1
|
Jinnouchi T, Henmi R, Watanabe K, Suyama Y, Sakama R, Idezuki T, Hayashi M. Systemic lupus erythematosus and pulmonary tuberculosis in a patient developing acute-onset type 1 diabetes. Diabetol Int 2025; 16:175-181. [PMID: 39877438 PMCID: PMC11769924 DOI: 10.1007/s13340-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
A 73-year-old Japanese woman was admitted to our hospital with anorexia, weight loss, and fever. A few weeks prior to admission, she became aware of anorexia. She was leukopenic, complement-depleted, and positive for antinuclear antibodies and anti-double stranded DNA antibodies. She was also found to have chronic airway inflammation on computed tomography. At the time of admission, she had multiple erythematous plaques on face and neck. She had blood glucose 343 mg/dL, HbA1c 12.7%, serum C-peptide 0.74 ng/mL, urinary C-peptide 17 μg/day, and urinary ketone 3+; and was positive for anti-glutamic acid decarboxylase antibodies and anti-zinc transporter 8 antibodies. Her human leukocyte antigen type was DRB1* 09:01-DQB1* 03:03, which is a susceptibility haplotype for acute-onset type 1 diabetes (T1D). Therefore, she was diagnosed as having concomitant T1D and SLE. Initial treatment with insulin and prednisolone alleviated her symptoms. However, sputum culture revealed Mycobacterium tuberculosis 23 days later, and she was treated with a multidrug regimen. The timing of onset of the SLE and T1D was estimated to be 4-7 weeks prior to admission. No imaging findings were available prior to 3 weeks of admission, making it difficult to determine the timing of onset of pulmonary tuberculosis (TB). In summary, SLE and T1D are both autoimmune diseases, but rarely occur together. Environmental and genetic factors are involved in the development of T1D and SLE, but TB is rarely thought of as a causative environmental factor. In the present case, SLE, T1D, and TB may have interacted during their respective onsets.
Collapse
Affiliation(s)
- Takanobu Jinnouchi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| | - Riko Henmi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| | - Kaoru Watanabe
- Department of Respiratory Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yasuhiro Suyama
- Department of Rheumatology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Reiko Sakama
- Department of General Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takeo Idezuki
- Department of Dermatology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Michio Hayashi
- Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan
| |
Collapse
|
2
|
Dow CT, Pierce ES, Sechi LA. Mycobacterium paratuberculosis: A HERV Turn-On for Autoimmunity, Neurodegeneration, and Cancer? Microorganisms 2024; 12:1890. [PMID: 39338563 PMCID: PMC11434025 DOI: 10.3390/microorganisms12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that, over millions of years, became integrated into the human genome. While normally inactive, environmental stimuli such as infections have contributed to the transcriptional reactivation of HERV-promoting pathological conditions, including the development of autoimmunity, neurodegenerative disease and cancer. What infections trigger HERV activation? Mycobacterium avium subspecies paratuberculosis (MAP) is a pluripotent driver of human disease. Aside from granulomatous diseases, Crohn's disease, sarcoidosis and Blau syndrome, MAP is associated with autoimmune disease: type one diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA) and autoimmune thyroiditis. MAP is also associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Autoimmune diabetes, MS and RA are the diseases with the strongest MAP/HERV association. There are several other diseases associated with HERV activation, including diseases whose epidemiology and/or pathology would prompt speculation for a causal role of MAP. These include non-solar uveal melanoma, colon cancer, glioblastoma and amyotrophic lateral sclerosis (ALS). This article further points to MAP infection as a contributor to autoimmunity, neurodegenerative disease and cancer via the un-silencing of HERV. We examine the link between the ever-increasing number of MAP-associated diseases and the MAP/HERV intersection with these diverse medical conditions, and propose treatment opportunities based upon this association.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Leonardo A. Sechi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
- Azienda Ospedaliera Universitaria di Sassari, Viale San Pietro, 07100 Sassari, Italy
| |
Collapse
|
3
|
Li F, Tan Z, Chen H, Gao Y, Xia J, Huang T, Liang L, Zhang J, Zhang X, Shi X, Chen Q, Shu Q, Yu L. Integrative analysis of bulk and single-cell RNA sequencing reveals the gene expression profile and the critical signaling pathways of type II CPAM. Cell Biosci 2024; 14:94. [PMID: 39026356 PMCID: PMC11264590 DOI: 10.1186/s13578-024-01276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUD Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zheng Tan
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Xia
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ting Huang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liang Liang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jian Zhang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xucong Shi
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China.
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Badia-Bringué G, Lavín JL, Casais R, Alonso-Hearn M. Alternative splicing of pre-mRNA modulates the immune response in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Immunol 2024; 15:1354500. [PMID: 38495873 PMCID: PMC10940349 DOI: 10.3389/fimmu.2024.1354500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
5
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
6
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
7
|
Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic Leishmania infantum region. Infect Dis Poverty 2023; 12:9. [PMID: 36759910 PMCID: PMC9911338 DOI: 10.1186/s40249-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Ibizan Hound is a canine breed native to the Mediterranean region, where leishmaniasis is an endemic zoonosis. Several studies indicate a low prevalence of this disease in Ibizan Hound dogs, whereas other canine breeds present a high prevalence. However, the underlying molecular mechanisms still remain unknown. The aim of this work is to analyse the relationship between serum levels of cytokines and the genomic profiles in two canine breeds, Ibizan Hound (resistant canine breed model) and Boxer (susceptible canine breed model). METHODS In this study, we analyse the haplotypes of genes encoding cytokines related to immune response of Leishmania infantum infection in twenty-four Boxers and twenty-eight Ibizan Hounds apparently healthy using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The haplo.glm extension of haplo.score was used to perform a General Linear Model (GLM) regression to estimate the magnitude of individual haplotype effects within each cytokine. RESULTS Mean levels of interferon gamma (IFN-γ), interleukin 2 (IL-2) and IL-18 in Boxer dogs were 0.19 ± 0.05 ng/ml, 46.70 ± 4.54 ng/ml, and 36.37 ± 30.59 pg/ml, whereas Ibizan Hound dogs present 0.49 ± 0.05 ng/ml, 64.55 ± 4.54 ng/ml, and 492.10 ± 31.18 pg/ml, respectively. The GLM regression shows fifteen haplotypes with statistically significant effect on the cytokine serum levels (P < 0.05). The more relevant are IL6-CGAAG and IFNG-GCA haplotypes, which increase and decrease the IL-2, IL-8 and IFN-γ serum levels, respectively. CONCLUSIONS Haplotypes in the IFNG and IL6 genes have been correlated to serum levels of IFN-γ, IL-2 and IL-18, and a moderate effect has been found on IL8 haplotype correlated to IL-8 and IL-18 serum levels. The results indicate that the resistance to L. infantum infection could be a consequence of certain haplotypes with a high frequency in the Ibizan Hound dog breed, while susceptibility to the disease would be related to other specific haplotypes, with high frequency in Boxer. Future studies are needed to elucidate whether these differences and haplotypes are related to different phenotypes in immune response and expression gene regulation to L. infantum infections in dogs and their possible application in new treatments and vaccines.
Collapse
|
8
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
9
|
Dow CT, Alvarez BL. Mycobacterium paratuberculosis zoonosis is a One Health emergency. ECOHEALTH 2022; 19:164-174. [PMID: 35655048 PMCID: PMC9162107 DOI: 10.1007/s10393-022-01602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/29/2022] [Indexed: 05/05/2023]
Abstract
A singular pathogen has been killing animals, contaminating food and causing an array of human diseases. Mycobacterium avium subspecies paratuberculosis (MAP) is the cause of a fatal enteric infectious disease called Johne's (Yo'-nees), a disorder mostly studied in ruminant animals. MAP is globally impacting animal health and imparting significant economic burden to animal agriculture. Confounding the management of Johne's disease is that animals are typically infected as calves and while commonly not manifesting clinical disease for years, they shed MAP in their milk and feces in the interval. This has resulted in a "don't test, don't tell" scenario for the industry resulting in greater prevalence of Johne's disease; furthermore, because MAP survives pasteurization, the contaminated food supply provides a source of exposure to humans. Indeed, greater than 90% of dairy herds in the US have MAP-infected animals within the herd. The same bacterium, MAP, is the putative cause of Crohn's disease in humans. Countries historically isolated from importing/exporting ruminant animals and free of Johne's disease subsequently acquired the disease as a consequence of opening trade with what proved to be infected animals. Crohn's disease in those populations became a lagging indicator of MAP infection. Moreover, MAP is associated with an increasingly long list of human diseases. Despite MAP scientists entreating regulatory agencies to designate MAP a "zoonotic agent," it has not been forthcoming. One Health is a global endeavor applying an integrative health initiative that includes the environment, animals and humans; One Health asserts that stressors affecting one affects all three. Recognizing the impact MAP has on animal and human health as well as on the environment, it is time for One Health, as well as other global regulatory agencies, to recognize that MAP is causing an insidious slow-motion tsunami of zoonosis and implement public health mitigation.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, 9431 Wisconsin Institutes for Medical Research (WIMR), McPherson Eye Research Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Briana Lizet Alvarez
- Biology and Global Health, University of Wisconsin-Madison, 120 N Orchard St #1, Madison, WI, 53705, USA
| |
Collapse
|
10
|
Systematic and meta-analysis of Mycobacterium avium subsp. paratuberculosis related type 1 and type 2 diabetes mellitus. Sci Rep 2022; 12:4608. [PMID: 35301410 PMCID: PMC8930973 DOI: 10.1038/s41598-022-08700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Global increase in diabetes (DM) prevalence necessitated the need to establish the association between DM and environmental triggers including MAP (Mycobacterium avium subsp. paratuberculosis) that have been postulated to play a role in DM etiopathology for effective management. The present investigation aimed to assess the odds ratio (OR) presenting the association between MAP and DM. MAP-related DM studies were systematically retrieved from 6 databases until 31 September 2021 according to PRISMA principles for data abstraction. The abstracted dataset was fitted to the fixed-effects (FE) and random-effects (RE) models using the Mantel–Haenszel approach. Sixteen studies involving 2072 participants (1152 DM patients (957 type 1 diabetes mellitus (T1DM) & 195 type 2 diabetes mellitus (T2DM)) and 920 healthy controls) met the inclusion criteria. Results revealed a significant association between anti-MAP antibodies (abs) seroprevalence and T1DM (FE: OR 7.47, 95% CI 5.50–10.14, p value < 0.0001; RE: OR 7.92, 95% CI 4.39–14.31, p < 0.0001) and MAP DNA with T1DM (FE: OR 4.70 (95% CI 3.10–7.13, p value < 0.0001), RE: OR 3.90 (95% CI 0.93–16.38, p value = 0.06)). Both anti-MAP abs and MAP DNA based meta-analyses had medium heterogeneity (I2 = 47.2–61.0%). Meanwhile, no significant association between MAP and T2DM (FE: OR 1.13, 95% CI 0.54–2.37, p value = 0.74; RE: OR 1.19; 95% CI 0.34–4.12, p value = 0.69), its OR magnitude exceeded 1 and prediction interval (0.09–15.29) suggest possibility of association between the duo in the future. The leave-one-out sensitivity analysis depicts a robust meta-analysis in all cases. In conclusion, the study manifests a positive association between MAP and T1DM, highlighting that MAP prevention and environmental control would indubitably revolutionize T1DM management. Also, its projects possible link between MAP and T2DM as more data becomes available. However, it remains elusive whether MAP triggers T1/T2DM or a mere comorbidity in T1/T2DM. Epidemiological activities to fill the global/regional data gaps on MAP-related T1DM and T2DM are advocated in order to assess the burden of MAP-related DM and improve their clinical management.
Collapse
|
11
|
Sposato A, Fanelli A, Cordisco M, Trotta A, Galgano M, Corrente M, Buonavoglia D. Bayesian estimation of prevalence of Johne's disease in dairy herds in Southern Italy. Prev Vet Med 2021; 199:105552. [PMID: 34890958 DOI: 10.1016/j.prevetmed.2021.105552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Johne's disease (JD) is a chronic granulomatous disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) causing important losses on dairy farms. In Italy, voluntary programs to control MAP infection in dairy cattle are implemented in the Northern part of the country, where several studies have been carried out. Conversely, the disease status has not been fully investigated in the Southern regions. The aims of this study were to (i) determine the herd-level true prevalence (HTP) and (ii) the conditional within herd animal-level prevalence (CWHP) of JD in selected dairy cattle herds in Southern Italy. Serum samples were taken from 27 farms and analysed using a commercial ELISA test. A Bayesian model was fitted to the data. The estimated posterior mean of HPT was 0.46 (89 % CI 0.25-0.67), while the mean CWHP was 0.03 (89 % CI: 0.012-0.045). The results presented in this study call for designing and implementing an effective JD control program at national level.
Collapse
Affiliation(s)
- Alessio Sposato
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy.
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Michela Galgano
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| |
Collapse
|
12
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
13
|
Garg A, Singhal N, Kumar M. Discerning novel drug targets for treating Mycobacterium avium ss. paratuberculosis-associated autoimmune disorders: an in silico approach. Brief Bioinform 2020; 22:5902595. [PMID: 32895696 DOI: 10.1093/bib/bbaa195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) exhibits 'molecular mimicry' with the human host resulting in several autoimmune diseases such as multiple sclerosis, type 1 diabetes mellitus (T1DM), Hashimoto's thyroiditis, Crohn's disease (CD), etc. The conventional therapy for autoimmune diseases includes immunosuppressants or immunomodulators that treat the symptoms rather than the etiology and/or causative mechanism(s). Eliminating MAP-the etiopathological agent might be a better strategy to treat MAP-associated autoimmune diseases. In this case study, we conducted a systematic in silico analysis to identify the metabolic chokepoints of MAP's mimicry proteins and their interacting partners. The probable inhibitors of chokepoint proteins were identified using DrugBank. DrugBank molecules were stringently screened and molecular interactions were analyzed by molecular docking and 'off-target' binding. Thus, we identified 18 metabolic chokepoints of MAP mimicry proteins and 13 DrugBank molecules that could inhibit three chokepoint proteins viz. katG, rpoB and narH. On the basis of molecular interaction between drug and target proteins finally eight DrugBank molecules, viz. DB00609, DB00951, DB00615, DB01220, DB08638, DB08226, DB08266 and DB07349 were selected and are proposed for treatment of three MAP-associated autoimmune diseases namely, T1DM, CD and multiple sclerosis. Because these molecules are either approved by the Food and Drug Administration or these are experimental drugs that can be easily incorporated in clinical studies or tested in vitro. The proposed strategy may be used to repurpose drugs to treat autoimmune diseases induced by other pathogens.
Collapse
|
14
|
Paratuberculosis: A Potential Zoonosis and a Neglected Disease in Africa. Microorganisms 2020; 8:microorganisms8071007. [PMID: 32635652 PMCID: PMC7409332 DOI: 10.3390/microorganisms8071007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
The Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis, which is an economically important disease of ruminants. The zoonotic role of MAP in Crohn’s disease and, to a lesser extent, in ulcerative colitis, the two major forms of idiopathic inflammatory bowel disease (IIBD), has been debated for decades and evidence continues to mount in support of that hypothesis. The aim of this paper is to present a review of the current information on paratuberculosis in animals and the two major forms of IIBD in Africa. The occurrence, epidemiology, economic significance and “control of MAP and its involvement IIBD in Africa” are discussed. Although the occurrence of MAP is worldwide and has been documented in several African countries, the epidemiology and socioeconomic impacts remain undetermined and limited research information is available from the continent. At present, there are still significant knowledge gaps in all these areas as far as Africa is concerned. Due to the limited research on paratuberculosis in Africa, in spite of growing global concerns, it may rightfully be considered a neglected tropical disease with a potentially zoonotic role.
Collapse
|
15
|
Destruction of the blood-retina barrier in diabetic retinopathy depends on angiotensin-converting enzyme-mediated TGF-β1/Smad signaling pathway activation. Int Immunopharmacol 2020; 85:106686. [PMID: 32531714 DOI: 10.1016/j.intimp.2020.106686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a systemic, chronic metabolic disease that is related to heredity and autoimmunity and is often accompanied by complications of retinopathy. However, the causative mechanism involved in the pathological process remains unclear. In this research, treatment with fosinopril or LY2109761 was found to be responsible for the improvement of the pathological processes, serum biochemical indexes and retinopathy in rats with streptozotocin-induced diabetes. In addition, the upregulation of angiotensin-converting enzyme (ACE) in the serum and the increased expression of TGF-β1 in the pathological outer nuclear layer (ONL) and inner nuclear layer (INL) of the retina were also reduced. In vitro experiments demonstrated that ACE enhanced cell damage and TGF-β1/Smad signaling pathway activation in retinal capillary endothelial cells (RCECs) under high glucose conditions. In addition, the activity of ACE was also considered to be related to the increasing levels of activated TGF-β1 in both rat retinal Müller cells (RMCs) and RCECs, but ACE activity had no effect on the high glucose-mediated upregulation of total TGF-β1 in RMCs. Coculture experiments with RCECs and RMCs showed that the barrier that was established under normal conditions was significantly impaired when exposed to high glucose combined with ACE, and damage of barrier can be prevented by adding fosinopril or LY2109761. Finally, a similar auxiliary effect of ACE was also observed in the activated TGF-β1-mediated barrier damage in blood-retinal barrier model in vitro. In summary, ACE-mediated TGF-β1/Smad signaling pathway activation was found to be involved in the destruction of the blood-retina barrier during diabetic retinopathy in a model of streptozotocin-induced diabetes, and these data may provide evidence to guide the treatment of the complications of diabetes mellitus.
Collapse
|
16
|
Dow CT. Proposing BCG Vaccination for Mycobacterium avium ss. paratuberculosis (MAP) Associated Autoimmune Diseases. Microorganisms 2020; 8:E212. [PMID: 32033287 PMCID: PMC7074941 DOI: 10.3390/microorganisms8020212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) vaccination is widely practiced around the world to protect against the mycobacterial infection tuberculosis. BCG is also effective against the pathogenic mycobacteria that cause leprosy and Buruli's ulcer. BCG is part of the standard of care for bladder cancer where, when given as an intravesicular irrigant, BCG acts as an immunomodulating agent and lessens the risk of recurrence. Mycobacterium avium ss. paratuberculosis (MAP) causes a fatal enteritis of ruminant animals and is the putative cause of Crohn's disease of humans. MAP has been associated with an increasingly long list of inflammatory/autoimmune diseases: Crohn's, sarcoidosis, Blau syndrome, Hashimoto's thyroiditis, autoimmune diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis, lupus and Parkinson's disease. Epidemiologic evidence points to BCG providing a "heterologous" protective effect on assorted autoimmune diseases; studies using BCG vaccination for T1D and MS have shown benefit in these diseases. This article proposes that the positive response to BCG in T1D and MS is due to a mitigating action of BCG upon MAP. Other autoimmune diseases, having a concomitant genetic risk for mycobacterial infection as well as cross-reacting antibodies against mycobacterial heat shock protein 65 (HSP65), could reasonably be considered to respond to BCG vaccination. The rare autoimmune disease, relapsing polychondritis, is one such disease and is offered as an example. Recent studies suggesting a protective role for BCG in Alzheimer's disease are also explored. BCG-induced energy shift from oxidative phosphorylation to aerobic glycolysis provides the immunomodulating boost to the immune response and also mitigates mycobacterial infection-this cellular mechanism unifies the impact of BCG on the disparate diseases of this article.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
17
|
Dow CT, Sechi LA. Cows Get Crohn's Disease and They're Giving Us Diabetes. Microorganisms 2019; 7:microorganisms7100466. [PMID: 31627347 PMCID: PMC6843388 DOI: 10.3390/microorganisms7100466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Increasingly, Johne's disease of ruminants and human Crohn's disease are regarded as the same infectious disease: paratuberculosis. Mycobacterium avium ss. paratuberculosis (MAP) is the cause of Johne's and is the most commonly linked infectious cause of Crohn's disease. Humans are broadly exposed to MAP in dairy products and in the environment. MAP has been found within granulomas such as Crohn's disease and can stimulate autoantibodies in diseases such as type 1 diabetes (T1D) and Hashimoto's thyroiditis. Moreover, beyond Crohn's and T1D, MAP is increasingly associated with a host of autoimmune diseases. This article suggests near equivalency between paucibacillary Johne's disease of ruminant animals and human Crohn's disease and implicates MAP zoonosis beyond Crohn's disease to include T1D.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
18
|
Triantaphyllopoulos KA, Baltoumas FA, Hamodrakas SJ. Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1). J Comput Aided Mol Des 2018; 33:265-285. [PMID: 30543052 DOI: 10.1007/s10822-018-0179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
Abstract
Natural Resistance-Associated Macrophage Proteins are a family of transmembrane divalent metal ion transporters, with important implications in life of both bacteria and mammals. Among them, the Solute Carrier family 11 member A1 (SLC11A1) has been implicated with susceptibility to infection by Mycobacterium avium subspecies paratuberculosis (MAP), potentially causing Crohn's disease in humans and paratuberculosis (PTB) in ruminants. Our previous research had focused on sequencing the mRNA of the caprine slc11a1 gene and pinpointed polymorphisms that contribute to caprine SLC11A1's susceptibility to infection by MAP in PTB. Despite its importance, little is known on the structural/dynamic features of mammalian SLC11A1 that may influence its function under normal or pathological conditions at the protein level. In this work we studied the structural architecture of SLC11A1 in Capra hircus and Bos taurus through molecular modeling, molecular dynamics simulations in different, functionally relevant configurations, free energy calculations of protein-metal interactions and sequence conservation analysis. The results of this study propose a three dimensional structure for SLC11A1 with conserved sequence and structural features and provide hints for a potential mechanism through which divalent metal ion transport is conducted. Given the importance of SLC11A1 in susceptibility to PTB, this study provides a framework for further studies on the structure and dynamics of SLC11A1 in other organisms, to gain 3D structural insight into the macromolecular arrangements of SLC11A1 but also suggesting a potential mechanism which divalent metal ion transport is conducted.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855, Athens, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Stavros J Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
19
|
Garvey M. Mycobacterium avium subspecies paratuberculosis: A possible causative agent in human morbidity and risk to public health safety. Open Vet J 2018; 8:172-181. [PMID: 29911021 PMCID: PMC5987349 DOI: 10.4314/ovj.v8i2.10] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis is a bacterial parasite and the causative agent of paratuberculosis, a disease predominately found in cattle and sheep. Infection with this microorganism results in substantial farming economic losses and animal morbidity. The link between infection with this pathogen and human disease has been theorised for many years with Crohn's disease being one of many suspected resultant conditions. Mycobacterium avium may be spread from animal to human hosts by water and foodborne transmission routes, where the foodborne route of exposure represents a significant risk for susceptible populations, namely children and the immune-compromised. Following colonisation of the host, the parasitic organism evades the host immune system by use of molecular mimicry, displaying peptide sequences similar to that of the host cells causing a disruption of self-verses non self-recognition. Theoretically, this failure to recognise the invading organism as distinct from host cells may result in numerous autoimmune conditions. Here, the author presents current information assessing the link between numerous diseases states in humans such inflammatory bowel disease, Type 1 diabetes, rheumatoid arthritis, Hashimoto\'s thyroiditis, multiple sclerosis and autism following infection with Mycobacterium avium paratuberculosis. The possibility of zoonotic transmission of the organism and its significant risk to public health safety as a consequence is also discussed.
Collapse
Affiliation(s)
- Mary Garvey
- Cellular Health and Toxicology Research Group, Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
20
|
Chaubey KK, Singh SV, Gupta S, Singh M, Sohal JS, Kumar N, Singh MK, Bhatia AK, Dhama K. Mycobacterium avium subspecies paratuberculosis - an important food borne pathogen of high public health significance with special reference to India: an update. Vet Q 2018; 37:282-299. [PMID: 29090657 DOI: 10.1080/01652176.2017.1397301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review underlines the public health significance of 'Indian Bison Type' of Mycobacterium avium subspecies paratuberculosis (MAP) and also its potential as 'zoonotic infection'. In the absence of control programs, bio-load of MAP is increasing and if we take total population of animals (500 million plus) and human beings (1.23 billion plus) into account, the number of infected animals and human beings will run into millions in India. Our research on screening of over 26,000 domestic livestock for MAP infection using 4 different diagnostic tests (microscopy, culture, ELISA and PCR), during last 31 years has shown that the average bio-load of MAP in the livestock population of India is very high (cattle 43%, buffaloes 36%, goats 23% and sheep 41%). 'Mass screening' of 28,291 human samples between 2008-2016 revealed also high bio-load of MAP. It has been proved that MAP is not in-activated during pasteurization and therefore live bacilli are continuously reaching human population by consumption of even pasteurized milk and other milk products. Live bacilli have also been recovered from meat products and the environment thus illustrating the potential of MAP as pathogen of public health concern. However, at present, there is inadequate scientific evidence to confirm a conclusive link between MAP infection and Johne's disease in ruminants and some cases of Crohn's disease in human beings.
Collapse
Affiliation(s)
- Kundan Kumar Chaubey
- a Animal Health Division, Central Institute for Research on Goats (CIRG) , Mathura , UP , India.,b Department of Microbiology and Immunology , GLA University , Mathura , UP , India
| | - Shoor Vir Singh
- a Animal Health Division, Central Institute for Research on Goats (CIRG) , Mathura , UP , India
| | - Saurabh Gupta
- a Animal Health Division, Central Institute for Research on Goats (CIRG) , Mathura , UP , India.,b Department of Microbiology and Immunology , GLA University , Mathura , UP , India
| | - Manju Singh
- a Animal Health Division, Central Institute for Research on Goats (CIRG) , Mathura , UP , India
| | - Jagdip Singh Sohal
- c Amity Institutes of Microbial Technology, Amity University , Jaipur , India
| | - Naveen Kumar
- d Veterinary Type Culture Collection, NRC On Equines , Indian Council of Agricultural Research , Hisar , India
| | - Manoj Kumar Singh
- a Animal Health Division, Central Institute for Research on Goats (CIRG) , Mathura , UP , India
| | - Ashok Kumar Bhatia
- b Department of Microbiology and Immunology , GLA University , Mathura , UP , India
| | - Kuldeep Dhama
- e Pathology Division , Indian Veterinary Research Institute (IVRI) , Bareilly , UP , India
| |
Collapse
|
21
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
22
|
Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 2017; 8:1303-1315. [PMID: 28422568 DOI: 10.1080/21505594.2017.1321191] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Type I interferons (IFN-I), such as IFN-α and IFN-β are important messengers in the host response against bacterial infections. Knowledge about the role of IFN-I in infections by nontuberculous mycobacteria (NTM) is limited. Here we show that macrophages infected with pathogens of the Mycobacterium avium complex produced significantly lower amounts of IFN-β than macrophages infected with the opportunistic pathogen M. smegmatis. To dissect the molecular mechanisms of this phenomenon, we focused on the obligate pathogen Mycobacterium avium ssp paratuberculosis (MAP) and the opportunistic M. smegmatis. Viability of both bacteria was required for induction of IFN-β in macrophages. Both bacteria induced IFN-β via the cGAS-STING-TBK1-IRF3/7-pathway of IFN-β activation. Stronger phosphorylation of TBK1 and higher amounts of extracellular bacterial DNA in the macrophage cytosol were found in M. smegmatis infected macrophages than in MAP infected macrophages. After intraperitoneal infection of mice, a strong Ifnb induction by M. smegmatis correlated with clearance of the bacteria. In contrast, MAP only induced weak Ifnb expression which correlated with bacterial persistence and increased number of granulomas in the liver. In mice lacking the type I interferon receptor we observed improved survival of M. smegmatis while survival of MAP was similar to that in wildtype mice. On the other hand, treatment of MAP infected wildtype mice with the IFN-I inducer poly(I:C) or recombinant IFN-β impaired the survival of MAP. This indicates an essential role of IFN-I in clearing infections by MAP and M. smegmatis. The expression level of IFN-I is decisive for transient versus persistent NTM infection.
Collapse
Affiliation(s)
| | - Andreas Nerlich
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Ketema Abdissa
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany.,b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Stefan Lienenklaus
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Abdulhadi Suwandi
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Nina Janze
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Kristin Laarmann
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Julia Spanier
- c Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research , a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Ulrich Kalinke
- c Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research , a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Siegfried Weiss
- b Department of Molecular Immunology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d Institute of Immunology , Hannover Medical School , Hannover , Germany
| | - Ralph Goethe
- a Institute for Microbiology , University of Veterinary Medicine Hannover , Hannover , Germany
| |
Collapse
|
23
|
The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiol Infect 2015; 143:3135-57. [PMID: 25989710 DOI: 10.1017/s095026881500076x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This systematic review-meta-analysis appraises and summarizes all the available research (128 papers) on the zoonotic potential of Mycobacterium avium ssp. paratuberculosis. The latter has been debated for a century due to pathogenic and clinical similarities between Johne's disease in ruminants and Crohn's disease (108 studies) in humans and recently for involvement in other human diseases; human immunodeficiency virus (HIV) infection (2), sarcoidosis (3), diabetes mellitus type 1 (T1DM) (7) and type 2 (3), multiple sclerosis (5) and Hashimoto's thyroiditis (2). Meta-analytical results indicated a significant positive association, consistently across different laboratory methods for Crohn's disease [odds ratio (OR) range 4·26-8·44], T1DM (OR range 2·91-9·95) and multiple sclerosis (OR range 6·5-7·99). The latter two and the thyroiditis hypothesis require further investigation to confirm the association. Meta-regression of Crohn's disease studies using DNA detection methods indicated that choice of primers and sampling frame (e.g. general population vs. hospital-based sample) explained a significant proportion of heterogeneity. Other epidemiological studies demonstrated a lack of association between high-risk occupations and development of Crohn's disease. Due to knowledge gaps in understanding the role of M. paratuberculosis in the development or progression of human disease, the evidence at present is not strong enough to inform the potential public health impact of M. paratuberculosis exposure.
Collapse
|
24
|
Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis Zoonosis - The Hundred Year War - Beyond Crohn's Disease. Front Immunol 2015; 6:96. [PMID: 25788897 PMCID: PMC4349160 DOI: 10.3389/fimmu.2015.00096] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
The factitive role of Mycobacterium avium ss. paratuberculosis (MAP) in Crohn's disease has been debated for more than a century. The controversy is due to the fact that Crohn's disease is so similar to a disease of MAP-infected ruminant animals, Johne's disease; and, though MAP can be readily detected in the infected ruminants, it is much more difficult to detect in humans. Molecular techniques that can detect MAP in pathologic Crohn's specimens as well as dedicated specialty labs successful in culturing MAP from Crohn's patients have provided strong argument for MAP's role in Crohn's disease. Perhaps more incriminating for MAP as a zoonotic agent is the increasing number of diseases with which MAP has been related: Blau syndrome, type 1 diabetes, Hashimoto thyroiditis, and multiple sclerosis. In this article, we debate about genetic susceptibility to mycobacterial infection and human exposure to MAP; moreover, it suggests that molecular mimicry between protein epitopes of MAP and human proteins is a likely bridge between infection and these autoimmune disorders.
Collapse
Affiliation(s)
- Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari , Sassari , Italy
| | - Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin , Madison, WI , USA ; Chippewa Valley Eye Clinic , Eau Claire, WI , USA
| |
Collapse
|
25
|
Pinna A, Masala S, Blasetti F, Maiore I, Cossu D, Paccagnini D, Mameli G, Sechi LA. Detection of serum antibodies cross-reacting with Mycobacterium avium subspecies paratuberculosis and beta-cell antigen zinc transporter 8 homologous peptides in patients with high-risk proliferative diabetic retinopathy. PLoS One 2014; 9:e107802. [PMID: 25226393 PMCID: PMC4166466 DOI: 10.1371/journal.pone.0107802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022] Open
Abstract
Purpose MAP3865c, a Mycobacterium avium subspecies paratuberculosis (MAP) cell membrane protein, has a relevant sequence homology with zinc transporter 8 (ZnT8), a beta-cell membrane protein involved in Zn++ transportation. Recently, antibodies recognizing MAP3865c epitopes have been shown to cross-react with ZnT8 in type 1 diabetes patients. The purpose of this study was to detect antibodies against MAP3865c peptides in patients with high-risk proliferative diabetic retinopathy and speculate on whether they may somehow be involved in the pathogenesis of this severe retinal disorder. Methods Blood samples were obtained from 62 type 1 and 80 type 2 diabetes patients with high-risk proliferative diabetic retinopathy and 81 healthy controls. Antibodies against 6 highly immunogenic MAP3865c peptides were detected by indirect ELISA. Results Type 1 diabetes patients had significantly higher rates of positive antibodies than controls. Conversely, no statistically significant differences were found between type 2 diabetes patients and controls. After categorization of type 1 diabetes patients into two groups, one with positive, the other with negative antibodies, we found that they had similar mean visual acuity (∼0.6) and identical rates of vitreous hemorrhage (28.6%). Conversely, Hashimoto's thyroiditis prevalence was 4/13 (30.7%) in the positive antibody group and 1/49 (2%) in the negative antibody group, a statistically significant difference (P = 0.016). Conclusions This study confirmed that type 1 diabetes patients have significantly higher rates of positive antibodies against MAP/ZnT8 peptides, but failed to find a correlation between the presence of these antibodies and the severity degree of high-risk proliferative diabetic retinopathy. The significantly higher prevalence of Hashimoto's disease among type 1 diabetes patients with positive antibodies might suggest a possible common environmental trigger for these conditions.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Case-Control Studies
- Cation Transport Proteins/chemistry
- Cation Transport Proteins/immunology
- Child
- Child, Preschool
- Cross Reactions/immunology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Diabetic Retinopathy/blood
- Diabetic Retinopathy/immunology
- Diabetic Retinopathy/pathology
- Epitopes/immunology
- Female
- Humans
- Infant
- Infant, Newborn
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Male
- Middle Aged
- Mycobacterium avium subsp. paratuberculosis/immunology
- Peptides/immunology
- Seroepidemiologic Studies
- Young Adult
- Zinc Transporter 8
Collapse
Affiliation(s)
- Antonio Pinna
- Department of Surgical, Microsurgical and Medical Sciences, Section of Ophthalmology, University of Sassari, Sassari, Italy
- Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
- * E-mail:
| | - Speranza Masala
- Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Francesco Blasetti
- Department of Surgical, Microsurgical and Medical Sciences, Section of Ophthalmology, University of Sassari, Sassari, Italy
| | - Irene Maiore
- Department of Surgical, Microsurgical and Medical Sciences, Section of Ophthalmology, University of Sassari, Sassari, Italy
| | - Davide Cossu
- Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Daniela Paccagnini
- Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Giuseppe Mameli
- Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Masala S, Cossu D, Piccinini S, Rapini N, Massimi A, Porzio O, Pietrosanti S, Lidano R, Bitti MLM, Sechi LA. Recognition of zinc transporter 8 and MAP3865c homologous epitopes by new-onset type 1 diabetes children from continental Italy. Acta Diabetol 2014; 51:577-85. [PMID: 24496951 DOI: 10.1007/s00592-014-0558-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/15/2014] [Indexed: 12/11/2022]
Abstract
There are several pieces of evidence indicating that Mycobacterium avium subspecies paratuberculosis (MAP) infection is linked to type 1 diabetes (T1D) in Sardinian patients. An association between MAP and T1D was recently observed in an Italian cohort of pediatric T1D individuals, characterized by a different genetic background. It is interesting to confirm the prevalence of anti-MAP antibodies (Abs) in another pediatric population from continental Italy, looking at several markers of MAP presence. New-onset T1D children, compared to age-matched healthy controls (HCs), were tested by indirect enzyme-linked immunosorbent assay for the presence of Abs toward the immunodominant MAP3865c/ZnT8 homologues epitopes, the recently identified C-terminal MAP3865c281-287 epitope and MAP-specific protein MptD. Abs against MAP and ZnT8 epitopes were more prevalent in the sera of new-onset T1D children compared to HCs. These findings support the view that MAP3865c/ZnT8 cross-reactivity is involved in the pathogenesis of T1D, and addition of Abs against these peptides to the panel of existing T1D biomarkers should be considered. It is important now to investigate the timing of MAP infection during prospective follow-up in at-risk children to elucidate whether Ab-titers against these MAP/ZnT8 epitopes are present before T1D onset and if so if they wane after diagnosis.
Collapse
Affiliation(s)
- Speranza Masala
- Sezione di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mycobacterium avium subsp. paratuberculosis is not discerned in diabetes mellitus patients in Hyderabad, India. Int J Med Microbiol 2014; 304:620-5. [DOI: 10.1016/j.ijmm.2014.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/16/2023] Open
|
28
|
SNP genotyping of animal and human derived isolates of Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 2014; 172:479-85. [PMID: 24970365 DOI: 10.1016/j.vetmic.2014.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic granulomatous enteritis that affects ruminants worldwide. While the ability of MAP to cause disease in animals is clear, the role of this bacterium in human inflammatory bowel diseases remains unresolved. Previous whole genome sequencing of MAP isolates derived from human and three animal hosts showed that human isolates were genetically similar and showed a close phylogenetic relationship to one bovine isolate. In contrast, other animal derived isolates were more genetically diverse. The present study aimed to investigate the frequency of this human strain across 52 wild-type MAP isolates, collected predominantly from Australia. A Luminex based SNP genotyping approach was utilised to genotype SNPs that had previously been shown to be specific to the human, bovine or ovine isolate types. Fourteen SNPs were initially evaluated across a reference panel of isolates with known genotypes. A subset of seven SNPs was chosen for analysis within the wild-type collection. Of the seven SNPs, three were found to be unique to paediatric human isolates. No wild-type isolates contain these SNP alleles. Interestingly, and in contrast to the paediatric isolates, three additional adult human isolates (derived from adult Crohn's disease patients) also did not contain these SNP alleles. Furthermore we identified two SNPs, which demonstrate extensive polymorphism within the animal-derived MAP isolates. One of which appears unique to ovine and a single camel isolate. From this study we suggest the existence of genetic heterogeneity between human derived MAP isolates, some of which are highly similar to those derived from bovine hosts, but others of which are more divergent.
Collapse
|
29
|
Wu YL, Ding YP, Gao J, Tanaka Y, Zhang W. Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci 2013; 9:666-79. [PMID: 23904791 PMCID: PMC3729009 DOI: 10.7150/ijbs.6610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting in the designated immune destruction of insulin producing β-cells, usually diagnosed in youth, and associated with important psychological, familial, and social disorders. Once diagnosed, patients need lifelong insulin treatment and will experience multiple disease-associated complications. There is no cure for T1DM currently. The last decade has witnessed great progress in elucidating the causes and treatment of the disease based on numerous researches both in rodent models of spontaneous diabetes and in humans. This article summarises our current understanding of the pathogenesis of T1DM, the roles of the immune system, genes, environment and other factors in the continuing and rapid increase in T1DM incidence at younger ages in humans. In addition, we discuss the strategies for primary and secondary prevention trials of T1DM. The purpose of this review is to provide an overview of this disorder's pathogenesis, risk factors that cause the disease, as well as to bring forward an ideal approach to prevent and cure the disorder.
Collapse
Affiliation(s)
- Yan-Ling Wu
- Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the CNS. At present, MS etiology remains unknown, but it is believed to be caused by environmental factors acting on a genetic predisposition. Several studies suggest that different microorganisms could play a role in triggering autoimmunity, through immunological cross-reactivity or molecular mimicry. An overview of the knowledge regarding the bacteria involved in MS is given, placing emphasis on the newest candidate proposed: Mycobacterium avium subsp. paratuberculosis. This review will focus on discussing several arguments that might support a causal role for Mycobacterium avium subsp. paratuberculosis as an etiologic agent in MS. Additionally, a possible mechanism is postulated attempting to explain how the bacteria could initiate autoimmunity.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Biomedical Sciences, Division of Experimental & Clinical Microbiology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
31
|
Lockwood TD. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics 2013; 5:110-24. [PMID: 23302864 DOI: 10.1039/c2mt20156a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the 1930's pioneers discovered that maximal autolysis in tissue homogenates requires metal chelator, sulfhydryl reducing agent and acid pH. However, metals, reducing equivalents and protons (MR&P) have been overlooked as combined catalytic controls. Three categories of lysosomal machinery drive three distinguishable cycles importing and exporting MR&P. Zn(2+) preemptively inhibits CysHis catalysis under otherwise optimal protonation and reduction. Protein-bound cell Zn(2+) concentration is 200-2000 times the non-sequestered inhibitory concentration. Following autophagy, lysosomal proteolysis liberates much inhibitory Zn(2+). The vacuolar proton pump is the driving force for Zn(2+) export, as well as protonation of the peptidolytic mechanism. Other machinery of lysosomal cycles includes proton-driven Zn(2+) exporters (e.g. SLC11A1), Zn(2+) channels (e.g. TRPML-1), lysosomal thiol reductase, etc. The CysHis dyad is a sensor of the vacuolar environment of MR&P, an integrator of these simultaneous variables, and a catalytic responder. Rate-determination can shift between autophagic substrate acquisition (swallowing) and substrate degradation (digesting). Zn(2+) recycling from degraded proteins to new proteins is a fourth cycle that might pace lysosomal function under some conditions. Heritable insufficient or excess functions of CysHis cathepsins are associated with dysfunctional inflammation and immunity/auto-immunity, including diabetic pathogenesis.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Dept. of Pharmacology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
32
|
Naser SA, Thanigachalam S, Dow CT, Collins MT. Exploring the role of Mycobacterium avium subspecies paratuberculosis in the pathogenesis of type 1 diabetes mellitus: a pilot study. Gut Pathog 2013; 5:14. [PMID: 23759115 PMCID: PMC3686596 DOI: 10.1186/1757-4749-5-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Background Although the etiology of Type 1 Diabetes mellitus (T1DM) has not been determined, genetic polymorphism in key genes, including SLC11A1, and association with Mycobacterium avium subspecies paratuberculosis (MAP) have been reported. We hypothesize that molecular mimicry between MAP Heat shock protein 65 K (Hsp65) and human Glutamic Acid Decarboxylase 65 K (GAD65) may be the trigger leading to autoimmune destruction of beta cells in patients exposed to MAP. Method Peptide sequences of MAP Hsp65 and human GAD65 were investigated for amino acid sequence homology and cross reactivity. A total of 18 blood samples from T1DM and controls were evaluated for the presence of MAP. Results Peptide BLAST analysis revealed a 44% overall identity between MAP Hsp65 and GAD65 with 75% positives in a 16 amino acid region. PyMOL 3D-structural analyses identified the same 16 amino acid region as a potential epitope for antibody binding. Preliminary data suggests a cross reactivity between MAP Hsp65, and a healthy rat pancreatic tissue homogenate against plasma from T1DM patients and rabbit polyclonal anti-MAP IgG. Long-term culture of human blood resulted MAP detection in 3/10 T1DM and 4/8 controls whereas MAP IgG was detected in 5/10 T1DM samples and 3/8 non-diabetic controls. Conclusion The high degree of homology between GAD65 and MAP Hsp65 in an antigenic peptide region supports a possible mycobacterial role in triggering autoimmune destruction of pancreatic cells in T1DM. Reactivity of T1DM patient sera with MAP Hsp65 supports this finding. Culture of MAP from the blood of T1DM patients is intriguing. Overall, the preliminary data are mixed and do not exclude a possible role for MAP in T1DM pathogenesis. A larger study including well-characterized controls is needed to investigate the intriguing question of whether MAP is associated with T1DM or not?
Collapse
Affiliation(s)
- Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Saisathya Thanigachalam
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - C Thomas Dow
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Michael T Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Momotani E, Ozaki H, Hori M, Yamamoto S, Kuribayashi T, Eda S, Ikegami M. Mycobacterium avium subsp. paratuberculosis lipophilic antigen causes Crohn's disease-type necrotizing colitis in Mice. SPRINGERPLUS 2012; 1:47. [PMID: 23519342 PMCID: PMC3600126 DOI: 10.1186/2193-1801-1-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023]
Abstract
Background: A 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced murine colitis model was developed to investigate the pathogenesis and to evaluate a method of treating human Crohn’s disease. This experimental model rapidly induces colitis similar to human Crohn’s disease lesion in a reproducible manner. However, natural exposure of the human digestive tract to TNBS is unrealistic. A novel animal model based on realistic data is eagerly anticipated in future research on pathogenesis of CD. Method: We evaluated the potency of Map antigen molecules in an effort to develop a novel colitis model using a more realistic source than TNBS. We prepared the Map antigen by ethanol extraction and developed a mouse model in a manner similar to that of the well-known TNBS-induced colitis in mice. In the experiment, seven days after subcutaneous (SC) injection of the antigen into normal C57BL/6 mice, the same antigen in 50% ethanol was injected into the colon by the transanal route with a fine cannula. Results: On the fifth day after the transanal injection, histopathological examination revealed full-thickness necrotizing colitis with erosion and ulcers; severe infiltration with neutrophils, lymphocytes, macrophages, and perforation. However, no change was detected with each single Map-antigen injection. Conclusion: The present results provide a novel animal model for research on CD and may be the key to clarifying the relationship between CD and Map. This is the first evidence that mycobacterium antigen induces necrotizing colitis.
Collapse
Affiliation(s)
- Eiichi Momotani
- Research Area of Pathology and Pathophysiology, National Institute of Animal Health, 3-1-5 Kan-nondai, Tsukuba, 305-0856 Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis 2012; 2012:150824. [PMID: 23056923 PMCID: PMC3465878 DOI: 10.1155/2012/150824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the known infectious cause of Johne's disease, an enteric inflammatory disease mostly studied in ruminant animals. MAP has also been implicated in the very similar Crohn's disease of humans as well as sarcoidosis. Recently, MAP has been associated with juvenile sarcoidosis (Blau syndrome), autoimmune diabetes, autoimmune thyroiditis, and multiple sclerosis. While it is intuitive to implicate MAP in granulomatous diseases where the microbe participates in the granuloma, it is more difficult to assign a role for MAP in diseases where autoantibodies are a primary feature. MAP may trigger autoimmune antibodies via its heat shock proteins. Mycobacterial heat shock protein 65 (HSP65) is an immunodominant protein that shares sequential and conformational elements with several human host proteins. This molecular mimicry is the proposed etiopathology by which MAP stimulates autoantibodies associated with autoimmune (type 1) diabetes, autoimmune (Hashimoto's) thyroiditis, and multiple sclerosis. This paper proposes that MAP is a source of mycobacterial HSP65 and acts as a trigger of autoimmune disease.
Collapse
|
35
|
Mycobacterium avium subsp. paratuberculosis in an Italian cohort of type 1 diabetes pediatric patients. Clin Dev Immunol 2012; 2012:785262. [PMID: 22844325 PMCID: PMC3400352 DOI: 10.1155/2012/785262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease in ruminants. Recent studies have linked MAP to type 1 diabetes (T1D) in the Sardinian population. The aim of this study was to investigate the prevalence of MAP infection in a T1D cohort from continental Italy compared with healthy control subjects. 247 T1D subjects and 110 healthy controls were tested for the presence of MAP. MAP DNA was detected using IS900-specific polymerase chain reaction (PCR). The presence of antibodies towards a MAP antigen, heparin binding hemoagglutinin (HBHA), was detected by ELISA. We demonstrated a higher MAP DNA prevalence in plasma samples from T1D patients and a stronger immune response towards MAP HBHA, compared with healthy control subjects. Moreover, in the recent onset patients, we observed an association between anti-MAP antibodies and HLA DQ2 (DQA1 0201/DQB1 0202). These findings taken together support the hypothesis of MAP as an environmental risk factor for the development of T1D in genetically predisposed subjects, probably involving a mechanism of molecular mimicry between MAP antigens and pancreatic islet β-cells.
Collapse
|
36
|
Bitti MLM, Masala S, Capasso F, Rapini N, Piccinini S, Angelini F, Pierantozzi A, Lidano R, Pietrosanti S, Paccagnini D, Sechi LA. Mycobacterium avium subsp. paratuberculosis in an Italian cohort of type 1 diabetes pediatric patients. Clin Dev Immunol 2012. [PMID: 22844325 DOI: 10.115/2012/785262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease in ruminants. Recent studies have linked MAP to type 1 diabetes (T1D) in the Sardinian population. The aim of this study was to investigate the prevalence of MAP infection in a T1D cohort from continental Italy compared with healthy control subjects. 247 T1D subjects and 110 healthy controls were tested for the presence of MAP. MAP DNA was detected using IS900-specific polymerase chain reaction (PCR). The presence of antibodies towards a MAP antigen, heparin binding hemoagglutinin (HBHA), was detected by ELISA. We demonstrated a higher MAP DNA prevalence in plasma samples from T1D patients and a stronger immune response towards MAP HBHA, compared with healthy control subjects. Moreover, in the recent onset patients, we observed an association between anti-MAP antibodies and HLA DQ2 (DQA1 0201/DQB1 0202). These findings taken together support the hypothesis of MAP as an environmental risk factor for the development of T1D in genetically predisposed subjects, probably involving a mechanism of molecular mimicry between MAP antigens and pancreatic islet β-cells.
Collapse
Affiliation(s)
- Maria Luisa Manca Bitti
- Pediatric Diabetology Unit, Policlinico di Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Click RE. A Potential 'Curative' Modality for Crohn's Disease---Modeled after Prophylaxis of Bovine Johne's Disease. MYCOBACTERIAL DISEASES : TUBERCULOSIS & LEPROSY 2012; 2:117. [PMID: 24494172 PMCID: PMC3909502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A naturally occurring, gastrointestinal disorder of ruminants (Johne's disease) is a chronic, debilitating, lethal disease. The causative agent is Mycobacterium avium subspecies paratuberculosis (MAP). Exposure that leads to disease occurs primarily in utero and/or during the neonatal period. Outside a dietzia probiotic treatment, there are no preventive/curative therapies. Interestingly, MAP is at the center of a controversy as to its role (cause of, perpetuate of, innocent bystander) in Crohn's disease, ulcerative colitis, irritable bowel syndrome, diabetes, sarcoidosis, Blau syndrome, and multiple sclerosis-diseases in which the incidence of systemic MAP is higher than that in the general population. Conventional therapeutic modalities, including biologic agents, for the majority of these diseases are, in general, directed at curtailing processes that are an intricate part of inflammation, with goals to induce and maintain remission. Most possess side effects of varying severity, lose therapeutic value, and more importantly, few are directed at prevention, attainment of long lasting remissions or cures, and essential none at reduction/elimination of MAP. This report presents a rationale for how/why Dietzia subsp. C79793-74 should be clinically evaluated for efficacy in patients with IBD. Arguments are based on previous studies that demonstrated (a) clinical similarities of Johne's disease and Crohn's disease, (b) inhibition of growth of MAP by Dietzia under specific culture conditions, (c) safe usage for extended daily treatments of adult cattle (up to 24 months), and (d) when used as a probiotic, curtailed diarrhea and cured 40% of adult cattle with early stage paratuberculosis.
Collapse
Affiliation(s)
- Robert E Click
- Corresponding author: N8693 1250 Street, River Falls, WI. 54022, USA, Tel: 715-425-2030,
| |
Collapse
|
38
|
Dow CT. Mycobacterium avium subspecies paratuberculosis—An environmental trigger of type 1 diabetes mellitus. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jdm.2012.21014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Akçakaya P, Azeroglu B, Even I, Ates O, Turker H, Ongen G, Topal-Sarikaya A. The functional SLC11A1 gene polymorphisms are associated with sarcoidosis in Turkish population. Mol Biol Rep 2011; 39:5009-16. [DOI: 10.1007/s11033-011-1297-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022]
|
40
|
Antibodies recognizing Mycobacterium avium paratuberculosis epitopes cross-react with the beta-cell antigen ZnT8 in Sardinian type 1 diabetic patients. PLoS One 2011; 6:e26931. [PMID: 22046415 PMCID: PMC3203182 DOI: 10.1371/journal.pone.0026931] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/06/2011] [Indexed: 12/30/2022] Open
Abstract
The environmental factors at play in the pathogenesis of type 1 diabetes (T1D) remain enigmatic. Mycobacterium avium subspecies paratuberculosis (MAP) is transmitted from dairy herds to humans through food contamination. MAP causes an asymptomatic infection that is highly prevalent in Sardinian T1D patients compared with type 2 diabetes (T2D) and healthy controls. Moreover, MAP elicits humoral responses against several mycobacterial proteins. We asked whether antibodies (Abs) against one of these proteins, namely MAP3865c, which displays a sequence homology with the β-cell protein zinc transporter 8 (ZnT8) could be cross-reactive with ZnT8 epitopes. To this end, Ab responses against MAP3865c were analyzed in Sardinian T1D, T2D and healthy subjects using an enzymatic immunoassay. Abs against MAP3865c recognized two immunodominant transmembrane epitopes in 52-65% of T1D patients, but only in 5-7% of T2D and 3-5% of healthy controls. There was a linear correlation between titers of anti-MAP3865c and anti-ZnT8 Abs targeting these two homologous epitopes, and pre-incubation of sera with ZnT8 epitope peptides blocked binding to the corresponding MAP3865c peptides. These results demonstrate that Abs recognizing MAP3865c epitopes cross-react with ZnT8, possibly underlying a molecular mimicry mechanism, which may precipitate T1D in MAP-infected individuals.
Collapse
|
41
|
Dow CT. Mycobacterium paratuberculosis and autism: is this a trigger? Med Hypotheses 2011; 77:977-81. [PMID: 21903338 DOI: 10.1016/j.mehy.2011.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
Autism is a heterogeneous group of life-long neurologic problems that begin in childhood. Success in efforts to understand and treat autism has been mostly elusive. The role of autoimmunity in autism has gained recognition both for associated systemic autoimmune disease and the presence of brain autoantibodies in autistic children and their family members. There is an acknowledged genetic susceptibility to autism--most notably allotypes of complement C4. C4 defects are associated with several autoimmune diseases and also confer susceptibility to mycobacterial infections. Mycobacterium avium ss. paratuberculosis (MAP) causes an enteric inflammatory disease in ruminant animals (Johne's disease) and is the putative cause of the very similar Crohn's disease in humans. Humans are widely exposed to MAP in food and water. MAP has been also linked to ulcerative colitis, irritable bowel syndrome, sarcoidosis, Blau syndrome, autoimmune (Type 1) diabetes, Hashimoto's thyroiditis and multiple sclerosis. Environmental agents are thought to trigger autism in the genetically at risk. Molecular mimicry is the proposed mechanism by which MAP is thought to trigger autoantibodies. Autoantibodies to brain myelin basic protein (MBP) is a common feature of autism. This article considers the subset of autoimmunity-related autism patients and postulates that MAP, through molecular mimicry to its heat shock protein HSP65, triggers autism by stimulating antibodies that cross react with myelin basic protein (MBP).
Collapse
Affiliation(s)
- Coad Thomas Dow
- UW Eye Research Institute, 445 Henry Mall #307, Madison, WI 53706, United States.
| |
Collapse
|
42
|
Click RE. A 60-day probiotic protocol with Dietzia subsp. C79793-74 prevents development of Johne's disease parameters after in utero and/or neonatal MAP infection. Virulence 2011; 2:337-47. [PMID: 21701254 DOI: 10.4161/viru.2.4.16137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The research reported herein was designed to assess whether the bacterium, Dietzia subspecies C79793-74, used as a probiotic, could prevent development of parameters indicative of bovine paratuberculosis after potential in utero, birthing and neonatal (colostrum) exposure to Mycobacterium avium subspecies paratuberculosis (MAP). Such exposure avenues are especially relevant for dairy farms practicing good management procedures since calves on these farms could be infected via dams that have yet to be identified as MAP-positive. Indeed, of 18 calves in the present study that became paratuberculosis parameter-positive, five had dams that were negative for all parameters pre-calving. Parameters used herein to define paratuberculosis status were serum ELISA, serum agar gel immunodiffusion, cultureable fecal MAP, histopathology at necropsy and clinical disease. Thirty-four newborn calves, whose dams were paratuberculosis-positive, were assigned to four different treatment groups. Ten were treated daily for 60 days with viable Dietzia added to their antibiotic-free milk feedings; none became positive for any parameter with age. In contrast, seven of eight calves that were not treated became positive for one or more paratuberculosis-associated parameter. Sixteen calves were treated with viable Dietzia for the first two days of life; eight were then not treated further, whereas the other eight were treated an additional 58 days with Dietzia added to tetracycline-fortified milk (Dietzia is sensitive to tetracycline). In these two groups, positivity developed in five of eight and six of eight, respectively. These results indicated that (a) a daily, 60-day treatment with viable Dietzia effectively prevented development of parameters indicative of paratuberculosis and (b) this treatment, in combination with good management practices, has the potential to eradicate MAP from animals/herds, which should curtail the spread of MAP. Such results should significantly reduce human exposure to MAP, which in turn, could have relevance for the controversial role of MAP in Crohn's disease, type-1 diabetes mellitus, sarcoidosis, Blau syndrome, ulcerative colitis, irritable bowel syndrome and multiple sclerosis.
Collapse
|
43
|
Cossu A, Rosu V, Paccagnini D, Cossu D, Pacifico A, Sechi LA. MAP3738c and MptD are specific tags of Mycobacterium avium subsp. paratuberculosis infection in type I diabetes mellitus. Clin Immunol 2011; 141:49-57. [PMID: 21664191 DOI: 10.1016/j.clim.2011.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of Johne's disease, a chronic inflammation of ruminants' intestine. Recent studies have linked Map to type I Diabetes mellitus (T1DM). We searched the presence of antibodies against two specific proteins of Map (MptD and MAP3738c) in sera of patients affected by T1DM and type II Diabetes mellitus (T2DM). MptD protein (MAP3733c) has been recognized as a Map virulent factor whereas MAP3738c has not yet been studied. Both proteins are encoded by genes belonging to a Map specific pathogenicity island. Forty three T1DM patients' sera, 56 T2DM patients' sera and 48 healthy subjects' sera were screened by ELISA to evaluate the immunoresponse against MptD or MAP3738c recombinant proteins. Results showed a positive response to both proteins in T1DM patients whereas no difference with controls was found for T2DM patients. Results suggest a potential relation between T1DM and the bacterial infection.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Case-Control Studies
- DNA, Bacterial/genetics
- Diabetes Complications/immunology
- Diabetes Complications/microbiology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/microbiology
- Enzyme-Linked Immunosorbent Assay
- Female
- Genes, Bacterial
- Humans
- Male
- Middle Aged
- Mycobacterium avium subsp. paratuberculosis/genetics
- Mycobacterium avium subsp. paratuberculosis/immunology
- Paratuberculosis/complications
- Paratuberculosis/immunology
- Paratuberculosis/microbiology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Young Adult
Collapse
Affiliation(s)
- Andrea Cossu
- Department of Biomedical Sciences, Division of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Aboagye G, Rowe MT. Occurrence of Mycobacterium avium subsp. paratuberculosis in raw water and water treatment operations for the production of potable water. WATER RESEARCH 2011; 45:3271-3278. [PMID: 21529886 DOI: 10.1016/j.watres.2011.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease of cattle and is implicated as a cause of Crohn's disease in humans. The organism is excreted in animal faeces and can contaminate water catchment areas. This coupled with Map's survival in the environment means that water destined for domestic use may be a source of exposure. This work was designed to determine the occurrence of Map in Lough Neagh (the largest freshwater lake in the British Isles), used as a reservoir, and in two water treatment works (WTW1 and WTW2) which abstract from the lough and which have slow sand filtration (SSF) and dissolved air flotation respectively as their principal treatment regimes. The organism was not detected in lough water samples by culture (n=70) but 29% (20/70) were positive by PCR. In the raw water to WTW1 and WTW2 no culture positives were detected but 54% (13/24) and 58% (14/24) respectively were PCR positive. In WTW1 there were no culture positives at the SSF or final water but 31% (8/26) and 45% (9/20) respectively were PCR positive. In WTW2 similar results were obtained with 26% (6/23) and 48% (11/23) in the floccules and final water respectively. At WTW2 however one culture positive was detected in the final water. This latter finding is of concern. The inability to reach definitive conclusions indicates the need for further research, particularly in the detection methods for viable Map.
Collapse
Affiliation(s)
- G Aboagye
- Food Microbiology, The Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
45
|
Yang JHM, Downes K, Howson JMM, Nutland S, Stevens HE, Walker NM, Todd JA. Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC MEDICAL GENETICS 2011; 12:59. [PMID: 21524304 PMCID: PMC3114708 DOI: 10.1186/1471-2350-12-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 04/27/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Linkage and congenic strain analyses using the nonobese diabetic (NOD) mouse as a model for human type 1 autoimmune diabetes (T1D) have identified several NOD mouse Idd (insulin dependent diabetes) loci, including Slc11a1 (formerly known as Nramp1). Genetic variants in the orthologous region encompassing SLC11A1 in human chromosome 2q35 have been reported to be associated with various immune-related diseases including T1D. Here, we have conducted association analysis of this candidate gene region, and then investigated potential correlations between the most T1D-associated variant and RNA expression of the SLC11A1 gene and its splice isoform. METHODS Nine SNPs (rs2276631, rs2279015, rs1809231, rs1059823, rs17235409 (D543N), rs17235416 (3'UTR), rs3731865 (INT4), rs7573065 (-237 C → T) and rs4674297) were genotyped using TaqMan genotyping assays and the polymorphic promoter microsatellite (GT)n was genotyped using PCR and fragment length analysis. A maximum of 8,863 T1D British cases and 10,841 British controls, all of white European descent, were used to test association using logistic regression. A maximum of 5,696 T1D families were also tested for association using the transmission/disequilibrium test (TDT). We considered P ≤ 0.005 as evidence of association given that we tested nine variants in total. Upon identification of the most T1D-associated variant, we investigated the correlation between its genotype and SLC11A1 expression overall or with splice isoform ratio using 42 PAXgene whole blood samples from healthy donors by quantitative PCR (qPCR). RESULTS Using the case-control collection, rs3731865 (INT4) was identified to be the variant most associated with T1D (P = 1.55 × 10-6). There was also some evidence of association at rs4674297 (P = 1.57 × 10-4). No evidence of disease association was obtained at any of the loci using the family collections (PTDT ≥ 0.13). We also did not observe a correlation between rs3731865 genotypes and SLC11A1 expression overall or with splice isoform expression. CONCLUSION We conclude that rs3731685 (INT4) in the SLC11A1 gene may be associated with T1D susceptibility in the European ancestry population studied. We did not observe a difference in SLC11A1 expression at the RNA level based on the genotypes of rs3731865 in whole blood samples. However, a potential correlation cannot be ruled out in purified cell subsets especially monocytes or macrophages.
Collapse
Affiliation(s)
- Jennie H M Yang
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Click RE. Successful treatment of asymptomatic or clinically terminal bovine Mycobacterium avium subspecies paratuberculosis infection (Johne's disease) with the bacterium Dietzia used as a probiotic alone or in combination with dexamethasone: Adaption to chronic human diarrheal diseases. Virulence 2011; 2:131-43. [PMID: 21460639 DOI: 10.4161/viru.2.2.15647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A naturally occurring gastrointestinal disease, primarily of ruminants (Johne disease), is a chronic debilitating disease that is caused by Mycobacterium avium subspecies paratuberculosis (MAP). MAP infection occurs primarily in utero and in newborns. Outside our Dietzia probiotic treatment, there are no preventive/curative therapies for bovine paratuberculosis. Interestingly, MAP is at the center of controversy as to its role in (cause of) Crohn disease (CD) and more recently, its role in diabetes, ulcerative colitis, and irritable bowel syndrome (IBS); the latter two, like CD, are considered to be a result of chronic intestinal inflammation. Treatments, both conventional and biologic agents, which induce and maintain remission are directed at curtailing processes that are an intricate part of inflammation. Most possess side effects of varying severity, lose therapeutic value, and more importantly, none routinely result in prevention and/or cures. Based on (a) similarities of Johne disease and Crohn disease, (b) a report that Dietzia inhibited growth of MAP under specific culture conditions, and (c) findings that Dietzia when used as a probiotic, (i) was therapeutic for adult bovine paratuberculosis, and (ii) prevented development of disease in MAP-infected calves, the goal of the present investigations was to design protocols that have applicability for IBD patients. Dietzia was found safe for cattle of all ages and for normal and immunodeficient mice. The results strongly warrant clinical evaluation as a probiotic, in combination with/without dexamethasone.
Collapse
|
47
|
Pierce ES. Ulcerative colitis and Crohn's disease: is Mycobacterium avium subspecies paratuberculosis the common villain? Gut Pathog 2010; 2:21. [PMID: 21167058 PMCID: PMC3031217 DOI: 10.1186/1757-4749-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium avium, subspecies paratuberculosis (MAP) causes a chronic disease of the intestines in dairy cows and a wide range of other animals, including nonhuman primates, called Johne's ("Yo-knee's") disease. MAP has been consistently identified by a variety of techniques in humans with Crohn's disease. The research investigating the presence of MAP in patients with Crohn's disease has often identified MAP in the "negative" ulcerative colitis controls as well, suggesting that ulcerative colitis is also caused by MAP. Like other infectious diseases, dose, route of infection, age, sex and genes influence whether an individual infected with MAP develops ulcerative colitis or Crohn's disease. The apparently opposite role of smoking, increasing the risk of Crohn's disease while decreasing the risk of ulcerative colitis, is explained by a more careful review of the literature that reveals smoking causes an increase in both diseases but switches the phenotype from ulcerative colitis to Crohn's disease. MAP as the sole etiologic agent of both ulcerative colitis and Crohn's disease explains their common epidemiology, geographic distribution and familial and sporadic clusters, providing a unified hypothesis for the prevention and cure of the no longer "idiopathic" inflammatory bowel diseases.
Collapse
|
48
|
Stewart LC, Day AS, Pearson J, Barclay ML, Gearry RB, Roberts RL, Bentley RW. SLC11A1 polymorphisms in inflammatory bowel disease and Mycobacterium avium subspecies paratuberculosis status. World J Gastroenterol 2010; 16:5727-5731. [PMID: 21128323 PMCID: PMC2997989 DOI: 10.3748/wjg.v16.i45.5727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To test for association of SLC11A1 with inflammatory bowel disease (IBD) and Mycobacterium avium subspecies paratuberculosis (MAP) status in a Caucasian cohort. METHODS five hundred and seven Crohn's disease (CD) patients, 474 ulcerative colitis (UC) patients, and 569 healthy controls were genotyped for SLC11A1 1730G>A and SLC11A1 469+14G>C using pre-designed TaqMan SNP assays. χ(2) tests were applied to test for association of single nucleotide polymorphisms (SNPs) with disease, and the presence of MAP DNA. RESULTS SLC11A1 1730G>A and SLC11A 1469+14G>C were not associated with CD, UC, or IBD. The SLC11A1 1730A minor allele was over-represented in patients who did not require immunomodulator therapy (P = 0.002, OR: 0.29, 95% CI: 0.13-0.66). The frequency of the SLC11A1 469+14C allele was higher in the subset of study participants who tested positive for MAP DNA (P = 0.02, OR: 1.56, 95% CI: 1.06-2.29). No association of SLC11A1 1730G>A with MAP was observed. CONCLUSION Although SLC11A1 was not associated with IBD, association with MAP suggests that SLC11A1 is important in determining susceptibility to bacteria implicated in the etiology of CD.
Collapse
|
49
|
Dow CT, Ellingson JLE. Detection of Mycobacterium avium ss. Paratuberculosis in Blau Syndrome Tissues. Autoimmune Dis 2010; 2011:127692. [PMID: 21152214 PMCID: PMC2989750 DOI: 10.4061/2010/127692] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 05/01/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022] Open
Abstract
Background and Aim of the Work. Blau syndrome is an inherited granulomatous inflammatory disorder with clinical findings of uveitis, arthritis, and dermatitis. Although rare, Blau syndrome shares features with the more common diseases sarcoidosis and Crohn's disease. The clinical findings of Blau syndrome are indistinguishable from juvenile sarcoidosis; the mutations of Blau syndrome are on the same gene of chromosome 16 (CARD15) that confers susceptibility to Crohn's disease. The product of this gene is part of the innate immune system. Mycobacterium avium ss. paratuberculosis (MAP) is the putative cause of Crohn's disease and has been implicated as a causative agent of sarcoidosis. Methods. Archival tissues of individuals with Blau syndrome were tested for the presence of MAP. Results. DNA evidence of MAP was detected in all of the tissues. Conclusions. This article finds that MAP is present in Blau syndrome tissue and postulates that it has a causal role. The presence of MAP in Blau syndrome—an autosomal dominant, systemic inflammatory disease—connects genetic and environmental aspects of “autoimmune” disease.
Collapse
Affiliation(s)
- C Thomas Dow
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | | |
Collapse
|
50
|
Rani PS, Sechi LA, Ahmed N. Mycobacterium avium subsp. paratuberculosis as a trigger of type-1 diabetes: destination Sardinia, or beyond? Gut Pathog 2010; 2:1. [PMID: 20350307 PMCID: PMC2867798 DOI: 10.1186/1757-4749-2-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/29/2010] [Indexed: 01/15/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a multifactorial autoimmune disease in which the insulin producing beta cell population is destroyed by the infiltrated T lymphocytes. Even though the exact cause of T1DM is yet to be ascertained, varying degree of genetic susceptibility and environmental factors have been linked to the disease progress and outcome. Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate zoonotic pathogen that causes chronic infection of intestines in ruminants, the Johne's disease. MAP that can even survive pasteurization and chlorination has also been implicated to cause similar type of enteritis in humans called Crohn's disease. With the increasing recognition of the link between MAP and Crohn's disease, it has been postulated that MAP is an occult antigen which besides Crohn's could as well be thought to trigger T1DM. Epitope homologies between mycobacterial proteins (Hsp 65) and pancreatic glutamic acid decarboxylase (GAD 65) and infant nutrition studies implicate MAP as one of the triggers for T1DM. PCR and ELISA analyses in diabetic patients from Sardinia suggest that MAP acts as a possible trigger for T1DM. Systematic mechanistic insights are needed to prove this link. Unfortunately, no easy animal model(s) or in-vitro systems are available to decipher the complex immunological network that is triggered in MAP infection leading to T1DM.
Collapse
Affiliation(s)
- Pittu Sandhya Rani
- Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|