1
|
Nikolopoulos N, Oda SI, Prigozhin DM, Modis Y. Structure and Methyl-lysine Binding Selectivity of the HUSH Complex Subunit MPP8. J Mol Biol 2025; 437:168890. [PMID: 39638237 DOI: 10.1016/j.jmb.2024.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns. HUSH recruits effectors that alter chromatin structure, degrade transcripts, and deposit transcriptionally repressive epigenetic marks. Here, we report the crystal structure of the C-terminal domain (CTD) of MPP8 necessary for HUSH activity. The MPP8 CTD consists of five ankyrin repeats followed by a domain with structural homology to the PINIT domains of Siz/PIAS-family SUMO E3 ligases. AlphaFold3 modeling of the MPP8-TASOR complex predicts that a SPOC domain and a domain with a novel fold in TASOR form extended interaction interfaces with the MPP8 CTD. Point mutations at these interfaces resulted in loss of HUSH-dependent transcriptional repression in a cell-based reporter assay, validating the AlphaFold3 model. The MPP8 chromodomain, known to bind the repressive mark H3K9me3, bound with similar or higher affinity to sequences in the H3K9 methyltransferase subunits SETDB1, ATF7IP, G9a, and GLP. Hence, MPP8 promotes heterochromatinization by recruiting H3K9 methyltransferases. Our work identifies novel structural elements in MPP8 required for HUSH complex assembly and silencing, thereby fulfilling vital functions in controlling retrotransposons.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shun-Ichiro Oda
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Daniil M Prigozhin
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
2
|
Müller I, Helin K. Keep quiet: the HUSH complex in transcriptional silencing and disease. Nat Struct Mol Biol 2024; 31:11-22. [PMID: 38216658 DOI: 10.1038/s41594-023-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/23/2023] [Indexed: 01/14/2024]
Abstract
The human silencing hub (HUSH) complex is an epigenetic repressor complex whose role has emerged as an important guardian of genome integrity. It protects the genome from exogenous DNA invasion and regulates endogenous retroelements by recruiting histone methyltransferases catalyzing histone 3 lysine 9 trimethylation (H3K9me3) and additional proteins involved in chromatin compaction. In particular, its regulation of transcriptionally active LINE1 retroelements, by binding to and neutralizing LINE1 transcripts, has been well characterized. HUSH is required for mouse embryogenesis and is associated with disease, in particular cancer. Here we provide insights into the structural and biochemical features of the HUSH complex. Furthermore, we discuss the molecular mechanisms by which the HUSH complex is recruited to specific genomic regions and how it silences transcription. Finally, we discuss the role of HUSH complex members in mammalian development, antiretroviral immunity, and diseases such as cancer.
Collapse
Affiliation(s)
- Iris Müller
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Institute of Cancer Research, London, UK.
| |
Collapse
|
3
|
Mealey-Farr R, Jeong J, Park J, Liu S, Hausmann S, Francis JW, Angulo Ibanez M, Cho J, Chua K, Mazur PK, Gozani O. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J Biol Chem 2023; 299:104747. [PMID: 37094697 PMCID: PMC10220242 DOI: 10.1016/j.jbc.2023.104747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.
Collapse
Affiliation(s)
| | - Jinho Jeong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Juhyung Park
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joel W Francis
- Department of Biology, Stanford University, Stanford, California, USA
| | - Maria Angulo Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Joonseok Cho
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Katrin Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
4
|
Nickel GA, Diehl KL. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 2023; 18:1014-1026. [PMID: 35238546 PMCID: PMC9440160 DOI: 10.1021/acschembio.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, DNA is packaged with histone proteins in a complex known as chromatin. Both the DNA and histone components of chromatin can be chemically modified in a wide variety of ways, resulting in a complex landscape often referred to as the "epigenetic code". These modifications are recognized by effector proteins that remodel chromatin and modulate transcription, translation, and repair of the underlying DNA. In this Review, we examine the development of methods for characterizing proteins that interact with these histone and DNA modifications. "Mark first" approaches utilize chemical, peptide, nucleosome, or oligonucleotide probes to discover interactors of a specific modification. "Reader first" approaches employ arrays of peptides, nucleosomes, or oligonucleotides to profile the binding preferences of interactors. These complementary strategies have greatly enhanced our understanding of how chromatin modifications effect changes in genomic regulation, bringing us ever closer to deciphering this complex language.
Collapse
Affiliation(s)
- Garrison A. Nickel
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Katharine L. Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
5
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
6
|
Haynes KA, Priode JH. Rapid Single-Pot Assembly of Modular Chromatin Proteins for Epigenetic Engineering. Methods Mol Biol 2023; 2599:191-214. [PMID: 36427151 DOI: 10.1007/978-1-0716-2847-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromatin is the nucleoprotein complex that organizes genomic DNA in the nuclei of eukaryotic cells. Chromatin-modifying enzymes and chromatin-binding regulators generate chromatin states that affect DNA compaction, repair, gene expression, and ultimately cell phenotype. Many natural chromatin mediators contain subdomains that can be isolated and recombined to build synthetic regulators and probes. Engineered chromatin proteins make up a growing collection of new tools for cell engineering and can help deepen our understanding of the mechanism by which chromatin features, such as modifications of histones and DNA, contribute to the epigenetic states that govern DNA-templated processes. To support efficient exploration of the large combinatorial design space of synthetic chromatin proteins, we have developed a Golden Gate assembly method for one-step construction of protein-encoding recombinant DNA. A set of standard 2-amino acid linkers allows facile assembly of any combination of up to four protein modules, obviating the need to design different compatible overhangs to ligate different modules. Beginning with the identification of protein modules of interest, a synthetic chromatin protein can be built and expressed in vitro or in cells in under 2 weeks.
Collapse
Affiliation(s)
- Karmella A Haynes
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| | - J Harrison Priode
- W. H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
8
|
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nat Commun 2021; 12:3034. [PMID: 34031396 PMCID: PMC8144423 DOI: 10.1038/s41467-021-23308-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Deciphering the mechanisms that control the pluripotent ground state is key for understanding embryonic development. Nonetheless, the epigenetic regulation of ground-state mouse embryonic stem cells (mESCs) is not fully understood. Here, we identify the epigenetic protein MPP8 as being essential for ground-state pluripotency. Its depletion leads to cell cycle arrest and spontaneous differentiation. MPP8 has been suggested to repress LINE1 elements by recruiting the human silencing hub (HUSH) complex to H3K9me3-rich regions. Unexpectedly, we find that LINE1 elements are efficiently repressed by MPP8 lacking the chromodomain, while the unannotated C-terminus is essential for its function. Moreover, we show that SETDB1 recruits MPP8 to its genomic target loci, whereas transcriptional repression of LINE1 elements is maintained without retaining H3K9me3 levels. Taken together, our findings demonstrate that MPP8 protects the DNA-hypomethylated pluripotent ground state through its association with the HUSH core complex, however, independently of detectable chromatin binding and maintenance of H3K9me3.
Collapse
|
9
|
DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun 2021; 12:2490. [PMID: 33941775 PMCID: PMC8093215 DOI: 10.1038/s41467-021-22665-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically ‘recognizes’ H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1’s activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability. How histone modifications crosstalk with DNA methylation to regulate epigenomic patterning and genome stability in mammals remains elusive. Here, the authors show that DNA methyltransferase DNMT1 is a reader for histone H4K20 trimethylation via its BAH1 domain, which leads to optimal maintenance of DNA methylation at repetitive LINE-1 elements.
Collapse
|
10
|
Qi X, Liu Z, Zhang Q, Yang M, Wan Y, Huang J, Xu L. Systematic analysis of the function and prognostic value of RNA binding proteins in Colon Adenocarcinoma. J Cancer 2021; 12:2537-2549. [PMID: 33854615 PMCID: PMC8040719 DOI: 10.7150/jca.50407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Abnormal expression of RNA-binding proteins (RBPs) is closely related to tumorigenesis, progression, and prognosis. This study performed systematic bioinformatic analysis of RBPs abnormally expressed in colon adenocarcinoma (COAD) using the Cancer Genome Atlas (TCGA) database to screen prognostic markers and potential therapeutic targets. Methods: First, the gene expression data from COAD samples were used to screen out differentially expressed RBPs for functional enrichment analysis and to visualize interaction relationships. Second, RBPs that were significantly related to prognosis were screened through univariate and multivariate Cox regression analysis to construct a prognostic model. The prediction performance of the prognostic model was evaluated by survival analysis and receiver operating characteristic (ROC) curve analysis. It addition, it was verified in the test cohort. The Human Protein Atlas (HPA) online database was used to verify the expression levels of RBPs in the prognostic model. Results: The study identified 181 differentially expressed RBPs and analyzed their interaction and functional enrichment, which were mainly related to non-coding RNA processing, ribosome biogenesis, RNA metabolic processes, RNA phosphodiester bond hydrolysis, and alternative mRNA splicing. Five RBPs related to prognosis were used to construct a prognostic model, and its predictive ability was verified by the test cohort. ROC curve analysis showed that the prognostic model had good sensitivity and specificity. Independent prognostic analysis showed that risk scores could be used as independent prognostic factors for COAD. Conclusion: This study constructed a reliable prognostic model by analyzing COAD differentially expressed RBPs, facilitating the screening of COAD prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xuewei Qi
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeyu Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiaoli Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiang Wan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchang Huang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Acupuncture and Moxibustion in Cancer Care, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Xu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Anderson SE, Longbotham JE, O'Kane PT, Ugur FS, Fujimori DG, Mrksich M. Exploring the Ligand Preferences of the PHD1 Domain of Histone Demethylase KDM5A Reveals Tolerance for Modifications of the Q5 Residue of Histone 3. ACS Chem Biol 2021; 16:205-213. [PMID: 33314922 PMCID: PMC8168426 DOI: 10.1021/acschembio.0c00891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the ligand preferences of epigenetic reader domains enables identification of modification states of chromatin with which these domains associate and can yield insight into recruitment and catalysis of chromatin-acting complexes. However, thorough exploration of the ligand preferences of reader domains is hindered by the limitations of traditional protein-ligand binding assays. Here, we evaluate the binding preferences of the PHD1 domain of histone demethylase KDM5A using the protein interaction by SAMDI (PI-SAMDI) assay, which measures protein-ligand binding in a high-throughput and sensitive manner via binding-induced enhancement in the activity of a reporter enzyme, in combination with fluorescence polarization. The PI-SAMDI assay was validated by confirming its ability to accurately profile the relative binding affinity of a set of well-characterized histone 3 (H3) ligands of PHD1. The assay was then used to assess the affinity of PHD1 for 361 H3 mutant ligands, a select number of which were further characterized by fluorescence polarization. Together, these experiments revealed PHD1's tolerance for H3Q5 mutations, including an unexpected tolerance for aromatic residues in this position. Motivated by this finding, we further demonstrate a high-affinity interaction between PHD1 and recently identified Q5-serotonylated H3. This work yields interesting insights into permissible PHD1-H3 interactions and demonstrates the value of interfacing PI-SAMDI and fluorescence polarization in investigations of protein-ligand binding.
Collapse
Affiliation(s)
- Sarah E Anderson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Patrick T O'Kane
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Fatima S Ugur
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Cell and Developmental Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
13
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
14
|
Application of modified histone peptide arrays in chromatin research. Arch Biochem Biophys 2019; 661:31-38. [DOI: 10.1016/j.abb.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
|
15
|
Yuan B, Lin L, Ying ZY, Ying MX, Zhou QY, Shi L. Repression of M-phase phosphoprotein 8 inhibits melanoma growth and metastasis in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:12003-12009. [PMID: 31966565 PMCID: PMC6966055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 06/10/2023]
Abstract
Metastatic melanoma accounts for the majority of skin cancer deaths due to its aggressiveness and high resistance to current therapies. M-phase phosphoprotein 8 (MPP8) has been shown to bind to methylated H3K9 and promote tumor cell motility and invasion. The current study aimed to investigate the role of MPP8 in melanoma growth and metastasis. Our results showed that MMP8 was up-regulated in the metastatic melanoma specimens. Knockdown of MPP8 inhibited melanoma cell growth both in vitro and in vivo. Furthermore, down-regulation of MPP8 induced S-phase cell cycle arrest as well as altered expression of cell cycle-related proteins in melanoma cells. In addition, repression of MPP8 inhibited the migration and invasion of melanoma cells both in vitro and in vivo. Taken together, these data suggest that MPP8 knockdown could inhibit the growth and metastasis of melanoma cells and provide novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Lei Lin
- Department of Aesthetic Medicine, Ningbo College of Health SciencesNingbo, China
| | - Zhen-Yi Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Meng-Xia Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Qiong-Yan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| | - Lei Shi
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, China
| |
Collapse
|
16
|
Liang X, Liu T, Zhang W, Zhang K, Guo S, Liang J. Lentivirus-mediated knockdown of M-phase phosphoprotein 8 inhibits proliferation of colon cancer cells. Biotechnol Appl Biochem 2017; 64:911-917. [PMID: 27174009 DOI: 10.1002/bab.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
Abstract
M-phase phosphoprotein 8 (MPP8) has been reported to be overexpressed in various human carcinoma cells and was associated with tumor malignant characters. However, its functional role in colon cancer (CRC) is still unclear. In the present study, lentivirus-mediated short hairpin RNAs were designed to silence the MPP8 gene in CRC cells including RKO and SW1116 cells. The fluorescence microscopy was used to determine the knockdown efficiency of MPP8 by observing lentivirus-mediated green fluorescent protein expression. MPP8 expression in infected RKO and SW1116 was evaluated by real-time PCR and Western blot analysis. Cell proliferation was assessed by MTT assay and colony formation. Flow cytometry was applied to measure cell cycle and apoptosis. Transwell assay was used to determine the effect of MMP8 silencing on cell migration. Our results demonstrated that loss of MPP8 inhibited cell proliferation and migration and promoted cell apoptosis. These results indicate that MPP8 plays an important role in the proliferation and metastasis of CRC cells and suggest that silencing of MPP8 may be an effective therapeutic approach for the treatment of CRC.
Collapse
Affiliation(s)
- Xianjun Liang
- Department of Gastroenterology, Taizhou Central Hospital, Taizhou, People's Republic of China
| | - Tongjun Liu
- Department of Colorectal, Second Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Weizhong Zhang
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Zhang
- Department of Colorectal, Second Affiliated Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Guo
- Department of Endocrinology, Taizhou Central Hospital, Taizhou, People's Republic of China
| | - Jianhua Liang
- Department of Gastroenterology, Taizhou Central Hospital, Taizhou, People's Republic of China
| |
Collapse
|
17
|
Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proc Natl Acad Sci U S A 2017; 114:E7245-E7254. [PMID: 28808021 DOI: 10.1073/pnas.1704155114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chemical modifications on histones and DNA/RNA constitute a fundamental mechanism for epigenetic regulation. These modifications often function as docking marks to recruit or stabilize cognate "reader" proteins. So far, a platform for quantitative and high-throughput profiling of the epigenetic interactome is urgently needed but still lacking. Here, we report a 3D-carbene chip-based surface plasmon resonance imaging (SPRi) technology for this purpose. The 3D-carbene chip is suitable for immobilizing versatile biomolecules (e.g., peptides, antibody, DNA/RNA) and features low nonspecific binding, random yet function-retaining immobilization, and robustness for reuses. We systematically profiled binding kinetics of 1,000 histone "reader-mark" pairs on a single 3D-carbene chip and validated two recognition events by calorimetric and structural studies. Notably, a discovery on H3K4me3 recognition by the DNA mismatch repair protein MSH6 in Capsella rubella suggests a mechanism of H3K4me3-mediated DNA damage repair in plant.
Collapse
|
18
|
Keating ST, Plutzky J, El-Osta A. Epigenetic Changes in Diabetes and Cardiovascular Risk. Circ Res 2017; 118:1706-22. [PMID: 27230637 DOI: 10.1161/circresaha.116.306819] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/03/2023]
Abstract
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Samuel T Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Jorge Plutzky
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.).
| |
Collapse
|
19
|
Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 2017; 10:12. [PMID: 28293301 PMCID: PMC5348760 DOI: 10.1186/s13072-017-0117-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Histone posttranslational modifications (PTMs) function to regulate chromatin structure and function in part through the recruitment of effector proteins that harbor specialized "reader" domains. Despite efforts to elucidate reader domain-PTM interactions, the influence of neighboring PTMs and the target specificity of many reader domains is still unclear. The aim of this study was to use a high-throughput histone peptide microarray platform to interrogate 83 known and putative histone reader domains from the chromo and Tudor domain families to identify their interactions and characterize the influence of neighboring PTMs on these interactions. RESULTS Nearly a quarter of the chromo and Tudor domains screened showed interactions with histone PTMs by peptide microarray, revealing known and several novel methyllysine interactions. Specifically, we found that the CBX/HP1 chromodomains that recognize H3K9me also recognize H3K23me2/3-a poorly understood histone PTM. We also observed that, in addition to their interaction with H3K4me3, Tudor domains of the Spindlin family also recognized H4K20me3-a previously uncharacterized interaction. Several Tudor domains also showed novel interactions with H3K4me as well. CONCLUSIONS These results provide an important resource for the epigenetics and chromatin community on the interactions of many human chromo and Tudor domains. They also provide the basis for additional studies into the functional significance of the novel interactions that were discovered.
Collapse
Affiliation(s)
- Erin K Shanle
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909 USA
| | - Stephen A Shinsky
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Narkhyun Bae
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| |
Collapse
|
20
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Su Z, Wang F, Lee JH, Stephens KE, Papazyan R, Voronina E, Krautkramer KA, Raman A, Thorpe JJ, Boersma MD, Kuznetsov VI, Miller MD, Taverna SD, Phillips GN, Denu JM. Reader domain specificity and lysine demethylase-4 family function. Nat Commun 2016; 7:13387. [PMID: 27841353 PMCID: PMC5114558 DOI: 10.1038/ncomms13387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
The KDM4 histone demethylases are conserved epigenetic regulators linked to development, spermatogenesis and tumorigenesis. However, how the KDM4 family targets specific chromatin regions is largely unknown. Here, an extensive histone peptide microarray analysis uncovers trimethyl-lysine histone-binding preferences among the closely related KDM4 double tudor domains (DTDs). KDM4A/B DTDs bind strongly to H3K23me3, a poorly understood histone modification recently shown to be enriched in meiotic chromatin of ciliates and nematodes. The 2.28 Å co-crystal structure of KDM4A-DTD in complex with H3K23me3 peptide reveals key intermolecular interactions for H3K23me3 recognition. Furthermore, analysis of the 2.56 Å KDM4B-DTD crystal structure pinpoints the underlying residues required for exclusive H3K23me3 specificity, an interaction supported by in vivo co-localization of KDM4B and H3K23me3 at heterochromatin in mammalian meiotic and newly postmeiotic spermatocytes. In vitro demethylation assays suggest H3K23me3 binding by KDM4B stimulates H3K36 demethylation. Together, these results provide a possible mechanism whereby H3K23me3-binding by KDM4B directs localized H3K36 demethylation during meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Zhangli Su
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Fengbin Wang
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
| | - Jin-Hee Lee
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Kimberly A. Krautkramer
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jeremy J. Thorpe
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Melissa D. Boersma
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Vyacheslav I. Kuznetsov
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | | | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - George N. Phillips
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| |
Collapse
|
22
|
Sankaran SM, Wilkinson AW, Elias JE, Gozani O. A PWWP Domain of Histone-Lysine N-Methyltransferase NSD2 Binds to Dimethylated Lys-36 of Histone H3 and Regulates NSD2 Function at Chromatin. J Biol Chem 2016; 291:8465-74. [PMID: 26912663 PMCID: PMC4861420 DOI: 10.1074/jbc.m116.720748] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
The readout of histone modifications plays a critical role in chromatin-regulated processes. Dimethylation at Lys-36 on histone H3 (H3K36me2) is associated with actively transcribed genes, and global up-regulation of this modification is associated with several cancers. However, the molecular mechanism by which H3K36me2 is sensed and transduced to downstream biological outcomes remains unclear. Here we identify a PWWP domain within the histone lysine methyltransferase and oncoprotein NSD2 that preferentially binds to nucleosomes containing H3K36me2. In cells, the NSD2 PWWP domain interaction with H3K36me2 plays a role in stabilizing NSD2 at chromatin. Furthermore, NSD2's ability to induce global increases in H3K36me2 via its enzymatic activity, and consequently promote cellular proliferation, is compromised by mutations within the PWWP domain that specifically abrogate H3K36me2-recognition. Together, our results identify a pivotal role for NSD2 binding to its catalytic product in regulating its cellular functions, and suggest a model for how this interaction may facilitate epigenetic spreading and propagation of H3K36me2.
Collapse
Affiliation(s)
| | | | - Joshua E Elias
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | | |
Collapse
|
23
|
Abstract
Chromatin regulatory processes, like all biological reactions, are dynamic and stochastic in nature but can give rise to stable and inheritable changes in gene expression patterns. A molecular understanding of those processes is key for fundamental biological insight into gene regulation, epigenetic inheritance, lineage determination, and therapeutic intervention in the case of disease. In recent years, great progress has been made in identifying important molecular players involved in key chromatin regulatory pathways. Conversely, we are only beginning to understand the dynamic interplay between protein effectors, transcription factors, and the chromatin substrate itself. Single-molecule approaches employing both highly defined chromatin substrates in vitro, as well as direct observation of complex regulatory processes in vivo, open new avenues for a molecular view of chromatin regulation. This review highlights recent applications of single-molecule methods and related techniques to investigate fundamental chromatin regulatory processes.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory
of Biophysical
Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Abstract
Histones are subject to frequent combinatorial post-translational modifications (PTMs), forming a complex chemical "language" that is interpreted by PTM-specific histone-interacting protein modules (reader domains). These specific interactions are thought to instruct gene expression and downstream biological functions. While the majority of studies have focused on individual modifications, our current understanding of the combinatorial PTM patterns on histones is starting to emerge, benefiting from the convergence of multiple technologies. Here, we review the key technical advances and progress on discovery and characterization of combinatorial histone PTM patterns. We focus on the interactions between reader domains and combinatorial PTMs, which is essential for understanding the mechanism and biological meaning of establishing and interpreting information embedded in histone PTM patterns.
Collapse
Affiliation(s)
- Zhangli Su
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
25
|
Dickson BM, Cornett EM, Ramjan Z, Rothbart SB. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments. Methods Enzymol 2016; 574:53-77. [PMID: 27423857 DOI: 10.1016/bs.mie.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools.
Collapse
Affiliation(s)
- B M Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - E M Cornett
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Z Ramjan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - S B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States.
| |
Collapse
|
26
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
27
|
Ng MK, Cheung P. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context. Biochem Cell Biol 2016. [DOI: 10.1139/bcb-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.
Collapse
Affiliation(s)
- Marlee K. Ng
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| | - Peter Cheung
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
28
|
Irving-Hooper BK, Binda O. A Phosphotyrosine Switch Controls the Association of Histone Mark Readers with Methylated Proteins. Biochemistry 2015; 55:1631-4. [PMID: 26562627 DOI: 10.1021/acs.biochem.5b01223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although histone post-translational modifications play a paramount role in controlling access to genetic information, our understanding of the precise mechanisms regulating chromatin signaling remains superficial. For instance, histone H3 trimethylated on lysine 9 (H3K9(me3)) favors the association of chromodomain proteins such as heterochromatin protein 1α (HP1α) with chromatin. However, HP1α and other such chromatin proteins are not covering all specific histone marks at all times. Thus, how are these reader-histone interactions regulated? We propose tyrosine phosphorylation within the aromatic cage of histone mark readers as a molecular switch that can either turn ON or OFF and even alter the specificity of reader-histone interactions. We have identified tyrosine phosphorylation events on the chromatin proteins HP1α and M-phase phosphoprotein 8 that regulate their association with methylated histones in vitro (synthetic peptides, calf thymus purified histones, and nucleosomes), but also in cells, thus controlling access to genetic information.
Collapse
Affiliation(s)
- Bronwyn Kate Irving-Hooper
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University , Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, England NE2 4HH
| | - Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University , Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, England NE2 4HH
| |
Collapse
|
29
|
Chen S, Yang Z, Wilkinson AW, Deshpande AJ, Sidoli S, Krajewski K, Strahl BD, Garcia BA, Armstrong SA, Patel DJ, Gozani O. The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. Mol Cell 2015; 60:319-27. [PMID: 26439302 DOI: 10.1016/j.molcel.2015.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/24/2015] [Accepted: 08/21/2015] [Indexed: 12/14/2022]
Abstract
AF10, a DOT1L cofactor, is required for H3K79 methylation and cooperates with DOT1L in leukemogenesis. However, the molecular mechanism by which AF10 regulates DOT1L-mediated H3K79 methylation is not clear. Here we report that AF10 contains a "reader" domain that couples unmodified H3K27 recognition to H3K79 methylation. An AF10 region consisting of a PHD finger-Zn knuckle-PHD finger (PZP) folds into a single module that recognizes amino acids 22-27 of H3, and this interaction is abrogated by H3K27 modification. Structural studies reveal that H3 binding triggers rearrangement of the PZP module to form an H3(22-27)-accommodating channel and that the unmodified H3K27 side chain is encased in a compact hydrogen-bond acceptor-lined cage. In cells, PZP recognition of H3 is required for H3K79 dimethylation, expression of DOT1L-target genes, and proliferation of DOT1L-addicted leukemic cells. Together, our results uncover a pivotal role for H3K27-via readout by the AF10 PZP domain-in regulating the cancer-associated enzyme DOT1L.
Collapse
Affiliation(s)
- Shoudeng Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ze Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aniruddha J Deshpande
- Pediatrics and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Simone Sidoli
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Benjamin A Garcia
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott A Armstrong
- Pediatrics and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Kungulovski G, Mauser R, Jeltsch A. Affinity reagents for studying histone modifications & guidelines for their quality control. Epigenomics 2015; 7:1185-96. [DOI: 10.2217/epi.15.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Histone post-translational modifications (PTMs) have pivotal functions in many chromatin processes, which makes their detection and characterization an imperative in chromatin biology. The established approaches for histone PTM characterization are generally based on affinity reagents specific for modified histone tails such as antibodies and, most recently, recombinant reading domains. Hence, the proper performance of these reagents is a critical precondition for the validity of the generated experimental data. In this review, we evaluate and update the quality criteria for assessment of the binding specificity of histone PTM affinity reagents. In addition, we discuss in detail the advantages and pitfalls of using antibodies and recombinant reading domains in chromatin biology research. Reading domains provide key advantages, such as consistent quality and recombinant production, but the future will tell if this emerging technology keeps its promises.
Collapse
Affiliation(s)
- Goran Kungulovski
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rebekka Mauser
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
31
|
Chakravarty S, Essel F, Lin T, Zeigler S. Histone Peptide Recognition by KDM5B-PHD1: A Case Study. Biochemistry 2015; 54:5766-80. [PMID: 26266342 DOI: 10.1021/acs.biochem.5b00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A detailed understanding of the energetic contributions to histone peptide recognition would be valuable for a better understanding of chromatin anchoring mechanisms and histone diagnostic design. Here, we probed the energetic contributions to recognize the same unmodified histone H3 by three different plant homeodomain (PHD) H3K4me0 readers: hKDM5B-PHD1 (first PHD finger of hKDM5B), hBAZ2A-PHD, and hAIRE-PHD1. The energetic contributions of residues differ significantly from one complex to the next. For example, H3K4A substitution completely aborts the formation of the hAIRE-histone peptide complex, while it has only a small destabilizing effect on binding of the other readers, even though H3K4 methylation disrupts all three complexes. Packing density suggests that methylation of more tightly packed Lys/Arg residues can disrupt binding, even if the energetic contribution is small. The binding behavior of hKDM5B-PHD1 and hBAZ2A-PHD is similar, and like PHD H3R2 readers, both possess a pair of Asp residues in the treble clef for interaction with H3R2. PHD subtype sequences, especially the tandem PHD-PHD fingers, show enrichment in the treble clef Asp residues, suggesting that it is a subtype-specific property. These Asp residues make significant energetic contributions to the formation of the hKDM5B-histone peptide complex, suggesting that there are interactions in addition to those reported in the recent NMR structure. However, the presence of the treble clef Asp in PHD sequences may not always be sufficient for histone peptide binding. This study showcases reader-histone peptide interactions in the context of residue conservation, energetic contributions, interfacial packing, and sequence-based reader subtype predictability.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Francisca Essel
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Tao Lin
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Stad Zeigler
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| |
Collapse
|
32
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
33
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Carlson SM, Moore KE, Sankaran SM, Reynoird N, Elias JE, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem 2015; 290:12040-7. [PMID: 25795785 DOI: 10.1074/jbc.m115.641530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5' splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.
Collapse
Affiliation(s)
| | - Kaitlyn E Moore
- From the Department of Biology and Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | | | | | - Joshua E Elias
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Or Gozani
- From the Department of Biology and ogozani@stanfordedu
| |
Collapse
|
35
|
Holt M, Muir T. Application of the protein semisynthesis strategy to the generation of modified chromatin. Annu Rev Biochem 2015; 84:265-90. [PMID: 25784050 DOI: 10.1146/annurev-biochem-060614-034429] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments.
Collapse
Affiliation(s)
- Matthew Holt
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544; ,
| | | |
Collapse
|
36
|
Murata K, Sato S, Haruta M, Goshima T, Chiba Y, Takahashi S, Sharif J, Koseki H, Nakanishi M, Shimada M. Physical interaction between MPP8 and PRC1 complex and its implication for regulation of spermatogenesis. Biochem Biophys Res Commun 2015; 458:470-475. [PMID: 25660450 DOI: 10.1016/j.bbrc.2015.01.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 01/25/2015] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications such as DNA methylation and histone H3 lysine 27 methylation (H3K27me) are repressive marks that silence gene expression. The M phase phosphoprotein (MPP8) associates with proteins involved in both DNA methylation and histone modifications, and therefore, is a potential candidate to mediate crosstalk between repressive epigenetic pathways. Here, by performing immunohistochemical analyses we demonstrate that MPP8 is expressed in the rodent testis, especially in spermatocytes, suggesting a role in spermatogenesis. Interestingly, we found that MPP8 physically interacts with PRC1 (Polycomb Repressive Complex 1) components which are known to possess essential function in testis development by modulating monoubiquitination of Histone H2A (uH2A) and trimethylation of Histone H3 Lysine 27 (H3K27me3) residues. Knockdown analysis of MPP8 in HeLa cells resulted in derepression of a set of genes that are normally expressed in spermatogonia, spermatids and mature sperm, thereby indicating a role for this molecule in silencing testis-related genes in somatic cells. In addition, depletion of MPP8 in murine ES cells specifically induced expression of genes involved in mesoderm differentiation, such as Cdx2 and Brachyury even in the presence of LIF, which implicated that MPP8 might be required to repress differentiation associated genes during early development. Taken together, our results indicate that MPP8 could have a role for silencing genes that are associated with differentiation of the testis and the mesoderm by interacting with epigenetic repressors modules such as the PRC1 complex.
Collapse
Affiliation(s)
- Kazuhiro Murata
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Sato
- Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mayumi Haruta
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takahiro Goshima
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yoshie Chiba
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoru Takahashi
- Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Jafar Sharif
- Development Genetics Group, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiuro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Development Genetics Group, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiuro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
37
|
Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2014; 208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
38
|
Cheow LF, Viswanathan R, Chin CS, Jennifer N, Jones RC, Guccione E, Quake SR, Burkholder WF. Multiplexed Analysis of Protein–Ligand Interactions by Fluorescence Anisotropy in a Microfluidic Platform. Anal Chem 2014; 86:9901-8. [DOI: 10.1021/ac502605f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lih Feng Cheow
- Microfluidics
Systems Biology Lab, Institute of Molecular and Cell Biology (IMCB), A*STAR, 138673, Singapore
| | - Ramya Viswanathan
- Microfluidics
Systems Biology Lab, Institute of Molecular and Cell Biology (IMCB), A*STAR, 138673, Singapore
| | - Chee-Sing Chin
- Fluidigm Corporation, Research and Development, 534413, Singapore
| | - Nancy Jennifer
- Methyltransferases
in Development and Disease, IMCB, A*STAR, 138673, Singapore
| | - Robert C. Jones
- Fluidigm Corporation, Research and Development, South San Francisco, California 94080, United States
| | - Ernesto Guccione
- Methyltransferases
in Development and Disease, IMCB, A*STAR, 138673, Singapore
| | - Stephen R. Quake
- Microfluidics
Systems Biology Lab, Institute of Molecular and Cell Biology (IMCB), A*STAR, 138673, Singapore
- Department
of Bioengineering and Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - William F. Burkholder
- Microfluidics
Systems Biology Lab, Institute of Molecular and Cell Biology (IMCB), A*STAR, 138673, Singapore
| |
Collapse
|
39
|
Su Z, Boersma MD, Lee JH, Oliver SS, Liu S, Garcia BA, Denu JM. ChIP-less analysis of chromatin states. Epigenetics Chromatin 2014; 7:7. [PMID: 24872844 PMCID: PMC4022240 DOI: 10.1186/1756-8935-7-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background Histone post-translational modifications (PTMs) are key epigenetic regulators in chromatin-based processes. Increasing evidence suggests that vast combinations of PTMs exist within chromatin histones. These complex patterns, rather than individual PTMs, are thought to define functional chromatin states. However, the ability to interrogate combinatorial histone PTM patterns at the nucleosome level has been limited by the lack of direct molecular tools. Results Here we demonstrate an efficient, quantitative, antibody-free, chromatin immunoprecipitation-less (ChIP-less) method for interrogating diverse epigenetic states. At the heart of the workflow are recombinant chromatin reader domains, which target distinct chromatin states with combinatorial PTM patterns. Utilizing a newly designed combinatorial histone peptide microarray, we showed that three reader domains (ATRX-ADD, ING2-PHD and AIRE-PHD) displayed greater specificity towards combinatorial PTM patterns than corresponding commercial histone antibodies. Such specific recognitions were employed to develop a chromatin reader-based affinity enrichment platform (matrix-assisted reader chromatin capture, or MARCC). We successfully applied the reader-based platform to capture unique chromatin states, which were quantitatively profiled by mass spectrometry to reveal interconnections between nucleosomal histone PTMs. Specifically, a highly enriched signature that harbored H3K4me0, H3K9me2/3, H3K79me0 and H4K20me2/3 within the same nucleosome was identified from chromatin enriched by ATRX-ADD. This newly reported PTM combination was enriched in heterochromatin, as revealed by the associated DNA. Conclusions Our results suggest the broad utility of recombinant reader domains as an enrichment tool specific to combinatorial PTM patterns, which are difficult to probe directly by antibody-based approaches. The reader affinity platform is compatible with several downstream analyses to investigate the physical coexistence of nucleosomal PTM states associated with specific genomic loci. Collectively, the reader-based workflow will greatly facilitate our understanding of how distinct chromatin states and reader domains function in gene regulatory mechanisms.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA ; Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Melissa D Boersma
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA ; Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jin-Hee Lee
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA ; Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Samuel S Oliver
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA ; Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Shichong Liu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA ; Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
40
|
Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. Histone lysine methylation and chromatin replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1433-9. [PMID: 24686120 DOI: 10.1016/j.bbagrm.2014.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 01/20/2023]
Abstract
In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.
Collapse
Affiliation(s)
| | - Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR 3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR 3664, Paris F-75248, France; UPMC, UMR 3664, Paris F-75248, France; Paris Sciences & Lettres, PSL, France
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR 3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR 3664, Paris F-75248, France; UPMC, UMR 3664, Paris F-75248, France; Paris Sciences & Lettres, PSL, France.
| | | |
Collapse
|
41
|
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:627-43. [PMID: 24631868 DOI: 10.1016/j.bbagrm.2014.03.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 01/10/2023]
Abstract
A major mechanism regulating the accessibility and function of eukaryotic genomes are the covalent modifications to DNA and histone proteins that dependably package our genetic information inside the nucleus of every cell. Formally postulated over a decade ago, it is becoming increasingly clear that post-translational modifications (PTMs) on histones act singly and in combination to form a language or 'code' that is read by specialized proteins to facilitate downstream functions in chromatin. Underappreciated at the time was the level of complexity harbored both within histone PTMs and their combinations, as well as within the proteins that read and interpret the language. In addition to histone PTMs, newly-identified DNA modifications that can recruit specific effector proteins have raised further awareness that histone PTMs operate within a broader language of epigenetic modifications to orchestrate the dynamic functions associated with chromatin. Here, we highlight key recent advances in our understanding of the epigenetic language encompassing histone and DNA modifications and foreshadow challenges that lie ahead as we continue our quest to decipher the fundamental mechanisms of chromatin regulation. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Scott B Rothbart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Wilkinson AW, Gozani O. Histone-binding domains: strategies for discovery and characterization. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:669-75. [PMID: 24525102 DOI: 10.1016/j.bbagrm.2014.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
Chromatin signaling dynamics fundamentally regulate eukaryotic genomes. The reversible covalent post-translational modification (PTM) of histone proteins by chemical moieties such as phosphate, acetyl and methyl groups constitutes one of the primary chromatin signaling mechanisms. Modular protein domains present within chromatin-regulatory activities recognize or "read" specifically modified histone species and transduce these modified species into distinct downstream biological outcomes. Thus, understanding the molecular basis underlying PTM-mediated signaling at chromatin requires knowledge of both the modification and the partnering reader domains. Over the last ten years, a number of innovative approaches have been developed and employed to discover reader domain binding events with histones. Together, these studies have provided crucial insight into how chromatin pathways influence key cellular programs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Reconstitution of nucleosome demethylation and catalytic properties of a Jumonji histone demethylase. ACTA ACUST UNITED AC 2013; 20:494-9. [PMID: 23601638 DOI: 10.1016/j.chembiol.2013.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/21/2022]
Abstract
Jumonji histone demethylases catalyze removal of methyl marks from lysine residues in histone proteins within nucleosomes. Here, we show that the catalytic domain of demethylase JMJD2A (cJMJD2A) utilizes a distributive mechanism to remove the histone H3 lysine 9 trimethyl mark. By developing a method to assess demethylation of homogeneous, site-specifically methylated nucleosomes, we determined that the kinetic parameters for demethylation of nucleosomes by cJMJD2A are comparable to those of peptide substrates. These findings imply that other domains of the demethylase or its protein partners may contribute to nucleosome recognition in vivo and, in this way, may further regulate demethylation activity and processivity. The quantitative assays of nucleosome demethylation developed in our work provide a platform for future work with complex chromatin substrates and full-length demethylases.
Collapse
|
44
|
Heubach Y, Planatscher H, Sommersdorf C, Maisch D, Maier J, Joos TO, Templin MF, Poetz O. From spots to beads-PTM-peptide bead arrays for the characterization of anti-histone antibodies. Proteomics 2013; 13:1010-5. [PMID: 23401470 DOI: 10.1002/pmic.201200383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 12/21/2022]
Abstract
Antibodies that recognize PTMs of histones play a central role in epigenetic proteomic research. Modification-specific antibodies are employed in chromatin immunoprecipitation, for Western blotting and during the immunoprecipitation steps for MS-based global proteomic analyses. Knowledge about the antibodies' off-target binding is essential for the interpretation of experimental data. To address this challenge we developed a fast and cost efficient system for generating peptide bead arrays. We employed this method to establish a bead-based peptide array containing 384 peptides displaying phosphorylated, acetylated, methylated, and citrullinated N-terminal regions of histones H2A, H2B, H3 and H4 and controls. We profiled the binding of 40 PTM-specific antibodies important for epigenetic proteomic research.
Collapse
Affiliation(s)
- Yvonne Heubach
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One 2013; 8:e71043. [PMID: 23923050 PMCID: PMC3726620 DOI: 10.1371/journal.pone.0071043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022] Open
Abstract
High-throughput screening for interactions of peptides with a variety of antibody targets could greatly facilitate proteomic analysis for epitope mapping, enzyme profiling, drug discovery and biomarker identification. Peptide microarrays are suited for such undertaking because of their high-throughput capability. However, existing peptide microarrays lack the sensitivity needed for detecting low abundance proteins or low affinity peptide-protein interactions. This work presents a new peptide microarray platform constructed on nanostructured plasmonic gold substrates capable of metal enhanced NIR fluorescence enhancement (NIR-FE) by hundreds of folds for screening peptide-antibody interactions with ultrahigh sensitivity. Further, an integrated histone peptide and whole antigen array is developed on the same plasmonic gold chip for profiling human antibodies in the sera of systemic lupus erythematosus (SLE) patients, revealing that collectively a panel of biomarkers against unmodified and post-translationally modified histone peptides and several whole antigens allow more accurate differentiation of SLE patients from healthy individuals than profiling biomarkers against peptides or whole antigens alone.
Collapse
|
46
|
Characterization of influenza vaccine immunogenicity using influenza antigen microarrays. PLoS One 2013; 8:e64555. [PMID: 23734205 PMCID: PMC3667171 DOI: 10.1371/journal.pone.0064555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/15/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity. METHODS We developed influenza hemagglutinin (HA) whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens. RESULTS Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2). Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2), implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively). CONCLUSION Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza, and may be useful in measuring response to other vaccines and infectious agents.
Collapse
|
47
|
Abstract
Methylation of histone lysine and arginine residues constitutes a highly complex control system directing diverse functions of the genome. Owing to their immense signaling potential with distinct sites of methylation and defined methylation states of mono-, di- or trimethylation as well as their higher biochemical stability compared with other histone modifications, these marks are thought to be part of epigenetic regulatory networks. Biological principles of how histone methylation is read and translated have emerged over the last few years. Only very few methyl marks directly impact chromatin. Conversely, a large number of histone methylation binding proteins has been identified. These contain specialized modules that are recruited to chromatin in a methylation site- and state-specific manner. Besides the molecular mechanisms of interaction, patterns of regulation of the binding proteins are becoming evident.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
48
|
Moore KE, Carlson SM, Camp ND, Cheung P, James RG, Chua KF, Wolf-Yadlin A, Gozani O. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 2013; 50:444-56. [PMID: 23583077 DOI: 10.1016/j.molcel.2013.03.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
Abstract
Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or dimethylated lysine. The domain is broadly specific for methylated lysine ("pan-specific") and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferase GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Maximov VV, Martynenko AV, Arman IP, Tarantul VZ. Humanin binds MPP8: mapping interaction sites of the peptide and protein. J Pept Sci 2013; 19:301-7. [PMID: 23532874 DOI: 10.1002/psc.2500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
Humanin (HN), a 24-amino acid peptide encoded by the mitochondrial 16S rRNA gene, was discovered by screening a cDNA library from the occipital cortex of a patient with Alzheimer's disease (AD) for a protection factor against AD-relevant insults. Earlier, using the yeast two-hybrid system, we have identified the M-phase phosphoprotein 8 (MPP8) as a binding partner for HN. In the present work, we further confirmed interaction of HN with MPP8 in co-immunoprecipitation experiments and localized an MPP8-binding site in the region between 5 and 12 aa. of HN. We have also shown that an MPP8 fragment (residues 431-560) is sufficient to bind HN. Further studies on functional consequences of the interaction between the potential oncopetide and the oncoprotein may elucidate some aspects of the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
50
|
Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 2013; 19:1218-27. [PMID: 23211769 DOI: 10.1038/nsmb.2436] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.
Collapse
|