SD-induced cognitive impairments is investigated in this study. METHODS Open inguinal hernia repair surgery without skin/muscle retraction was performed on Sprague-Dawley male rats (9-week-old), which were further exposed to EE or standard environment (SE). Elevated plus maze (EPM), novel object recognition (NOR), object location memory (OLM), and Morris Water Maze assays were utilized to monitor cognitive functions. Cresyl violet acetate staining in the Cornusammonis 3 (CA3) region of rat hippocampus was used to detect neuron loss. The relative expression of brain-derived neurotrophic factor (BDNF) and synaptic glutamate receptor 1 (GluA1) subunits in the hippocampus were detected with quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blots, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. RESULTS EE restored normal levels of time spent in the center, time in distal open arms, open/total arms ratio, and total distance traveled in the EPM test; EE restored normal levels of recognition index in the NOR and OLM test; EE restored normal levels of time in the target quadrant, escape latencies, and platform site crossings in the Morris Water Maze test. EE exposure decreased neuron loss in the CA3 region of the hippocampus with increased BDNF and phosphorylated (p)-GluA1 (ser845) expression. CONCLUSION EE ameliorates postsurgery SD-induced cognitive impairments, which may be mediated by the axis of BDNF/GluA1. EE exposure could be considered as an aid in promoting cognitive function in postsurgery SD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
- Department of AnesthesiologyTianjin Haihe HospitalTianjinChina
| | - Lina Zhao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Dedong Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Yun Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Haiyun Wang
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
11
|
Buhusi M, Griffin D, Buhusi CV. Brain-Derived Neurotrophic Factor Val66Met Genotype Modulates Latent Inhibition: Relevance for Schizophrenia. Schizophr Bull 2023; 49:626-634. [PMID: 36484490 PMCID: PMC10154718 DOI: 10.1093/schbul/sbac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Latent inhibition (LI) is a measure of selective attention and learning relevant to Schizophrenia (SZ), with 2 abnormality poles: Disrupted LI in acute SZ, thought to underlie positive symptoms, and persistent LI (PLI) in schizotypy and chronic SZ under conditions where normal participants fail to show LI. We hypothesized that Brain-Derived Neurotrophic Factor (BDNF)-Met genotype shifts LI toward the PLI pole. STUDY DESIGN We investigated the role of BDNF-Val66Met polymorphism and neural activation in regions involved in LI in mice, and the interaction between the BDNF and CHL1, a gene associated with SZ. STUDY RESULTS No LI differences occurred between BDNF-wild-type (WT) (Val/Val) and knock-in (KI) (Met/Met) mice after weak conditioning. Chronic stress or stronger conditioning disrupted LI in WT but not KI mice. Behavior correlated with activation in infralimbic and orbitofrontal cortices, and nucleus accumbens. Examination of LI in CHL1-KO mice revealed no LI with no Met alleles (BDNF-WTs), PLI in CHL1-WT mice with 1 Met allele (BDNF-HETs), and PLI in both CHL1-WTs and CHL1-KOs with 2 Met alleles (BDNF-KIs), suggesting a shift to LI persistence with the number of BDNF-Met alleles in the CHL1 model of acute SZ. CONCLUSIONS Results support a role for BDNF polymorphisms in gene-gene and gene-environment interactions relevant to SZ. BDNF-Met allele may reduce expression of some acute SZ symptoms, and may increase expression of negative symptoms in individuals with chronic SZ. Evaluation of (screening for) SZ phenotypes associated with mutations at a particular locus (eg, CHL1), may be masked by strong effects at different loci (eg, BDNF).
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Daniel Griffin
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| |
Collapse
|
12
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
13
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, Wang H, Gao XL, Xu NJ, Zhao LX, Yu ZH, Chen HZ, Qiu Y. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer's disease. Transl Neurodegener 2023; 12:1. [PMID: 36624510 PMCID: PMC9827685 DOI: 10.1186/s40035-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.
Collapse
Affiliation(s)
- Jia-Bing Li
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Yu Hu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Mu-Wen Chen
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Cai-Hong Xiong
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Na Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yan-Hui Ge
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hao Wang
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Ling Gao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Nan-Jie Xu
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lan-Xue Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhi-Hua Yu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
16
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
19
|
Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH. Computational analysis of memory consolidation following inhibitory avoidance (IA) training in adult and infant rats: Critical roles of CaMKIIα and MeCP2. PLoS Comput Biol 2022; 18:e1010239. [PMID: 35759520 PMCID: PMC9269953 DOI: 10.1371/journal.pcbi.1010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Key features of long-term memory (LTM), such as its stability and persistence, are acquired during processes collectively referred to as consolidation. The dynamics of biological changes during consolidation are complex. In adult rodents, consolidation exhibits distinct periods during which the engram is more or less resistant to disruption. Moreover, the ability to consolidate memories differs during developmental periods. Although the molecular mechanisms underlying consolidation are poorly understood, the initial stages rely on interacting signaling pathways that regulate gene expression, including brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) dependent feedback loops. We investigated the ways in which these pathways may contribute to developmental and dynamical features of consolidation. A computational model of molecular processes underlying consolidation following inhibitory avoidance (IA) training in rats was developed. Differential equations described the actions of CaMKIIα, multiple feedback loops regulating BDNF expression, and several transcription factors including methyl-CpG binding protein 2 (MeCP2), histone deacetylase 2 (HDAC2), and SIN3 transcription regulator family member A (Sin3a). This model provides novel explanations for the (apparent) rapid forgetting of infantile memory and the temporal progression of memory consolidation in adults. Simulations predict that dual effects of MeCP2 on the expression of bdnf, and interaction between MeCP2 and CaMKIIα, play critical roles in the rapid forgetting of infantile memory and the progress of memory resistance to disruptions. These insights suggest new potential targets of therapy for memory impairment.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Smolen
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York City, New York, United States of America
| | - Douglas A. Baxter
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Neurobiology and Experimental Therapeutics, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - John H. Byrne
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
20
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
21
|
Correa J, Tintorelli R, Budriesi P, Viola H. Persistence of spatial memory induced by spaced training involves a behavioral-tagging process. Neuroscience 2022; 497:215-227. [PMID: 35276307 DOI: 10.1016/j.neuroscience.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of a learning tag are key processes triggered by retraining that allow SOR memory persistence.
Collapse
Affiliation(s)
- J Correa
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - R Tintorelli
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - P Budriesi
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - H Viola
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Wang H, Huang H, Jiang N, Zhang Y, Lv J, Liu X. Tenuifolin ameliorates chronic restraint stress-induced cognitive impairment in C57BL/6J mice. Phytother Res 2022; 36:1402-1412. [PMID: 35129236 DOI: 10.1002/ptr.7402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
The general consensus is that stress affects the central nervous system and can lead to cognitive problems. The root of Polygala tenuifolia (P. tenuifolia) is a well-known traditional Chinese medicine used for improving brain function. Tenuifolin (TEN) is the major constituent of P. tenuifolia and has a promising neuroprotective property. The purpose of this study was to investigate the alleviating effect of TEN on cognitive impairment induced by chronic restraint stress (CRS) and its mechanism. Our results showed that CRS exposure resulted in impaired cognitive performance in C57BL/6J mice, as indicated by decreased responses in Y-maze, novel objects recognition, and step-through passive avoidance tests. TEN treated daily orally (10 and 20 mg/kg) for 30 days reversed these behavior changes. Meanwhile, TEN could significantly regulate interleukin (IL)-6 and IL-10 levels in the hippocampus. TEN inhibited the toll-like receptor 4/nuclear factor-kappa B-mediated inflammation, as well as adrenocorticotropic hormone and corticosterone levels in serum. Most importantly, we found that TEN also upregulated the expressions of brain-derived neurotrophic factor, tropomyosin kinase B, glucocorticoid receptor, glutamate receptor 1, and synapse-associated proteins. Collectively, these data suggest that TEN has a potential improvement effect on memory loss caused by CRS.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Wang J, Gao F, Cui S, Yang S, Gao F, Wang X, Zhu G. Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol Res 2022; 176:106079. [PMID: 35026406 DOI: 10.1016/j.phrs.2022.106079] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
Astrocytic functions and brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signaling pathways are impaired in stress-related neuropsychiatric diseases. Previous studies have reported neuroprotective effects of 7,8-dihydroxyflavone (7,8-DHF), a TrkB activator. Here, we investigated the molecular mechanisms underlying pathogenesis of post-traumatic stress disorder (PTSD) using a modified single-prolonged stress (SPS&S) model and the potential beneficial effects of 7,8-DHF. SPS&S reduced the hippocampal expression of glial fibrillary acidic protein (GFAP), a marker of astrocytes, and induced morphological changes in astrocytes. From the perspective of synaptic function, the SPS&S model displayed reduced expression of BDNF, p-TrkB, postsynaptic density protein 95 (PSD95), AMPA receptor subunit GluR1 (GluA1), NMDA receptor subunit N2A/N2B ratio, calpain-1, phosphorylated protein kinase B (Akt) and phosphorylated mammalian target of rapamycin (mTOR) and conversely, higher phosphatase and tension homolog (PTEN) expression in the hippocampus. Acute or continuous intraperitoneal administration of 7,8-DHF (5 mg/kg) after SPS&S procedures prevented SPS&S-induced fear memory generalization and anxiety-like behaviors as well as abnormalities of hippocampal oscillations. Most importantly, 7,8-DHF attenuated SPS&S-induced abnormal BDNF-TrkB signaling and calpain-1-dependent cascade of synaptic deficits. Furthermore, treatment with a TrkB inhibitor completely blocked while an mTOR inhibitor partially blocked the effects of 7,8-DHF on behavioral changes of SPS&S model mice. Our collective findings suggest that 7,8-DHF effectively alleviates PTSD-like symptoms, including fear generalization and anxiety-like behavior, potentially by preventing astrocytic and synaptic deficits in the hippocampus through targeting of TrkB.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Shuai Cui
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Fang Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, China; Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
24
|
Abulizi A, Ran J, Ye Y, An Y, Zhang Y, Huang Z, Lin S, Zhou H, Lin D, Wang L, Lin Z, Li M, Yang B. Ganoderic acid improves 5-fluorouracil-induced cognitive dysfunction in mice. Food Funct 2021; 12:12325-12337. [PMID: 34821902 DOI: 10.1039/d1fo03055h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug with a good anti-cancer effect on various types of cancers, such as colorectal cancer and breast cancer. However, previous studies have found that 5-FU could induce cognitive deficit in clinics. As ganoderic acid, isolated from Ganoderma lucidum, has a protective effect on neurons, this study investigated the effects of ganoderic acid (GA) against 5-FU-induced cognitive dysfunction with a series of behavioral tests and related indicators. Experimental results showed that GA significantly prevented the reduction of spatial and non-spatial memory in 5-FU-treated mice. In addition, GA not only ameliorated the damage to hippocampal neurons and mitochondrial structure, but also significantly improved abnormal protein expression of mitochondrial biogenesis related marker PGC-1α, and mitochondrial dynamics related markers MFN2, DRP1 and FIS1 in the hippocampi of 5-FU-treated mice. Moreover, GA could up-regulate the expression of neuronal survival and growth-related proteins, such as BDNF, p-ERK, p-CREB, p-Akt, p-GSK3β, Nrf2, p-mTOR, and p-S6, in the hippocampi of 5-FU-treated mice. These results suggest that GA could prevent cognitive dysfunction in mice treated with 5-FU via preventing mitochondrial impairment and enhancing neuronal survival and growth, which provide evidence for GA as a promising adjunctive therapy for chemotherapy related cognitive impairment in clinics.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Yuwei Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Yukun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhizhen Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Dongmei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfu Wang
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhibin Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
25
|
Durakoglugil MS, Wasser CR, Wong CH, Pohlkamp T, Xian X, Lane-Donovan C, Fritschle K, Naestle L, Herz J. Reelin Regulates Neuronal Excitability through Striatal-Enriched Protein Tyrosine Phosphatase (STEP 61) and Calcium Permeable AMPARs in an NMDAR-Dependent Manner. J Neurosci 2021; 41:7340-7349. [PMID: 34290083 PMCID: PMC8412985 DOI: 10.1523/jneurosci.0388-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Aβ oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aβ toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aβ-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-β has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.
Collapse
Affiliation(s)
- Murat S Durakoglugil
- Department of Molecular Genetics
- Center for Translational Neurodegeneration Research
| | - Catherine R Wasser
- Department of Molecular Genetics
- Center for Translational Neurodegeneration Research
| | - Connie H Wong
- Department of Molecular Genetics
- Center for Translational Neurodegeneration Research
| | - Theresa Pohlkamp
- Department of Molecular Genetics
- Center for Translational Neurodegeneration Research
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Courtney Lane-Donovan
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158
| | | | - Lea Naestle
- Ludwig-Maximilians University of Munich, 80539, Munich, Germany
| | - Joachim Herz
- Department of Molecular Genetics
- Center for Translational Neurodegeneration Research
- Departments of Neuroscience and
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Levy JA, LaFlamme CW, Tsaprailis G, Crynen G, Page DT. Dyrk1a Mutations Cause Undergrowth of Cortical Pyramidal Neurons via Dysregulated Growth Factor Signaling. Biol Psychiatry 2021; 90:295-306. [PMID: 33840455 PMCID: PMC8787822 DOI: 10.1016/j.biopsych.2021.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.
Collapse
Affiliation(s)
- Jenna A Levy
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida
| | - Christy W LaFlamme
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; The Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Gogce Crynen
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida.
| |
Collapse
|
27
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
28
|
An increase in VGF expression through a rapid, transcription-independent, autofeedback mechanism improves cognitive function. Transl Psychiatry 2021; 11:383. [PMID: 34238925 PMCID: PMC8266826 DOI: 10.1038/s41398-021-01489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The release of neuropeptides from dense core vesicles (DCVs) modulates neuronal activity and plays a critical role in cognitive function and emotion. The granin family is considered a master regulator of DCV biogenesis and the release of DCV cargo molecules. The expression of the VGF protein (nonacronymic), a secreted neuropeptide precursor that also belongs to the extended granin family, has been previously shown to be induced in the brain by hippocampus-dependent learning, and its downregulation is mechanistically linked to neurodegenerative diseases such as Alzheimer's disease and other mood disorders. Currently, whether changes in translational efficiency of Vgf and other granin mRNAs may be associated and regulated with learning associated neural activity remains largely unknown. Here, we show that either contextual fear memory training or the administration of TLQP-62, a peptide derived from the C-terminal region of the VGF precursor, acutely increases the translation of VGF and other granin proteins, such as CgB and Scg2, via an mTOR-dependent signaling pathway in the absence of measurable increases in mRNA expression. Luciferase-based reporter assays confirmed that the 3'-untranslated region (3'UTR) of the Vgf mRNA represses VGF translation. Consistently, the truncation of the endogenous Vgf mRNA 3'UTR results in substantial increases in VGF protein expression both in cultured primary neurons and in brain tissues from knock in mice expressing a 3'UTR-truncation mutant encoded by the modified Vgf gene. Importantly, Vgf 3'UTR-truncated mice exhibit enhanced memory performance and reduced anxiety- and depression-like behaviors. Our results therefore reveal a rapid, transcription-independent induction of VGF and other granin proteins after learning that are triggered by the VGF-derived peptide TLQP-62. Our findings suggest that the rapid, positive feedforward increase in the synthesis of granin family proteins might be a general mechanism to replenish DCV cargo molecules that have been released in response to neuronal activation and is crucial for memory function and mood stability.
Collapse
|
29
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Feng Y, Tian X, Zhang M, Lou S. Treadmill Exercise Reverses the Change of Dendritic Morphology and Activates BNDF-mTOR Signaling Pathway in the Hippocampus and Cerebral Cortex of Ovariectomized Mice. J Mol Neurosci 2021; 71:1849-1862. [PMID: 34041687 DOI: 10.1007/s12031-021-01848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
A decline of estrogen level leads to spatial learning and memory impairments, which mediated by hippocampus and cortex. Accumulating evidences demonstrated that aerobic exercise improved memory of postmenopausal women and ovariectomized (OVX) mice. However, the molecular mechanisms for this protection of exercise are not completely clear. Accordingly, the present study was designed to examine the effect of aerobic exercise on the dendritic morphology in the hippocampus and cerebral cortex, as well as the BNDF-mTOR signaling pathway of OVX mice. Adult female C57BL/6 mice were divided into four groups (n = 10/group): sham-operated (SHAM/CON), sham-operated with 8-week treadmill exercise (SHAM/EX), ovariectomized operated (OVX/CON), and ovariectomized operated with exercise (OVX/EX). Aerobic exercise improved the impairment of dendritic morphology significantly induced by OVX that was tested by Golgi staining, and it also upregulated the synaptic plasticity-related protein expression of PSD95 and GluR1 as well as activated BDNF-mTOR signaling pathway in the hippocampus and cerebral cortex. In conclusion, aerobic exercise reversed the change of dendritic morphology and increased the synaptic plasticity-related protein expression in the hippocampus and cerebral cortex of OVX mice. The positive effects induced by exercise might be mediated through the BDNF-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Feng
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Xu Tian
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Miao Zhang
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Shujie Lou
- Shanghai University of Sport, Kinesiology, Shanghai, China.
| |
Collapse
|
31
|
Sumiyoshi E, Hashimoto M, Hossain S, Matsuzaki K, Islam R, Tanabe Y, Maruyama K, Kajima K, Arai H, Ohizumi Y, Shido O. Anredera cordifolia extract enhances learning and memory in senescence-accelerated mouse-prone 8 (SAMP8) mice. Food Funct 2021; 12:3992-4004. [PMID: 33977955 DOI: 10.1039/d0fo03272g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Learning and memory impairment may result from age-related decline in synaptic plasticity-related proteins in the hippocampus. Therefore, exploration of functional foods capable of ameliorating memory and cognition decline is an interesting endeavor in neuroscience research. We report the effects of Anredera cordifolia (AC) extract on learning and memory deficits in a senescence-accelerated mouse-prone 8 (SAMP8) mouse model, which demonstrate age-related memory deficits and related pathological changes in the brain. After 8 weeks of oral administration of AC extract, the mice were trained in the Novel Object Recognition (NOR) task, and after 7 more weeks, in the Morris Water Maze (MWM) task. Following the completion of behavioral testing, the blood biochemistry parameters, the hippocampal levels of brain-derived neurotropic factor (BDNF), PSD95, and NR2A, and the p-cAMP-response element binding (p-CREB)/CREB ratio were measured. The AC-treated group spent more time exploring the novel objects in the NOR task, and showed faster acquisition and better retention in the MWM task than the negative control (CN) group. In addition, AC enhanced the levels of the aforementioned neuronal plasticity-related proteins, and did not affect the blood biochemistry parameters. Therefore, our data suggest that the AC extract may improve learning and memory without causing any noticeable side effects in the body.
Collapse
Affiliation(s)
- Eri Sumiyoshi
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan. and Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Rafiad Islam
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Yoko Tanabe
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Koji Maruyama
- Sankyo Holdings Co., Ltd, Fuji, Shizuoka 417-0061, Japan
| | - Koji Kajima
- Sankyo Holdings Co., Ltd, Fuji, Shizuoka 417-0061, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology Division of Brain Science Institute of Development, Aging and Cancer (IDAC) Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
32
|
Pereyra M, de Landeta AB, Dalto JF, Katche C, Medina JH. AMPA Receptor Expression Requirement During Long-Term Memory Retrieval and Its Association with mTORC1 Signaling. Mol Neurobiol 2021; 58:1711-1722. [PMID: 33244735 DOI: 10.1007/s12035-020-02215-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Recently, it was reported that mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity during memory retrieval is required for normal expression of aversive and non-aversive long-term memories. Here we used inhibitory-avoidance task to evaluate the potential mechanisms by which mTORC1 signaling pathway participates in memory retrieval. First, we studied the role of GluA-subunit trafficking during memory recall and its relationship with mTORC1 pathway. We found that pretest intrahippocampal infusion of GluR23ɣ, a peptide that selectively blocks GluA2-containing AMPA receptor (AMPAR) endocytosis, prevented the amnesia induced by the inhibition of mTORC1 during retrieval. Additionally, we found that GluA1 levels decreased and GluA2 levels increased at the hippocampal postsynaptic density subcellular fraction of rapamycin-infused animals during memory retrieval. GluA2 levels remained intact while GluA1 decreased at the synaptic plasma membrane fraction. Then, we evaluated the requirement of AMPAR subunit expression during memory retrieval. Intrahippocampal infusion of GluA1 or GluA2 antisense oligonucleotides (ASO) 3 h before testing impaired memory retention. The memory impairment induced by GluA2 ASO before retrieval was reverted by GluA23ɣ infusion 1 h before testing. However, AMPAR endocytosis blockade was not sufficient to compensate GluA1 synthesis inhibition. Our work indicates that de novo GluA1 and GluA2 AMPAR subunit expression is required for memory retrieval with potential different roles for each subunit and suggests that mTORC1 might regulate AMPAR trafficking during retrieval. Our present results highlight the role of mTORC1 as a key determinant of memory retrieval that impacts the recruitment of different AMPAR subunits.
Collapse
Affiliation(s)
- Magdalena Pereyra
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén de Landeta
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliana Fátima Dalto
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cynthia Katche
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Radiske A, Gonzalez MC, Nôga DA, Rossato JI, Bevilaqua LRM, Cammarota M. mTOR inhibition impairs extinction memory reconsolidation. ACTA ACUST UNITED AC 2020; 28:1-6. [PMID: 33323495 PMCID: PMC7747651 DOI: 10.1101/lm.052068.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Fear-motivated avoidance extinction memory is prone to hippocampal brain-derived neurotrophic factor (BDNF)-dependent reconsolidation upon recall. Here, we show that extinction memory recall activates mammalian target of rapamycin (mTOR) in dorsal CA1, and that post-recall inhibition of this kinase hinders avoidance extinction memory persistence and recovers the learned aversive response. Importantly, coadministration of recombinant BDNF impedes the behavioral effect of hippocampal mTOR inhibition. Our results demonstrate that mTOR signaling is necessary for fear-motivated avoidance extinction memory reconsolidation and suggests that BDNF acts downstream mTOR in a protein synthesis-independent manner to maintain the reactivated extinction memory trace.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil.,Edmond and Lily Safra International Institute of Neuroscience, RN 59280-000 Macaiba, Brazil
| | - Diana A Nôga
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil.,Departament of Physiology, Federal University of Rio Grande do Norte, RN 59064-741 Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| |
Collapse
|
34
|
Moya NA, Tanner MK, Smith AM, Balolia A, Davis JKP, Bonar K, Jaime J, Hubert T, Silva J, Whitworth W, Loetz EC, Bland ST, Greenwood BN. Acute exercise enhances fear extinction through a mechanism involving central mTOR signaling. Neurobiol Learn Mem 2020; 176:107328. [PMID: 33075479 PMCID: PMC7718627 DOI: 10.1016/j.nlm.2020.107328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
Impaired fear extinction, combined with the likelihood of fear relapse after exposure therapy, contributes to the persistence of many trauma-related disorders such as anxiety and post-traumatic stress disorder. Identifying mechanisms to aid fear extinction and reduce relapse could provide novel strategies for augmentation of exposure therapy. Exercise can enhance learning and memory and augment fear extinction of traumatic memories in humans and rodents. One factor that could contribute to enhanced fear extinction following exercise is the mammalian target of rapamycin (mTOR). mTOR is a translation regulator involved in synaptic plasticity and is sensitive to many exercise signals such as monoamines, growth factors, and cellular metabolism. Further, mTOR signaling is increased after chronic exercise in brain regions involved in learning and emotional behavior. Therefore, mTOR is a compelling potential facilitator of the memory-enhancing and overall beneficial effects of exercise on mental health.The goal of the current study is to test the hypothesis that mTOR signaling is necessary for the enhancement of fear extinction produced by acute, voluntary exercise. We observed that intracerebral-ventricular administration of the mTOR inhibitor rapamycin reduced immunoreactivity of phosphorylated S6, a downstream target of mTOR, in brain regions involved in fear extinction and eliminated the enhancement of fear extinction memory produced by acute exercise, without reducing voluntary exercise behavior or altering fear extinction in sedentary rats. These results suggest that mTOR signaling contributes to exercise-augmentation of fear extinction.
Collapse
Affiliation(s)
- Nicolette A Moya
- Department of Psychology, University of Colorado Denver, USA; Department of Integrative Biology, University of Colorado Denver, USA
| | - Margaret K Tanner
- Department of Psychology, University of Colorado Denver, USA; Department of Integrative Biology, University of Colorado Denver, USA
| | - Abigail M Smith
- Department of Psychology, University of Colorado Denver, USA
| | - Aleezah Balolia
- Department of Psychology, University of Colorado Denver, USA; Department of Integrative Biology, University of Colorado Denver, USA
| | | | - Kelsey Bonar
- Department of Psychology, University of Colorado Denver, USA
| | - Jennifer Jaime
- Department of Psychology, University of Colorado Denver, USA
| | - Troy Hubert
- Department of Psychology, University of Colorado Denver, USA
| | - Jorge Silva
- Department of Psychology, University of Colorado Denver, USA
| | | | - Esteban C Loetz
- Department of Psychology, University of Colorado Denver, USA
| | - Sondra T Bland
- Department of Psychology, University of Colorado Denver, USA
| | | |
Collapse
|
35
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
36
|
Huang C, Wen C, Yang M, Li A, Fan C, Gan D, Li Q, Zhao J, Zhu L, Lu D. Astaxanthin Improved the Cognitive Deficits in APP/PS1 Transgenic Mice Via Selective Activation of mTOR. J Neuroimmune Pharmacol 2020; 16:609-619. [PMID: 32944864 DOI: 10.1007/s11481-020-09953-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/26/2020] [Indexed: 01/20/2023]
Abstract
Astaxanthin (Ast) is an effective neuroprotective and antioxidant compound used to treat Alzheimer's disease (AD); however, the underlying in vivo molecular mechanisms remain unknown. In this study, we report that Ast can activate the mammalian target of rapamycin (mTOR) pathway in the 8-month-old APP/PS1 transgenic mouse model of AD. Our results suggest that Ast could ameliorate the cognitive defects in APP/PS1 mice by activating the mTOR pathway. Moreover, mTOR activation perturbed the mitochondrial dynamics, increased the synaptic plasticity after 21 days of treatment with Ast (10 mg/kg/day), and increased the expression of Aβ-degrading enzymes, mitochondrial fusion, and synapse-associated proteins and decreased the expression of mitochondrial fission proteins. Intraperitoneal injection of the mTOR inhibitor, rapamycin, abolished the effects of Ast. In conclusion, Ast activates the mTOR pathway, which is necessary for mitochondrial dynamics and synaptic plasticity, leading to improved learning and memory. Our results support the use of Ast for the treatment of cognitive deficits. Graphical abstract In summary, Ast ameliorates cognitive deficits via facilitating the mTOR-dependent mitochondrial dynamics and synaptic damage, and reducing Aβ accumulation. This model supports the use of Ast for the treatment of cognitive deficits.
Collapse
Affiliation(s)
- Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
MacCallum PE, Blundell J. The mTORC1 inhibitor rapamycin and the mTORC1/2 inhibitor AZD2014 impair the consolidation and persistence of contextual fear memory. Psychopharmacology (Berl) 2020; 237:2795-2808. [PMID: 32601986 DOI: 10.1007/s00213-020-05573-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The mechanistic target of rapamycin (mTOR) kinase mediates various long-lasting forms of synaptic and behavioural plasticity. However, there is little information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during consolidation of contextual fear memory. Moreover, the contribution of both mTOR complex 1 and 2 together or the mTOR complex 1 downstream effector p70S6K (S6K1) to consolidation of contextual fear memory is unknown. OBJECTIVE Here, we tested whether different timepoints of vulnerability to rapamycin, a first generation mTOR complex 1 inhibitor, exist for contextual fear memory consolidation and persistence. We also sought to characterize the effects of dually inhibiting mTORC1/2 as well as S6K1 on fear memory formation and persistence. METHODS Rapamycin was injected systemically to mice immediately, 3 h, or 12 h after contextual fear conditioning, and retention was measured at different timepoints thereafter. To determine the effects of a single injection of the dual mTROC1/2 inhibitor AZD2014 after learning on memory consolidation and persistence, a dose-response experiment was carried out. Memory formation and persistence was also assessed in response to the S6K1 inhibitor PF-4708671. RESULTS A single systemic injection of rapamycin immediately or 3 h, but not 12 h, after learning impaired the formation and persistence of contextual fear memory. AZD2014 was found, with limitations, to dose-dependently attenuate memory consolidation and persistence at the highest dose tested (50 mg/kg). In contrast, PF-4708671 had no effect on consolidation or persistence. CONCLUSION Our results indicate the need to further understand the role of mTORC1/2 kinase activity in the molecular mechanisms underlying memory processing and also demonstrate that the effects of mTORC1 inhibition at different timepoints well after learning on memory consolidation and persistence.
Collapse
Affiliation(s)
- Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
38
|
Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, Duman RS. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT 1A receptor stimulation. Neuropsychopharmacology 2020; 45:1725-1734. [PMID: 32396921 PMCID: PMC7419563 DOI: 10.1038/s41386-020-0705-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
We previously reported that the serotonergic system is important for the antidepressant-like effects of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, which produces rapid and long-lasting antidepressant effects in patients with major depressive disorder (MDD). In particular, selective stimulation of the 5-HT1A receptor in the medial prefrontal cortex (mPFC), as opposed to the somatic 5-HT1A autoreceptor, has been shown to play a critical role in the antidepressant-like actions of ketamine. However, the detailed mechanisms underlying mPFC 5-HT1A receptor-mediated antidepressant-like effects are not fully understood. Here we examined the involvement of the glutamate AMPA receptor and brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of 5-HT1A receptor activation in the mPFC. The results show that intra-mPFC infusion of the 5-HT1A receptor agonist 8-OH-DPAT induces rapid and long-lasting antidepressant-like effects in the forced swim, novelty-suppressed feeding, female urine sniffing, and chronic unpredictable stress tests. In addition, the results demonstrate that the antidepressant-like effects of intra-mPFC infusion of 8-OH-DPAT are blocked by co-infusion of an AMPA receptor antagonist or an anti-BDNF neutralizing antibody. In addition, mPFC infusion of 8-OH-DPAT increased the phosphorylation of signaling proteins downstream of BDNF, including mTOR, ERK, 4EBP1, and p70S6K. Finally, selective stimulation of the 5-HT1A receptor increased levels of synaptic proteins and synaptic function in the mPFC. Collectively, these results indicate that selective stimulation of 5-HT1A receptor in the mPFC exerts rapid and sustained antidepressant-like effects via activation of AMPA receptor/BDNF/mTOR signaling in mice, which subsequently increase synaptic function in the mPFC, and provide evidence for the 5-HT1A receptor as a target for the treatment of MDD.
Collapse
Affiliation(s)
- Kenichi Fukumoto
- Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06520, USA. .,Research Headquarters, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan.
| | - Manoela V. Fogaça
- grid.47100.320000000419368710Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520 USA
| | - Rong-Jian Liu
- grid.47100.320000000419368710Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520 USA
| | - Catharine H. Duman
- grid.47100.320000000419368710Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520 USA
| | - Xiao-Yuan Li
- grid.47100.320000000419368710Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520 USA
| | - Shigeyuki Chaki
- grid.419836.10000 0001 2162 3360Research Headquarters, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530 Japan
| | - Ronald S. Duman
- grid.47100.320000000419368710Departments of Psychiatry and Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520 USA
| |
Collapse
|
39
|
Mori T, Kitani Y, Hatakeyama D, Machida K, Goto-Inoue N, Hayakawa S, Yamamoto N, Kashiwagi K, Kashiwagi A. Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles. Sci Rep 2020; 10:11737. [PMID: 32678123 PMCID: PMC7367293 DOI: 10.1038/s41598-020-67975-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
The threat of predation is a driving force in the evolution of animals. We have previously reported that Xenopus laevis enhanced their tail muscles and increased their swimming speeds in the presence of Japanese larval salamander predators. Herein, we investigated the induced gene expression changes in the brains of tadpoles under the threat of predation using 3′-tag digital gene expression profiling. We found that many muscle genes were expressed after 24 h of exposure to predation. Ingenuity pathway analysis further showed that after 24 h of a predation threat, various signal transduction genes were stimulated, such as those affecting the actin cytoskeleton and CREB pathways, and that these might increase microtubule dynamics, axonogenesis, cognition, and memory. To verify the increase in microtubule dynamics, DiI was inserted through the tadpole nostrils. Extension of the axons was clearly observed from the nostril to the diencephalon and was significantly increased (P ≤ 0.0001) after 24 h of exposure to predation, compared with that of the control. The dynamic changes in the signal transductions appeared to bring about new connections in the neural networks, as suggested by the microtubule dynamics. These connections may result in improved memory and cognition abilities, and subsequently increase survivability.
Collapse
Affiliation(s)
- Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, 252-0880, Japan.
| | - Yoichiro Kitani
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, 252-0880, Japan.,Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Den Hatakeyama
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Kazumasa Machida
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Satoshi Hayakawa
- Department of Pathology and Microbiology, School of Medicine, Nihon University, Tokyo, Japan
| | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keiko Kashiwagi
- Amphibian Research Center (Building M), Hiroshima University, Hiroshima, Japan
| | - Akihiko Kashiwagi
- Amphibian Research Center (Building M), Hiroshima University, Hiroshima, Japan
| |
Collapse
|
40
|
Krishna-K K, Baby N, Raghuraman R, Navakkode S, Behnisch T, Sajikumar S. Regulation of aberrant proteasome activity re-establishes plasticity and long-term memory in an animal model of Alzheimer's disease. FASEB J 2020; 34:9466-9479. [PMID: 32459037 DOI: 10.1096/fj.201902844rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 11/11/2022]
Abstract
Reduced retrograde memory performance at the cognitive level and aggregation/deposition of amyloid beta (Aβ) in the brain at the cellular level are some of the hallmarks of Alzheimer's Disease (AD). A molecular system that participates in the removal of proteins with an altered conformation is the Ubiquitin-Proteasome System (UPS). Impairments of the UPS in wild-type (WT) mice lead to defective clearance of Aβ and prevent long-term plasticity of synaptic transmission. Here we show data whereby in contrast to WT mice, the inhibition of proteasome-mediated protein degradation in an animal model of AD by MG132 or lactacystin restores impaired activity-dependent synaptic plasticity and its associative interaction, synaptic tagging and capture (STC) in vitro, as well as associative long-term memory in vivo. This augmentation of synaptic plasticity and memory is mediated by the mTOR pathway and protein synthesis. Our data offer novel insights into the rebalancing of proteins relevant for synaptic plasticity which are regulated by UPS in AD-like animal models. In addition, the data provide evidence that proteasome inhibitors might be effective in reinstating synaptic plasticity and memory performance in AD, and therefore offer a new potential therapeutic option for AD treatment.
Collapse
Affiliation(s)
- Kumar Krishna-K
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Nimmi Baby
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Sheeja Navakkode
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, Sasongko TH. The role of mTOR signalling pathway in hypoxia-induced cognitive impairment. Int J Neurosci 2020; 131:482-488. [PMID: 32202188 DOI: 10.1080/00207454.2020.1746308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
Collapse
Affiliation(s)
| | - Ninie Nadia Zulkipli
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Rahimah Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Asma Hayati Ahmad
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Zahiruddin Othman
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Sangu Muthuraju
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Teguh Haryo Sasongko
- Perdana University-RCSI School of Medicine, Perdana University Center for Research Excellence, Jalan MAEPS Perdana, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
42
|
The potential role of the HCN1 ion channel and BDNF-mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Transl Psychiatry 2020; 10:101. [PMID: 32198387 PMCID: PMC7083842 DOI: 10.1038/s41398-020-0782-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The function of the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and the expression of brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis of post-traumatic stress disorder (PTSD). This study aims to explore the role of the HCN1 channel, BDNF, and mTOR in the actions of PTSD and to examine whether synaptic transmission or plasticity is involved in the regulation of this disease. In the present study, rats were exposed to the single prolonged stress and electric foot shock (SPS&S) procedure, which can induce PTSD-like behaviors in rats. ZD7288 was administered by intracerebroventricular (i.c.v.) injection to one experimental group to inhibit the function of the HCN1 ion channel while 8-Br-cAMP was administered to another group to activate the function of the HCN1 ion channel. A series of behavioral tests and biochemical assessments of certain proteins (HCN1, BDNF, and pmTOR) and synaptic ultrastructure in the prefrontal cortex (PFC) and hippocampus (Hip) were then conducted. The SPS&S procedure induced apparent PTSD-like symptoms in rats. The administration of ZD7288 reduced the immobility time and escape latency time in the forced swim test (FST) and water maze test (WMT) with a decreased level of HCN1, upregulated BDNF-mTOR signaling pathways in the PFC and Hip, and synaptic ultrastructure changes in the PFC. In contrast, the administration of 8-Br-cAMP, which led to a higher level of HCN1 in PFC and Hip, resulted in a decreased number of entries to the open arms without significant change in total arm entries in the elevated plus maze test (EPMT) as well as a shorter center square distance and total distance in the open field test (OFT). Extended escape latency time was also observed in the WMT although there was no alteration of BDNF-mTOR signaling pathways and synaptic ultrastructure in the PFC and Hip. Overall, the inhibition of HCN1, which can alleviate PTSD-like behavior of rats by relieving depression and improving learning ability, may be related to the upregulated BDNF-mTOR signaling pathways and synaptic transmission.
Collapse
|
43
|
Moon GJ, Shin M, Kim SR. Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain. Int J Mol Sci 2020; 21:E2023. [PMID: 32188096 PMCID: PMC7139780 DOI: 10.3390/ijms21062023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
44
|
Yuen SC, Zhu H, Leung SW. A Systematic Bioinformatics Workflow With Meta-Analytics Identified Potential Pathogenic Factors of Alzheimer's Disease. Front Neurosci 2020; 14:209. [PMID: 32231518 PMCID: PMC7083177 DOI: 10.3389/fnins.2020.00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Potential pathogenic factors, other than well-known APP, APOE4, and PSEN, can be further identified from transcriptomics studies of differentially expressed genes (DEGs) that are specific for Alzheimer’s disease (AD), but findings are often inconsistent or even contradictory. Evidence corroboration by combining meta-analysis and bioinformatics methods may help to resolve existing inconsistencies and contradictions. This study aimed to demonstrate a systematic workflow for evidence synthesis of transcriptomic studies using both meta-analysis and bioinformatics methods to identify potential pathogenic factors. Transcriptomic data were assessed from GEO and ArrayExpress after systematic searches. The DEGs and their dysregulation states from both DNA microarray and RNA sequencing datasets were analyzed and corroborated by meta-analysis. Statistically significant DEGs were used for enrichment analysis based on KEGG and protein–protein interaction network (PPIN) analysis based on STRING. AD-specific modules were further determined by the DIAMOnD algorithm, which identifies significant connectivity patterns between specific disease-associated proteins and non-specific proteins. Within AD-specific modules, the nodes of highest degrees (>95th percentile) were considered as potential pathogenic factors. After systematic searches of 225 datasets, extensive meta-analyses among 25 datasets (21 DNA microarray datasets and 4 RNA sequencing datasets) identified 9,298 DEGs. The dysregulated genes and pathways in AD were associated with impaired amyloid-β (Aβ) clearance. From the AD-specific module, Fyn, and EGFR were the most statistically significant and biologically relevant. This meta-analytical study suggested that the reduced Aβ clearance in AD pathogenesis was associated with the genes encoding Fyn and EGFR, which were key receptors in Aβ downstream signaling.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,School of Informatics, College of Science and Engineering, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Kaldun JC, Sprecher SG. Initiated by CREB: Resolving Gene Regulatory Programs in Learning and Memory. Bioessays 2019; 41:e1900045. [DOI: 10.1002/bies.201900045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jenifer C. Kaldun
- Department of BiologyUniversity of Fribourg1700 Fribourg Switzerland
| | - Simon G. Sprecher
- Department of BiologyUniversity of Fribourg1700 Fribourg Switzerland
| |
Collapse
|
46
|
Loprinzi PD, Ponce P, Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol Int 2018; 105:285-297. [PMID: 30525869 DOI: 10.1556/2060.105.2018.4.28] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Emerging research demonstrates that exercise is favorably associated with several cognitive outcomes, including episodic memory function. The majority of the mechanistic work describing the underlying mechanisms of this effect has focused on chronic exercise engagement. Such mechanisms include, e.g., chronic exercise-induced neurogenesis, gliogenesis, angiogenesis, cerebral circulation, and growth factor production. Less research has examined the mechanisms through which acute (vs. chronic) exercise subserves episodic memory function. The purpose of this review is to discuss these potential underlying mechanisms, which include, e.g., acute exercise-induced (via several pathways, such as vagus nerve and muscle spindle stimulation) alterations in neurotransmitters, synaptic tagging/capturing, associativity, and psychological attention.
Collapse
Affiliation(s)
- P D Loprinzi
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| | - P Ponce
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| | - E Frith
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| |
Collapse
|
47
|
Rosas-Vidal LE, Lozada-Miranda V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ. Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology 2018; 43:2636-2644. [PMID: 30127343 PMCID: PMC6224579 DOI: 10.1038/s41386-018-0176-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for establishing activity-related neural plasticity. There is increasing interest in the mechanisms of active avoidance and its extinction, but little is known about the role of BDNF in these processes. Using the platform-mediated avoidance task combined with local infusions of an antibody against BDNF, we show that blocking BDNF in either prelimbic (PL) or infralimbic (IL) medial prefrontal cortex during extinction training impairs subsequent recall of extinction of avoidance, differing from extinction of conditioned freezing. By combining retrograde tracers with BDNF immunohistochemistry, we show that extinction of avoidance increases BDNF expression in ventral hippocampal (vHPC) neurons, but not amygdala neurons, projecting to PL and IL. Using the CRISPR/Cas9 system, we further show that reducing BDNF production in vHPC neurons impairs recall of avoidance extinction. Thus, the vHPC may mediate behavioral flexibility in avoidance by driving extinction-related plasticity via BDNFergic projections to both PL and IL. These findings add to the growing body of knowledge implicating the hippocampal-prefrontal pathway in anxiety-related disorders and extinction-based therapies.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Valeria Lozada-Miranda
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Yisel Cantres-Rosario
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Alexis Vega-Medina
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Loyda Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
48
|
Lopes da Cunha P, Villar ME, Ballarini F, Tintorelli R, Ana María Viola H. Spatial object recognition memory formation under acute stress. Hippocampus 2018; 29:491-499. [PMID: 30295349 DOI: 10.1002/hipo.23037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023]
Abstract
Stress is known to have a critical impact on memory processes. In the present work, we focus on the effects of an acute stress event closely associated to an unrelated learning task. Here, we show that acute stress (elevated platform [EP] session) experienced 1 hr after a weak spatial object recognition (SOR) training, which only induces a short-term memory (STM), promoted the formation of SOR-long term memory (SOR-LTM) in rats. The effect induced by stress was dependent on the activation of glucocorticoid- and mineralocorticoid-receptors, brain-derived neurotrophic factor (BDNF) and protein synthesis in the dorsal hippocampus. In contrast, EP after a strong SOR impaired SOR-LTM probably by interfering with the use of necessary resources. Moreover, we show that the EP session before training induced anterograde interference, which it was not reversed by a subsequent exposure to an open field. Our findings provide novel insights into the impact of stress on LTM formation in rodents and they are discussed under the behavioral analogue of the synaptic tagging and capture hypothesis.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabricio Ballarini
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydée Ana María Viola
- Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
49
|
Jiang C, Lin WJ, Sadahiro M, Labonté B, Menard C, Pfau ML, Tamminga CA, Turecki G, Nestler EJ, Russo SJ, Salton SR. VGF function in depression and antidepressant efficacy. Mol Psychiatry 2018; 23:1632-1642. [PMID: 29158577 PMCID: PMC5962361 DOI: 10.1038/mp.2017.233] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a critical effector of depression-like behaviors and antidepressant responses. Here, we show that VGF (non-acronymic), which is robustly regulated by BDNF/TrkB signaling, is downregulated in hippocampus (male/female) and upregulated in nucleus accumbens (NAc) (male) in depressed human subjects and in mice subjected to chronic social defeat stress (CSDS). Adeno-associated virus (AAV)-Cre-mediated Vgf ablation in floxed VGF mice, in dorsal hippocampus (dHc) or NAc, led to pro-depressant or antidepressant behaviors, respectively, while dHc- or NAc-AAV-VGF overexpression induced opposite outcomes. Mice with reduced VGF levels in the germ line (Vgf+/-) or in dHc (AAV-Cre-injected floxed mice) showed increased susceptibility to CSDS and impaired responses to ketamine treatment in the forced swim test. Floxed mice with conditional pan-neuronal (Synapsin-Cre) but not those with forebrain (αCaMKII-Cre) Vgf ablation displayed increased susceptibility to subthreshold social defeat stress, suggesting that neuronal VGF, expressed in part in inhibitory interneurons, regulates depression-like behavior. Acute antibody-mediated sequestration of VGF-derived C-terminal peptides AQEE-30 and TLQP-62 in dHc induced pro-depressant effects. Conversely, dHc TLQP-62 infusion had rapid antidepressant efficacy, which was reduced in BDNF floxed mice injected in dHc with AAV-Cre, and in NBQX- and rapamycin-pretreated wild-type mice, these compounds blocking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mammalian target of rapamycin (mTOR) signaling, respectively. VGF is therefore a critical modulator of depression-like behaviors in dHc and NAc. In hippocampus, the antidepressant response to ketamine is associated with rapid VGF translation, is impaired by reduced VGF expression, and as previously reported, requires coincident, rapid BDNF translation and release.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline Menard
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madeline L. Pfau
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Eric J. Nestler
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott J. Russo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Corresponding author: Dr. Stephen R. Salton, Department of Neuroscience, Box 1639, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York NY, 10029 USA Tel: 1-212-824-9308; Fax: 1-646-537-9583;
| |
Collapse
|
50
|
Abstract
Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.
Collapse
|