1
|
The Serine Protease Autotransporters TagB, TagC, and Sha from Extraintestinal Pathogenic Escherichia coli Are Internalized by Human Bladder Epithelial Cells and Cause Actin Cytoskeletal Disruption. Int J Mol Sci 2020; 21:ijms21093047. [PMID: 32357479 PMCID: PMC7246781 DOI: 10.3390/ijms21093047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
TagB, TagC (tandem autotransporter genes B and C), and Sha (Serine-protease hemagglutinin autotransporter) are recently described members of the SPATE (serine protease autotransporters of Enterobacteriaceae) family. These SPATEs can cause cytopathic effects on bladder cells and contribute to urinary tract infection in a mouse model. Bladder epithelial cells form an important barrier in the urinary tract. Some SPATEs produced by pathogenic E. coli are known to breach the bladder epithelium. The capacity of these newly described SPATEs to alter bladder epithelial cells and the role of the serine protease active site were investigated. All three SPATE proteins were internalized by bladder epithelial cells and altered the distribution of actin cytoskeleton. Sha and TagC were also shown to degrade mucin and gelatin respectively. Inactivation of the serine catalytic site in each of these SPATEs did not affect secretion of the SPATEs from bacterial cells, but abrogated entry into epithelial cells, cytotoxicity, and proteolytic activity. Thus, our results show that the serine catalytic triad of these proteins is required for internalization in host cells, actin disruption, and degradation of host substrates such as mucin and gelatin.
Collapse
|
2
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
3
|
Bommer A, Böhler O, Johannsen E, Dobrindt U, Kuczius T. Effect of chlorine on cultivability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase genes carrying E. coli and Pseudomonas aeruginosa. Int J Med Microbiol 2018; 308:1105-1112. [PMID: 30262431 DOI: 10.1016/j.ijmm.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022] Open
Abstract
The worldwide spread of toxin-producing and multi-drug resistant bacteria in water, food and the environment is considered a major threat to human health. Drinking water quality is controlled by inspection of fecal indicators presence whereby viable contaminants will be efficiently reduced by chlorination which is a common process for disinfection. However, the all-out efficiency is arguable, because bacterial regrowth has been documented after disinfection. In this study, we investigated the stability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase expressing E. coli and Pseudomonas aeruginosa isolates, both equipped with multiple or single β-lactamase resistance genes. The aim of the study was to analyze the efficiency of chlorine (Cl2) disinfection against shigatoxigenic or β-lactamase producing bacteria. Cl2 reacts with the bacterial cells after first contact. Counts of antibiotic resistant E. coli were lower after short than upon extended Cl2 treatment. P. aeruginosa counts decreased moderately upon 15-60 min treatment with 1.2 mg Cl2/l, while cells adapted to tap water were not cultivable anymore. We assume that the bacterial physiology changed to a temporary non-cultivatable state at first Cl2 contact followed by resuscitation of some cells at later stages. STEC viability went down continuously at low Cl2 concentrations and these toxigenic E. coli isolates exhibited slightly increased stability to Cl2 treatment compared with non-toxigenic E. coli. Controlling the efficiency of disinfection, realistic counts of cultivatable cells are achieved after extended Cl2 action.
Collapse
Affiliation(s)
- Anni Bommer
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Olga Böhler
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Eva Johannsen
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| |
Collapse
|
4
|
Rojas-Lopez M, Zorgani MA, Kelley LA, Bailly X, Kajava AV, Henderson IR, Polticelli F, Pizza M, Rosini R, Desvaux M. Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger. Front Microbiol 2018; 8:2607. [PMID: 29375499 PMCID: PMC5767081 DOI: 10.3389/fmicb.2017.02607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
Autotransporters (ATs) belong to a family of modular proteins secreted by the Type V, subtype a, secretion system (T5aSS) and considered as an important source of virulence factors in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria). While exported by the Sec pathway, the ATs are further secreted across the outer membrane via their own C-terminal translocator forming a β-barrel, through which the rest of the protein, namely the passenger, can pass. In several ATs, an autochaperone domain (AC) present at the C-terminal region of the passenger and upstream of the translocator was demonstrated as strictly required for proper secretion and folding. However, considering it was functionally characterised and identified only in a handful of ATs, wariness recently fells on the commonality and conservation of this structural element in the T5aSS. To circumvent the issue of sequence divergence and taking advantage of the resolved three-dimensional structure of some ACs, identification of this domain was performed following structural alignment among all AT passengers experimentally resolved by crystallography before searching in a dataset of 1523 ATs. While demonstrating that the AC is indeed a conserved structure found in numerous ATs, phylogenetic analysis further revealed a distribution into deeply rooted branches, from which emerge 20 main clusters. Sequence analysis revealed that an AC could be identified in the large majority of SAATs (self-associating ATs) but not in any LEATs (lipase/esterase ATs) nor in some PATs (protease autotransporters) and PHATs (phosphatase/hydrolase ATs). Structural analysis indicated that an AC was present in passengers exhibiting single-stranded right-handed parallel β-helix, whatever the type of β-solenoid, but not with α-helical globular fold. From this investigation, the AC of type 1 appears as a prevalent and conserved structural element exclusively associated to β-helical AT passenger and should promote further studies about the protein secretion and folding via the T5aSS, especially toward α-helical AT passengers.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France.,GSK, Siena, Italy
| | - Mohamed A Zorgani
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Lawrence A Kelley
- Structural Bioinformatics Group, Imperial College London, London, United Kingdom
| | - Xavier Bailly
- Institut National de la Recherche Agronomique, UR346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Andrey V Kajava
- CRBM UMR5237 CNRS, Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Fabio Polticelli
- Department of Sciences, National Institute of Nuclear Physics, Roma Tre University, Rome, Italy
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| |
Collapse
|
5
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
6
|
Rubin D, Zhang W, Karch H, Kuczius T. Distinct Expression of Immunoglobulin-Binding Proteins in Shiga Toxin-Producing Escherichia coli Implicates High Protein Stability and a Characteristic Phenotype. Toxins (Basel) 2017; 9:toxins9050153. [PMID: 28468281 PMCID: PMC5450701 DOI: 10.3390/toxins9050153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022] Open
Abstract
Several immunoglobulin-binding proteins of Escherichia coli (Eib) have been isolated from both non-pathogenic and pathogenic E. coli strains. Shiga toxin (Stx)-producing E. coli (STEC) contain eibG either as a single gene or in combination with eibC, while other E. coli strains harbour single or multiple eib genes. The Eib proteins bind human immunoglobulins in a non-immune manner and contribute to bacterial chain-like adherence to human epithelial cells. In this study, the EibG expression in several STEC strains was analysed under different environmental conditions. STEC produced high levels of EibG in complex media and lower levels in low-grade and minimal media under static growth conditions. This characteristic was independent on the Eib subtypes. Microscopically, EibG-expressing STEC exhibited chain formation and aggregation in all employed media, while aggregates were only visible after growth in complex medium. Once expressed, EibG proteins demonstrate high stability during prolonged incubation. Our findings indicate that the regulation of the expression of Eib proteins is highly complex, although the protein levels vary among STEC strains. However, positive upregulation conditions generally result in distinct phenotypes of the isolates.
Collapse
Affiliation(s)
- Dennis Rubin
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Wenlan Zhang
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Helge Karch
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Straße 41, 48149 Münster, Germany.
| |
Collapse
|
7
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Genotype Cluster Analysis in Pathogenic Escherichia coli Isolates Producing Different CDT Types. J Pathog 2016; 2016:9237127. [PMID: 27042356 PMCID: PMC4794564 DOI: 10.1155/2016/9237127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 01/19/2023] Open
Abstract
Diarrheagenic and uropathogenic E. coli types are mainly characterized by the expression of distinctive bacterial virulent factors. stx1, stx2 (Shiga toxins), and cdt (cytolethal distending toxin) genes have been acquired by horizontal gene transfer. Some virulent genes such as espP (serine protease), etpD (part of secretion pathway), and katP (catalase-peroxidase), or sfpA gene (Sfp fimbriae), are on plasmids and the others like fliC (flagellin) and the fimH gene (fimbriae type-I) are located on chromosome. Genomic pathogenicity islands (PAIs) carry some virulent genes such as hly gene. To determine the existence of virulence genes in cdt clinical isolates, genes including stx1, stx2, cdt, hly, espP, katP, sfpA, etpD, fliC, and fimH were assessed by Polymerase Chain Reaction (PCR). The most prevalent isolates for etpD and katP genes were 85.7% in cdtII. katP gene was also observed 83.3% in cdtI. However, in 42.85% of cdtIII isolates, espP gene was the most detected. Moreover, hly gene was also the most prominent gene in cdtIII (71.42%). sfpA gene was observed in 66.6% of cdtV. stx1 gene was detected in 100% of cdtII, cdtIV, and cdtV types. Presence and pattern of virulence genes were considered among cdt positive isotypes and used for their clustering and profiling.
Collapse
|
9
|
Abstract
The autotransporter and two-partner secretion (TPS) pathways are used by E. coli and many other Gram-negative bacteria to delivervirulence factors into the extracellular milieu.Autotransporters arecomprised of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that anchors the protein to the outer membrane and facilitates passenger domain secretion. In the TPS pathway, a secreted polypeptide ("exoprotein") is coordinately expressed with an outer membrane protein that serves as a dedicated transporter. Bothpathways are often grouped together under the heading "type V secretion" because they have many features in common and are used for the secretion of structurally related polypeptides, but it is likely that theyhave distinct evolutionary origins. Although it was proposed many years ago that autotransporterpassenger domains are transported across the outer membrane through a channel formed by the covalently linked β domain, there is increasing evidence that additional factors are involved in the translocation reaction. Furthermore, details of the mechanism of protein secretion through the TPS pathway are only beginning to emerge. In this chapter I discussour current understanding ofboth early and late steps in the biogenesis of polypeptides secreted through type V pathways and current modelsofthe mechanism of secretion.
Collapse
|
10
|
Chua EG, Al-Hasani K, Scanlon M, Adler B, Sakellaris H. Determinants of Proteolysis and Cell-Binding for the Shigella flexneri Cytotoxin, SigA. Curr Microbiol 2015; 71:613-7. [DOI: 10.1007/s00284-015-0893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
11
|
Kuczius T, Zhang W, Merkel V, Mellmann A, Tarr PI, Karch H. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC). PLoS One 2015; 10:e0119583. [PMID: 25746924 PMCID: PMC4352079 DOI: 10.1371/journal.pone.0119583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 01/23/2015] [Indexed: 11/28/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG). EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
- * E-mail:
| | - Wenlan Zhang
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Viktor Merkel
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University, School of Medicine, Campus Box 8208, 660 S. Euclid, St. Louis, Missouri, 63105, United States of America
| | - Helge Karch
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| |
Collapse
|
12
|
Drobnak I, Braselmann E, Chaney JL, Leyton DL, Bernstein HD, Lithgow T, Luirink J, Nataro JP, Clark PL. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Mol Microbiol 2014; 95:1-16. [PMID: 25345653 DOI: 10.1111/mmi.12838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
Abstract
Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane β-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.
Collapse
Affiliation(s)
- Igor Drobnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Weiss A, Joerss H, Brockmeyer J. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli. PLoS One 2014; 9:e111363. [PMID: 25347319 PMCID: PMC4210187 DOI: 10.1371/journal.pone.0111363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.
Collapse
Affiliation(s)
- André Weiss
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hanna Joerss
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jens Brockmeyer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
14
|
Biochemical characterization of the SPATE members EspPα and EspI. Toxins (Basel) 2014; 6:2719-31. [PMID: 25229188 PMCID: PMC4179157 DOI: 10.3390/toxins6092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022] Open
Abstract
The activity of serine proteases is influenced by their substrate specificity as well as by the physicochemical conditions. Here, we present the characterization of key biochemical features of the two SPATE members EspPα and EspI from Shiga-toxin producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC). Both proteases show high activity at conditions mimicking the human blood stream. Optimal activities were observed at slightly alkaline pH and low millimolar concentrations of the divalent cations Ca2+ and Mg2+ at physiological temperatures indicating a function in the human host. Furthermore, we provide the first cleavage profile for EspI demonstrating pronounced specificity of this protease.
Collapse
|
15
|
Role of class 1 serine protease autotransporter in the pathogenesis of Citrobacter rodentium colitis. Infect Immun 2014; 82:2626-36. [PMID: 24711562 DOI: 10.1128/iai.01518-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A growing family of virulence factors called serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted by Shigella, Salmonella, and Escherichia coli pathotypes. SPATEs are subdivided into class 1 and class 2 based on structural features and phylogenetics. Class 1 SPATEs induce cytopathic effects in numerous epithelial cell lines, and several have been shown to cleave the cytoskeletal protein spectrin in vitro. However, to date the in vivo role of class 1 SPATEs in enteric pathogenesis is unknown. Citrobacter rodentium, a natural mouse pathogen, has recently been shown to harbor class 1 and class 2 SPATEs. To better understand the contribution of class 1 SPATEs in enteric infection, we constructed a class 1 SPATE null mutant (Δcrc1) in C. rodentium. Upon infection of C57BL/6 mice, the Δcrc1 mutant exhibited a hypervirulent, hyperinflammatory phenotype compared with its parent, accompanied by greater weight loss and a trend toward increased mortality in young mice; the effect was reversed when the crc1 gene was restored. Using flow cytometry, we observed increased infiltration of T cells, B cells, and neutrophils into the lamina propria of the distal colon in mice fed the Δcrc1 mutant, starting as early as 5 days after infection. No significant difference in epithelial cytotoxicity was observed. Reverse transcription-PCR (RT-PCR) analysis of distal colonic tissue on day 10 postinfection showed significant increases in mRNA encoding cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), IL-1β, and inducible nitric oxide synthase (iNOS) but not in mRNA encoding IL-17, IL-4, or IL-10 in the Δcrc1 mutant-infected mice. Our data suggest a previously unsuspected role for class 1 SPATEs in enteric infection.
Collapse
|
16
|
Kang'ethe W, Bernstein HD. Stepwise folding of an autotransporter passenger domain is not essential for its secretion. J Biol Chem 2013; 288:35028-38. [PMID: 24165126 DOI: 10.1074/jbc.m113.515635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autotransporters are a superfamily of virulence proteins produced by Gram-negative bacteria. They consist of an N-terminal β-helical domain ("passenger domain") that is secreted into the extracellular space and a C-terminal β-barrel domain ("β-domain") that anchors the protein to the outer membrane. Because the periplasm lacks ATP, vectorial folding of the passenger domain in a C-to-N-terminal direction has been proposed to drive the secretion reaction. Consistent with this hypothesis, mutations that disrupt the folding of the C terminus of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP have been shown to cause strong secretion defects. Here, we show that point mutations introduced at specific locations near the middle or N terminus of the EspP β-helix that perturb folding also impair secretion, but to a lesser degree. Surprisingly, we found that even multiple mutations that potentially abolish the stability of several consecutive rungs of the β-helix only moderately reduce secretion efficiency. Although these results provide evidence that the free energy derived from passenger domain folding contributes to secretion efficiency, they also suggest that a significant fraction of the energy required for secretion is derived from another source.
Collapse
Affiliation(s)
- Wanyoike Kang'ethe
- From the Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
17
|
Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype? Int J Med Microbiol 2013; 304:243-56. [PMID: 24239047 DOI: 10.1016/j.ijmm.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/13/2013] [Indexed: 11/23/2022] Open
Abstract
Autotransporter (AT) proteins are widespread surface-exposed or secreted factors in Escherichia coli. Several ATs have been correlated with pathogenesis or specific phylogenetic lineages. Therefore, an application as biomarkers for individual extraintestinal pathogenic E.coli (ExPEC) or intestinal pathogenic E.coli (IPEC) has been proposed. To put this assumption on a solid foundation, we analyzed 111 publicly available E. coli genome sequences and screened them bioinformatically for the presence of 18 ATs. We determined the highest AT prevalence per strain in phylogroup B2 isolates and showed that AT distribution correlates rather with phylogenetic lineages than with pathotypes. Although a strict dependence between AT prevalence and pathotype was not observed, EspP, EhaA, and EhaG cluster with IPEC of phylogroup B1 and E, respectively, whereas UpaH is predominantly present in ExPEC of phylogroup B2. Furthermore, PicU, SepA, UpaB, UpaI, and UpaJ were associated with phylogroup B2. We detected UpaI and its positional ortholog EhaC in 93% of the E.coli strains tested. This AT variant is thus the most prevalent in E.coli irrespective of pathotype or phylogenetic background. Compared with the ATs UpaB, UpaC, and UpaJ of uropathogenic E.coli strain 536, UpaI had redundant functions, contributing to autoaggregation, biofilm formation, and binding to extracellular matrix proteins. The functional redundancy and wide distribution of ATs among pathogenic and non-pathogenic E.coli indicates that ATs cannot generally be regarded as specific biomarkers and virulence factors. Our results demonstrate that phylogeny has a bigger impact on the distribution of AT variants in E.coli than initially thought, especially in ExPEC.
Collapse
|
18
|
Comparison of net growth of Shiga toxin-producing Escherichia coli strains of serogroups O26, O103, and O157 in ground meat at different temperatures. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Weiss A, Brockmeyer J. Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP. Toxins (Basel) 2012; 5:25-48. [PMID: 23274272 PMCID: PMC3564066 DOI: 10.3390/toxins5010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response.
Collapse
Affiliation(s)
- André Weiss
- Institute of Food Chemistry, Corrensstraße 45, Münster 48149, Germany.
| | | |
Collapse
|
20
|
Khan S, Mian HS, Sandercock LE, Chirgadze NY, Pai EF. Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J Mol Biol 2011; 413:985-1000. [PMID: 21964244 DOI: 10.1016/j.jmb.2011.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal "passenger domain" responsible for the specific effector functions of the molecule and a C-terminal "β-domain" responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-Å crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the β-helix within SPATEs.
Collapse
Affiliation(s)
- Shekeb Khan
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7
| | | | | | | | | |
Collapse
|
21
|
Brockmeyer J, Aldick T, Soltwisch J, Zhang W, Tarr PI, Weiss A, Dreisewerd K, Müthing J, Bielaszewska M, Karch H. Enterohaemorrhagic Escherichia coli haemolysin is cleaved and inactivated by serine protease EspPα. Environ Microbiol 2011; 13:1327-41. [PMID: 21352460 PMCID: PMC3472028 DOI: 10.1111/j.1462-2920.2011.02431.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly) and the serine protease EspPα are putative virulence factors of EHEC. We investigated the interplay between these secreted factors and demonstrate that EspPα cleaves the 107 kDa large EHEC-Hly. Degradation was observed when purified EspPα was added to a growing culture of an EHEC-Hly-expressing strain, with isolated proteins and with coexpressing strains, and was independent of the EHEC serotype. EHEC-Hly breakdown occurred as a multistage process with the formation of characteristic fragments with relative molecular masses of ∼82 kDa and/or ∼84 kDa and ∼34 kDa. The initial cleavage occurred in the N-terminal hydrophobic domain of EHEC-Hly between Leu235 and Ser236 and abolished its haemolytic activity. In a cellular infection system, the cytolytic potential of EHEC-Hly-secreting recombinant strains was abolished when EspPα was coexpressed. EHEC in contact with human intestinal epithelial cells simultaneously upregulated their EHEC-Hly and EspP indicating that both molecules might interact under physiological conditions. We propose the concept of bacterial effector molecule interference (BEMI), reflecting the concerted interplay of virulence factors. Interference between effector molecules might be an additional way to regulate virulence functions and increases the complexity of monomolecular phenotypes.
Collapse
Affiliation(s)
- Jens Brockmeyer
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci U S A 2010; 107:17739-44. [PMID: 20876094 DOI: 10.1073/pnas.1009491107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autotransporters are bacterial virulence factors consisting of an N-terminal "passenger domain" that is secreted in a C- to-N-terminal direction and a C-terminal "β domain" that resides in the outer membrane (OM). Although passenger domain secretion does not appear to use ATP, the energy source for this reaction is unknown. Here, we show that efficient secretion of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP requires the stable folding of a C-terminal ≈17-kDa passenger domain segment. We found that mutations that perturb the folding of this segment do not affect its translocation across the OM but impair the secretion of the remainder of the passenger domain. Interestingly, an examination of kinetic folding mutants strongly suggested that the ≈17-kDa segment folds in the extracellular space. By mutagenizing the ≈17-kDa segment, we also fortuitously isolated a unique translocation intermediate. Analysis of this intermediate suggests that a heterooligomer that facilitates the membrane integration of OM proteins (the Bam complex) also promotes the surface exposure of the ≈17-kDa segment. Our results provide direct evidence that protein folding can drive translocation and help to clarify the mechanism of autotransporter secretion.
Collapse
|
23
|
EspP, a serine protease of enterohemorrhagic Escherichia coli, impairs complement activation by cleaving complement factors C3/C3b and C5. Infect Immun 2010; 78:4294-301. [PMID: 20643852 DOI: 10.1128/iai.00488-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS) is a life-threatening disorder characterized by hemolytic anemia, thrombocytopenia, and renal insufficiency. It is caused mainly by infections with enterohemorrhagic Escherichia coli (EHEC). Recently, Shiga toxin 2, the best-studied virulence factor of EHEC, was reported to interact with complement, implying that complement may be involved in the pathogenesis of EHEC-induced HUS. The aim of the present study was to investigate whether or not the serine protease EspP, an important virulence factor of EHEC, interacts with complement proteins. EspP did not have any effect on the integrity of factor H or factor I. However, EspP was shown to cleave purified C3/C3b and C5. Cleavage of the respective complement proteins also occurred in normal human serum (NHS) as a source of C3/C3b or C5 or when purified complement proteins were added to the supernatant of an EspP-producing wild-type strain. Edman degradation allowed unequivocal mapping of all three main C3b fragments but not of the three main C5 fragments. Complement activation was significantly downregulated in all three pathways for C5-depleted serum to which C5, preincubated with EspP, was added (whereas C5 preincubated with an EspP mutant was able to fully reconstitute complement activation). This indicates that EspP markedly destroyed the functional activity, as measured by a commercial total complement enzyme-linked immunosorbent assay (Wieslab). Downregulation of complement by EspP in vivo may influence the colonization of EHEC bacteria in the gut or the disease severity of HUS.
Collapse
|
24
|
Dautin N. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. Toxins (Basel) 2010; 2:1179-206. [PMID: 22069633 PMCID: PMC3153244 DOI: 10.3390/toxins2061179] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.
Collapse
Affiliation(s)
- Nathalie Dautin
- Department of Biology, The Catholic University of America, 620 Michigan Avenue N.E., Washington, DC, 20064, USA.
| |
Collapse
|
25
|
Intramolecular interactions between the protease and structural domains are important for the functions of serine protease autotransporters. Infect Immun 2010; 78:3335-45. [PMID: 20479079 DOI: 10.1128/iai.00129-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporter (AT) is a protein secretion pathway found in Gram-negative bacteria featuring a multidomain polypeptide with a signal sequence, a passenger domain, and a translocator domain. An AT subfamily named serine protease ATs of the family Enterobacteriaceae (SPATEs) is characterized by the presence of a conserved serine protease motif in the passenger domain which contributes to bacterial pathogenesis. The goal of the current study is to determine the importance of the passenger domain conserved residues in the SPATE proteolytic and adhesive functions using the temperature-sensitive hemagglutinin (Tsh) protein as our model. To begin, mutations of 21 fully conserved residues in the four passenger domain conserved motifs were constructed by PCR-based site-directed mutagenesis. Seventeen mutants exhibited a wild-type secretion level; among these mutants, eight displayed reduced proteolytic activities in Tsh-specific oligopeptide and mucin cleavage assays. These eight mutants also demonstrated lower affinities to extracellular matrix proteins, collagen IV, and fibronectin. These eight conserved residues were analyzed by molecular graphics modeling to demonstrate their intramolecular interactions with the catalytic triad and other key residues. Additional mutations were made to confirm the above interactions in order to demonstrate their significance to the SPATE functions. Altogether our data suggest that certain conserved residues in the SPATE passenger domain are important for both the proteolytic and adhesive activities of SPATE by maintaining the proper protein structure via intramolecular interactions between the protease and beta-helical domains. Here, we provide new insight into the structure-function relationship of the SPATEs and the functional roles of their conserved residues.
Collapse
|
26
|
Abstract
Bacterial autotransporters represent a diverse family of proteins that autonomously translocate across the inner membrane of Gram-negative bacteria via the Sec complex and across the outer bacterial membrane. They often possess exceptionally long N-terminal signal sequences. We analyzed 90 long signal sequences of bacterial autotransporters and members of the two-partner secretion pathway in silico and describe common domain organization found in 79 of these sequences. The domains are in agreement with previously published experimental data. Our algorithmic approach allows for the systematic identification of functionally different domains in long signal sequences.
Collapse
Affiliation(s)
- Jan A Hiss
- Johann Wolfgang Goethe-University, Chair for Chem- and Bioinformatics, Centre for Membrane Proteomics, Siesmayerstr. 70, D-60323 Frankfurt am Main, Germany.
| | | |
Collapse
|