1
|
Varghese PM, Kishore U, Rajkumari R. Human C1q Regulates Influenza A Virus Infection and Inflammatory Response via Its Globular Domain. Int J Mol Sci 2022; 23:3045. [PMID: 35328462 PMCID: PMC8949502 DOI: 10.3390/ijms23063045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
The Influenza A virus (IAV) is a severe respiratory pathogen. C1q is the first subcomponent of the complement system's classical pathway. C1q is composed of 18 polypeptide chains. Each of these chains contains a collagen-like region located at the N terminus, and a C-terminal globular head region organized as a heterotrimeric structure (ghA, ghB and ghC). This study was aimed at investigating the complement activation-independent modulation by C1q and its individual recombinant globular heads against IAV infection. The interaction of C1q and its recombinant globular heads with IAV and its purified glycoproteins was examined using direct ELISA and far-Western blotting analysis. The effect of the complement proteins on IAV replication kinetics and immune modulation was assessed by qPCR. The IAV entry inhibitory properties of C1q and its recombinant globular heads were confirmed using cell binding and luciferase reporter assays. C1q bound IAV virions via HA, NA and M1 IAV proteins, and suppressed replication in H1N1, while promoting replication in H3N2-infected A549 cells. C1q treatment further triggered an anti-inflammatory response in H1N1 and pro-inflammatory response in H3N2-infected cells as evident from differential expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Furthermore, C1q treatment was found to reduce luciferase reporter activity of MDCK cells transfected with H1N1 pseudotyped lentiviral particles, indicative of an entry inhibitory role of C1q against infectivity of IAV. These data appear to demonstrate the complement-independent subtype specific modulation of IAV infection by locally produced C1q.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19:120. [PMID: 32762681 PMCID: PMC7409673 DOI: 10.1186/s12943-020-01238-x] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones. The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK cells may overcome such resistance with great promise in both solid and hematological malignancies. In this review, we summarized the fundamental characteristics and recent advances of NK cells within tumor immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-based therapeutic strategies in the era of presicion medicine.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Cahill LA, Guo F, Nguyen J, Zhang F, Seshadri A, Keegan J, Hauser CJ, Otterbein LE, Robson S, Shaefi S, Yaffe MB, Lederer JA. Circulating Factors in Trauma Plasma Activate Specific Human Immune Cell Subsets. Injury 2020; 51:819-829. [PMID: 32171537 PMCID: PMC7441590 DOI: 10.1016/j.injury.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Trauma causes tissue injury that results in the release of damage associated molecular patterns (DAMPs) and other mediators at the site of injury and systemically. Such mediators disrupt immune system homeostasis and may activate multicellular immune responses with downstream complications such as the development of infections and sepsis. To characterize these alterations, we used time-of-flight mass cytometry to determine how trauma plasma affects normal peripheral blood mononuclear cell (PBMC) activation to gain insights into the kinetics and nature of trauma-induced circulating factors on human immune cell populations. A better understanding of the components that activate cells in trauma may aid in the discovery of therapeutic targets. METHODS PBMCs from healthy volunteers were cultured with 5% plasma (healthy, trauma-1day, or trauma-3day) or known DAMPs for 24 h. Samples were stained with a broad immunophenotyping CyTOF antibody panel. Multiplex (Luminex) cytokine assays were used to measure differences in multiple cytokine levels in healthy and trauma plasma samples. RESULTS Plasma from day 1, but not day 3 trauma patients induced the acute expansion of CD11c+ NK cells and CD73+/CCR7+ CD8 T cell subpopulations. Additionally, trauma plasma did not induce CD4+ T cell expansion but did cause a phenotypic shift towards CD38+/CCR7+ expressing CD4+ T cells. Multiplex analysis of cytokines by Luminex showed increased levels of IL-1RA, IL-6 and IL-15 in trauma-1day plasma. Similar to trauma day 1 plasma, PBMC stimulation with known DAMPs showed activation and expansion of CD11c+ NK cells. CONCLUSIONS We hypothesized that circulating factors in trauma plasma would induce phenotypic activation of normal human immune cell subsets. Using an unbiased approach, we identified specific changes in immune cell subsets that respond to trauma plasma. Additionally, CD11c+ NK cells expanded in response to DAMPs and LPS, suggesting they may also be responding to similar components in trauma plasma. Collectively, our data demonstrate that the normal PBMC response to trauma plasma involves marked changes in specific subsets of NK and CD8+ T cell populations. Future studies will target the function of these trauma plasma reactive immune cell subsets. These findings have important implications for the field of acute traumatic injuries.
Collapse
Affiliation(s)
- Laura A Cahill
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fei Guo
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Jennifer Nguyen
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fan Zhang
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Anupamaa Seshadri
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Joshua Keegan
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Carl J Hauser
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Simon Robson
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Shahzad Shaefi
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Michael B Yaffe
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - James A Lederer
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| |
Collapse
|
6
|
Vangeti S, Gertow J, Yu M, Liu S, Baharom F, Scholz S, Friberg D, Starkhammar M, Ahlberg A, Smed-Sörensen A. Human Blood and Tonsil Plasmacytoid Dendritic Cells Display Similar Gene Expression Profiles but Exhibit Differential Type I IFN Responses to Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:2069-2081. [PMID: 30760619 DOI: 10.4049/jimmunol.1801191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Influenza A virus (IAV) infection constitutes an annual health burden across the globe. Plasmacytoid dendritic cells (PDCs) are central in antiviral defense because of their superior capacity to produce type I IFNs in response to viruses. Dendritic cells (DCs) differ depending on their anatomical location. However, only limited host-pathogen data are available from the initial site of infection in humans. In this study, we investigated how human tonsil PDCs, likely exposed to virus because of their location, responded to IAV infection compared with peripheral blood PDCs. In tonsils, unlike in blood, PDCs are the most frequent DC subset. Both tonsil and blood PDCs expressed several genes necessary for pathogen recognition and immune response, generally in a similar pattern. MxA, a protein that renders cells resistant to IAV infection, was detected in both tonsil and blood PDCs. However, despite steady-state MxA expression and contrary to previous reports, at high IAV concentrations (typically cytopathic to other immune cells), both tonsil and blood PDCs supported IAV infection. IAV exposure resulted in PDC maturation by upregulation of CD86 expression and IFN-α secretion. Interestingly, blood PDCs secreted 10-fold more IFN-α in response to IAV compared with tonsil PDCs. Tonsil PDCs also had a dampened cytokine response to purified TLR ligands compared with blood PDCs. Our findings suggest that tonsil PDCs may be less responsive to IAV than blood PDCs, highlighting the importance of studying immune cells at their proposed site of function.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jens Gertow
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Faezzah Baharom
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Saskia Scholz
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Magnus Starkhammar
- Capio Ear, Nose and Throat Clinic Globen, 121 77 Johanneshov, Sweden; and
| | - Alexander Ahlberg
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Huddinge, 141 86 Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden;
| |
Collapse
|
7
|
Vangeti S, Yu M, Smed-Sörensen A. Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus. Front Immunol 2018; 9:1521. [PMID: 30018617 PMCID: PMC6037688 DOI: 10.3389/fimmu.2018.01521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Emerging viruses have become increasingly important with recurrent epidemics. Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contributes significantly to global morbidity and mortality, especially in young children, immunocompromised, and elderly people. IAV infection is typically confined to the airways and the virus replicates in respiratory epithelial cells but can also infect resident immune cells. Clearance of infection requires virus-specific adaptive immune responses that depend on early and efficient innate immune responses against IAV. Mononuclear phagocytes (MNPs), comprising monocytes, dendritic cells, and macrophages, have common but also unique features. In addition to being professional antigen-presenting cells, MNPs mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflammation, and shape immune responses. The immune protection mediated by MNPs can be compromised during IAV infection when the cells are also targeted by the virus, leading to impaired cytokine responses and altered interactions with other immune cells. Furthermore, it is becoming increasingly clear that immune cells differ depending on their anatomical location and that it is important to study them where they are expected to exert their function. Defining tissue-resident MNP distribution, phenotype, and function during acute and convalescent human IAV infection can offer valuable insights into understanding how MNPs maintain the fine balance required to protect against infections that the cells are themselves susceptible to. In this review, we delineate the role of MNPs in the human respiratory tract during IAV infection both in mediating immune protection and as targets of the virus.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
8
|
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host Immune Response to Influenza A Virus Infection. Front Immunol 2018; 9:320. [PMID: 29556226 PMCID: PMC5845129 DOI: 10.3389/fimmu.2018.00320] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
9
|
Ramírez-Ramírez D, Vadillo E, Arriaga-Pizano LA, Mayani H, Estrada-Parra S, Velasco-Velázquez MA, Pérez-Tapia SM, Pelayo R. Early Differentiation of Human CD11c +NK Cells with γδ T Cell Activation Properties Is Promoted by Dialyzable Leukocyte Extracts. J Immunol Res 2016; 2016:4097642. [PMID: 27847830 PMCID: PMC5099461 DOI: 10.1155/2016/4097642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.
Collapse
Affiliation(s)
- Dalia Ramírez-Ramírez
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Lourdes Andrea Arriaga-Pizano
- Immunochemistry Research Unit, Medical Specialties Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Héctor Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| | - Sergio Estrada-Parra
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Marco Antonio Velasco-Velázquez
- Department of Pharmacology, School of Medicine, National Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
- Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenida Cuauhtémoc 330, Colonia Doctores, 06720 Mexico City, Mexico
| |
Collapse
|
10
|
Abstract
Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease.
Collapse
|
11
|
Guilliams M, van de Laar L. A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Front Immunol 2015; 6:406. [PMID: 26322042 PMCID: PMC4531301 DOI: 10.3389/fimmu.2015.00406] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
The classification of mononuclear phagocytes as either dendritic cells or macrophages has been mainly based on morphology, the expression of surface markers, and assumed functional specialization. We have recently proposed a novel classification system of mononuclear phagocytes based on their ontogeny. Here, we discuss the practical application of such a classification system through a number of prototypical examples we have encountered while hitchhiking from one subset to another, across species and between steady-state and inflammatory settings. Finally, we discuss the advantages and drawbacks of such a classification system and propose a number of improvements to move from theoretical concepts to concrete guidelines.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent University , Ghent , Belgium ; Department of Respiratory Medicine, University Hospital Ghent , Ghent , Belgium
| | - Lianne van de Laar
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent University , Ghent , Belgium ; Department of Respiratory Medicine, University Hospital Ghent , Ghent , Belgium
| |
Collapse
|
12
|
Deficient Natural Killer Dendritic Cell Responses Underlay the Induction of Theiler's Virus-Induced Autoimmunity. mBio 2015; 6:e01175. [PMID: 26242630 PMCID: PMC4526717 DOI: 10.1128/mbio.01175-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The initiating events in autoimmune disease remain to be completely understood, but it is thought that genetic predisposition synergizes with “environmental” factors, including viral infection, leading to disease. One elegant animal model used to study the pathogenesis of multiple sclerosis that perfectly blends genetics and environmental components in the context of virus-induced autoimmunity is Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD). TMEV-infected disease-susceptible SJL/J mice develop a persistent central nervous system (CNS) infection and later develop autoimmune demyelination, while disease-resistant C57BL/6 (B6) mice rapidly clear the infection and develop no autoimmune pathology. Mice of the (B6 × SJL/J)F1 cross between these two mouse strains are classified as intermediately susceptible. We employed this model to investigate if rapid virus clearance in B6 versus SJL/J mice was perhaps related to differences in the innate immune response in the CNS of the two strains in the first few days following intracerebral virus inoculation. Here we show that SJL/J mice lack, in addition to NK cells, a novel innate immune subset known as natural killer dendritic cells (NKDCs), which express phenotypic markers (CD11cint NK1.1+) and functional activity of both NK cells and DCs. These NKDCs are activated in the periphery and migrate into the infected CNS in a very late antigen 4 (VLA-4)-dependent fashion. Most significantly, NKDCs are critical for CNS clearance of TMEV, as transfer of NKDCs purified from B6 mice into TMEV-IDD-susceptible (B6 × SJL/J)F1 mice promotes viral clearance. Together the findings of this work show for the first time a link between NKDCs, viral infection, and CNS autoimmunity. Viral infection is an important cofactor, along with genetic susceptibility, in the initiation of a variety of organ-specific autoimmune diseases. Thus, in-depth understanding of how virus infections trigger autoimmunity may lead to novel ways to prevent or treat these diseases. Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD) serves as an important model for the human T cell-mediated autoimmune demyelinating disease multiple sclerosis. Induction of TMEV-IDD is genetically controlled as SJL/J mice develop persistent central nervous system (CNS) infection leading to chronic autoimmune demyelination, while C57BL/6 mice rapidly clear virus and are disease resistant. We determined that, as opposed to resistant B6 mice, disease-susceptible SJL/J mice lacked a unique innate immune population, the natural killer dendritic cell (NKDC), which was shown to play a critical role in early CNS virus clearance via its ability to both present virus antigen to T cells and to lyse target cells.
Collapse
|
13
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
14
|
Abstract
The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field.
Collapse
|
15
|
Neyt K, Lambrecht BN. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol Rev 2014; 255:57-67. [PMID: 23947347 DOI: 10.1111/imr.12100] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viral infections are a common cause of acute respiratory disease. The clinical course of infection and symptoms depend on the viral strain, the health status of the host, and the immunological status of the host. Dendritic cells (DCs) play a crucial role in recognizing and presenting viral antigens and in inducing adaptive immune responses that clear the virus. Because the lung is continuously exposed to the air, the lung is equipped with an elaborate network of DCs to sense incoming foreign pathogens. Increasing knowledge on DC biology has informed us that DCs are not a single cell type. In the steady state lung, three DC subsets can be defined: CD11b(+) or CD103(+) conventional DCs and plasmacytoid DCs. Upon inflammation, inflammatory monocyte-derived DCs are recruited to the lung. It is only recently that tools became available to allow DC subsets to be clearly studied. This review focuses on the activation of DCs and the function of lung DCs in the context of respiratory virus infection and highlights some cautionary points for interpreting older experiments.
Collapse
Affiliation(s)
- Katrijn Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium
| | | |
Collapse
|
16
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
17
|
Yoo JK, Kim TS, Hufford MM, Braciale TJ. Viral infection of the lung: host response and sequelae. J Allergy Clin Immunol 2013; 132:1263-76; quiz 1277. [PMID: 23915713 PMCID: PMC3844062 DOI: 10.1016/j.jaci.2013.06.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023]
Abstract
Because of its essential role in gas exchange and oxygen delivery, the lung has evolved a variety of strategies to control inflammation and maintain homeostasis. Invasion of the lung by pathogens (and in some instances exposure to certain noninfectious particulates) disrupts this equilibrium and triggers a cascade of events aimed at preventing or limiting colonization (and more importantly infection) by pathogenic microorganisms. In this review we focus on viral infection of the lung and summarize recent advances in our understanding of the triggering of innate and adaptive immune responses to viral respiratory tract infection, mechanisms of viral clearance, and the well-recognized consequences of acute viral infection complicating underlying lung diseases, such as asthma.
Collapse
Affiliation(s)
- Jae-Kwang Yoo
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
| | - Matthew M. Hufford
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
- Corresponding author: Thomas J. Braciale, MD, PhD, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
18
|
Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 2013; 6:464-73. [PMID: 23549447 DOI: 10.1038/mi.2013.14] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lung is highly exposed to the external environment. For this reason, the lung needs to handle a number of potential threats present in inhaled air such as viruses or bacteria. Dendritic cells (DCs) and macrophages (MFs) play an important role in orchestrating the immune responses to these challenges. The severe lung inflammation caused by some pathogens poses a unique challenge to the immune system: the potential insult must be eliminated rapidly whereas tissue inflammation must be controlled in order to avoid collateral damages that can lead to acute respiratory failure. Immune responses to infectious agents are initiated and controlled by various populations of antigen-presenting cells with specialized functions, which include conventional DCs (cDCs), monocyte-derived DCs (moDCs), plasmacytoid DCs (pDCs), and alveolar MFs (AMFs). This review will discuss the role of these different cells in responses to pulmonary infections, with a focus on influenza virus and Mycobacterium tuberculosis.
Collapse
|
19
|
Yadava K, Sichelstiel A, Luescher IF, Nicod LP, Harris NL, Marsland BJ. TSLP promotes influenza-specific CD8+ T-cell responses by augmenting local inflammatory dendritic cell function. Mucosal Immunol 2013; 6:83-92. [PMID: 22806096 PMCID: PMC3534170 DOI: 10.1038/mi.2012.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.
Collapse
Affiliation(s)
- K Yadava
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Lausanne, Switzerland
| | - A Sichelstiel
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Lausanne, Switzerland
| | - I F Luescher
- Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | - L P Nicod
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Lausanne, Switzerland
| | - N L Harris
- Global Health Institute, EPFL-SV-GHI Station 19, EPFL, Lausanne, Switzerland
| | - B J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Lausanne, Switzerland,()
| |
Collapse
|
20
|
Souza A, Bonorino C, Muraro S, Rodrigues L. Interleukin-21 expanded NKDC in vitro reduces the B16F10 tumor growth in vivo. Cytokine 2013; 61:154-60. [DOI: 10.1016/j.cyto.2012.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 09/06/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022]
|
21
|
Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions. PLoS One 2012. [PMID: 23189191 PMCID: PMC3506591 DOI: 10.1371/journal.pone.0050238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Severe trauma such as burn injury is often associated with a systemic inflammatory syndrome characterized by a hyperactive innate immune response and suppressed adaptive immune function. Dendritic cells (DCs), which sense pathogens via their Toll-like receptors (TLRs), play a pivotal role in protecting the host against infections. The effect of burn injury on TLR-mediated DC function is a debated topic and the mechanism controlling the purported immunosuppressive response remains to be elucidated. Here we examined the effects of burn injury on splenic conventional DC (cDC) and plasmacytoid DC (pDC) responses to TLR9 activation. We demonstrate that, following burn trauma, splenic cDCs' cytokine production profile in response to TLR9 activation became anti-inflammatory dominant, with high production of IL-10 (>50% increase) and low production of IL-6, TNF-α and IL-12p70 (∼25-60% reduction). CD4+ T cells activated by these cDCs were defective in producing Th1 and Th17 cytokines. Furthermore, burn injury had a more accentuated effect on pDCs than on cDCs. Following TLR9 activation, pDCs displayed an immature phenotype with an impaired ability to secrete pro-inflammatory cytokines (IFN-α, IL-6 and TNF-α) and to activate T cell proliferation. Moreover, cDCs and pDCs from burn-injured mice had low transcript levels of TLR9 and several key molecules of the TLR signaling pathway. Although hyperactive innate immune response has been associated with severe injury, our data show to the contrary that DCs, as a key player in the innate immune system, had impaired TLR9 reactivity, an anti-inflammatory phenotype, and a dysfunctional T cell-priming ability. We conclude that burn injury induced impairments in DC immunobiology resulting in suppression of adaptive immune response. Targeted DC immunotherapies to promote their ability in triggering T cell immunity may represent a strategy to improve immune defenses against infection following burn injury.
Collapse
|
22
|
Abstract
Influenza A virus (IAV) is a dangerous virus equipped with the potential to evoke widespread pandemic disease. The 2009 H1N1 pandemic highlights the urgency for developing effective therapeutics against IAV infection. Vaccination is a major weapon to combat IAV and efforts to improve current regimes are critically important. Here, we will review the role of dendritic cells (DCs), a pivotal cell type in the initiation of robust IAV immunity. The complexity of DC subset heterogeneity in the respiratory tract and lymph node that drains the IAV infected lung will be discussed, together with the varied and in some cases, conflicting contributions of individual DC populations to presenting IAV associated antigen to T cells.
Collapse
Affiliation(s)
- Jason Waithman
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, West Perth, WA, Australia
| | | |
Collapse
|
23
|
Cao W, Taylor AK, Biber RE, Davis WG, Kim JH, Reber AJ, Chirkova T, De La Cruz JA, Pandey A, Ranjan P, Katz JM, Gangappa S, Sambhara S. Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2257-65. [PMID: 22855715 PMCID: PMC11294636 DOI: 10.4049/jimmunol.1200168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myeloid dendritic cells (mDCs) have long been thought to function as classical APCs for T cell responses. However, we demonstrate that influenza viruses induce rapid differentiation of human monocytes into mDCs. Unlike the classic mDCs, the virus-induced mDCs failed to upregulate DC maturation markers and were unable to induce allogeneic lymphoproliferation. Virus-induced mDCs secreted little, if any, proinflammatory cytokines; however, they secreted a substantial amount of chemoattractants for monocytes (MCP-1 and IP-10). Interestingly, the differentiated mDCs secreted type I IFN and upregulated the expression of IFN-stimulated genes (tetherin, IFITM3, and viperin), as well as cytosolic viral RNA sensors (RIG-I and MDA5). Additionally, culture supernatants from virus-induced mDCs suppressed the replication of virus in vitro. Furthermore, depletion of monocytes in a mouse model of influenza infection caused significant reduction of lung mDC numbers, as well as type I IFN production in the lung. Consequently, increased lung virus titer and higher mortality were observed. Taken together, our results demonstrate that the host responds to influenza virus infection by initiating rapid differentiation of circulating monocytes into IFN-producing mDCs, which contribute to innate antiviral immune responses.
Collapse
Affiliation(s)
- Weiping Cao
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 2012; 12:295-305. [PMID: 22402670 PMCID: PMC3364025 DOI: 10.1038/nri3166] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The respiratory tract is a major portal of entry for viruses into the body. Infection of the respiratory tract can, if severe, induce life-threatening damage to the lungs. Various strategies to control virus replication and to limit immune-mediated inflammation and tissue injury have evolved in the respiratory tract. Multiple innate immune cell types, particularly dendritic cells (DCs), within the pulmonary interstitium and between airway epithelial cells are strategically poised to recognize and sample airway particulates, such as viruses. In response to respiratory virus infection, several distinct DC subsets are stimulated to migrate from the site of infection in the lungs to the draining lymph nodes. Here, these migrant DCs have a crucial role in initiating the antivirus adaptive immune response to the invading viruses. After entering the infected lungs, effector T cells that were generated in the lymph nodes undergo further modifications that are shaped by the inflammatory milieu. Co-stimulatory receptor–ligand interactions between effector T cells and various cell types presenting viral antigens in the infected lungs modulate the host adaptive immune response in situ. Effector T cells that produce pro-inflammatory mediators are also the major producers of regulatory (anti-inflammatory) cytokines, providing a fine-tuning mechanism of self-control by effector T cells responding to viruses in the inflamed tissue. The immune mechanisms that control virus replication and/or excessive inflammation in the virus-infected lungs can also predispose the individual recovering from a virus infection to bacterial superinfection. Therapeutic strategies should consider balancing the need to inhibit virus replication and excessive inflammation with the need to optimize the antibacterial functions of innate immune phagocytes, which are crucial for clearing the bacteria from the lungs.
This article reviews the interplay between innate and adaptive immune cells in the response to viral infection of the lower respiratory tract and describes the fine-tuning mechanisms that control antiviral T cells in the lungs but that can also predispose an individual to subsequent pulmonary bacterial infections. Recent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.
Collapse
Affiliation(s)
- Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
26
|
Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 2012; 30:243-70. [PMID: 22224777 DOI: 10.1146/annurev-immunol-020711-075021] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lung dendritic cells (DCs) bridge innate and adaptive immunity, and depending on context, they also induce a Th1, Th2, or Th17 response to optimally clear infectious threats. Conversely, lung DCs can also mount maladaptive Th2 immune responses to harmless allergens and, in this way, contribute to immunopathology. It is now clear that the various aspects of DC biology can be understood only if we take into account the functional specializations of different DC subsets that are present in the lung in homeostasis or are attracted to the lung as part of the inflammatory response to inhaled noxious stimuli. Lung DCs are heavily influenced by the nearby epithelial cells, and a model is emerging whereby direct communication between DCs and epithelial cells determines the outcome of the pulmonary immune response. Here, we have approached DC biology from the perspective of viral infection and allergy to illustrate these emerging concepts.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Molecular Biomedical Research, VIB, 9052 Ghent, Belgium.
| | | |
Collapse
|
27
|
Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol 2011; 4:682-94. [PMID: 21881572 DOI: 10.1038/mi.2011.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c+ CD11b+ inflammatory dendritic cell and CD8α+ plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.
Collapse
|
28
|
Huarte E, Rynda-Apple A, Riccardi C, Skyberg JA, Golden S, Rollins MF, Ramstead AG, Jackiw LO, Maddaloni M, Pascual DW. Tolerogen-induced interferon-producing killer dendritic cells (IKDCs) protect against EAE. J Autoimmun 2011; 37:328-41. [PMID: 22018711 DOI: 10.1016/j.jaut.2011.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/13/2011] [Accepted: 09/17/2011] [Indexed: 11/15/2022]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) have been shown to link the innate and adaptive immune systems. Likewise, a new innate cell subset, interferon-producing killer DCs (IKDCs), shares phenotypic and functional characteristics with both DCs and NK cells. Here, we show IKDCs play an essential role in the resolution of experimental autoimmune encephalomyelitis (EAE) upon treatment with the tolerizing agent, myelin oligodendrocyte glycoprotein (MOG), genetically fused to reovirus protein σ1 (termed MOG-pσ1). Activated IKDCs were recruited subsequent MOG-pσ1 treatment of EAE, and disease resolution was abated upon NK1.1 cell depletion. These IKDCs were able to kill activated CD4(+) T cells and mature dendritic DCs, thus, contributing to EAE remission. In addition, IKDCs were responsible for MOG-pσ1-mediated MOG-specific regulatory T cell recruitment to the CNS. The IKDCs induced by MOG-pσ1 expressed elevated levels of HVEM for interactions with cognate ligand-positive cells: LIGHT(+) NK and T(eff) cells and BTLA(+) B cells. Further characterization revealed these activated IKDCs being MHC class II(high), and upon their adoptive transfer (CD11c(+)NK1.1(+)MHC class II(high)), IKDCs, but not CD11c(+)NK1.1(+)MHC class II(intermediate/low) (unactivated) cells, conferred protection against EAE. These activated IKDCs showed enhanced CD107a, PD-L1, and granzyme B expression and could present OVA, unlike unactivated IKDCs. Thus, these results demonstrate the interventional potency induced HVEM(+) IKDCs to resolve autoimmune disease.
Collapse
Affiliation(s)
- Eduardo Huarte
- Department of Immunology and Infectious Diseases, Montana State University, 960 Technology Blvd., Bozeman, MT 59718, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Beli E, Clinthorne JF, Duriancik DM, Hwang I, Kim S, Gardner EM. Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev 2011; 132:503-10. [PMID: 21893080 DOI: 10.1016/j.mad.2011.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/19/2011] [Accepted: 08/20/2011] [Indexed: 11/16/2022]
Abstract
Influenza is a public health concern, especially for the elderly. While influenza vaccination is efficacious in the young, it offers only limited protection in the elderly. Thus, it becomes imperative to understand age-related changes in the primary response to influenza infection. This study identified potential age-related defects in natural killer (NK) cell function during influenza infection. We showed that NK cells from aged mice were reduced and had impaired function and altered phenotype in lungs during influenza infection. Aged NK cells demonstrated decreased IFN-γ production, but not degranulation, after influenza infection. However, after ex vivo activation with YAC-1 cells, aged NK cells demonstrated both reduced IFN-γ production and degranulation. IFN-γ was also reduced in aged NK cells after activation with anti-NKp46 and soluble cytokines. IFN-β, and IL-12p40 mRNA expression was not significantly different from that observed in adult mice. Analysis of NK cell subsets indicated that aged mice had more immature and less terminally mature NK cells. These data suggest that aging affects the numbers, function and phenotype of NK cells. Thus, these defects in NK cell function could impair the ability of aged mice to induce a strong antiviral immune response during the early stages of the infection.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | | | | | | | |
Collapse
|
31
|
Powell ND, Mays JW, Bailey MT, Hanke ML, Sheridan JF. Immunogenic dendritic cells primed by social defeat enhance adaptive immunity to influenza A virus. Brain Behav Immun 2011; 25:46-52. [PMID: 20656014 PMCID: PMC2991426 DOI: 10.1016/j.bbi.2010.07.243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/12/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022] Open
Abstract
Dendritic cells (DCs) sample their surrounding microenvironment and consequently send immunogenic or regulatory signals to T cells during DC/T cell interactions, shaping the primary adaptive immune response to infection. The microenvironment resulting from repeated social defeat increases DC co-stimulatory molecule expression and primes DCs for enhanced cytokine responses in vitro. In this study, we show that social disruption stress (SDR) results in the generation of immunogenic DCs, capable of conferring enhanced adaptive immunity to influenza A/PR/8/34 infection. Mice infected with influenza A/PR/8/34 virus 24 h after the adoptive transfer of DCs from SDR mice had significantly increased numbers of D(b)NP(366-74)CD8(+) T cells, increased IFN-γ and IFN-α mRNA, and decreased influenza M1 mRNA expression in the lung during the peak primary response (9 days post-infection), compared to mice that received DCs from naïve mice. These data demonstrate that repeated social defeat is a significant environmental influence on immunogenic DC activation and function.
Collapse
Affiliation(s)
- Nicole D. Powell
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Jacqueline W. Mays
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Michael T. Bailey
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Mark L. Hanke
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - John F. Sheridan
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.,Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine. The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Plantinga M, Hammad H, Lambrecht BN. Origin and functional specializations of DC subsets in the lung. Eur J Immunol 2010; 40:2112-8. [PMID: 20853496 DOI: 10.1002/eji.201040562] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung DC bridge innate and adaptive immunity, and depending on the context, induce Th1, Th2 or Th17 response, to optimally clear infections. Conversely, lung DC can also prevent overt and harmful immune responses to harmless inhaled antigens via induction of Treg cells or via induction of neutralizing mucosal IgA antibodies. Here, we propose that these functions are not the result of a single population of DC, and instead, subsets of DC perform specialized functions.
Collapse
Affiliation(s)
- Maud Plantinga
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Respiratory Diseases, Ghent University, Belgium
| | | | | |
Collapse
|
33
|
Abstract
Lung dendritic cells bridge innate and adaptive immunity, integrating a variety of stimuli from allergens, microbial colonisation, environmental pollution, and innate immune cells into a signal for T lymphocytes of the adaptive immune system. Dendritic cells have a pivotal role in the activation of T helper (Th) 2 cells and allergic inflammation. Lung dendritic cells can also prevent harmful immune responses to innocuous inhaled antigens via induction of regulatory T cells or Th1 cells. In our Review, we discuss how understanding the biology of dendritic cells is crucial for understanding the interaction between allergens, the environment, and genetics, and focus on how dendritic cells conspire with airway epithelial cells and innate pro-Th2 cells to cause allergic sensitisation and asthma.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium.
| | | |
Collapse
|
34
|
Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, Rello J, Almansa R, Ramírez P, Martin-Loeches I, Varillas D, Gallegos MC, Serón C, Micheloud D, Gomez JM, Tenorio-Abreu A, Ramos MJ, Molina ML, Huidobro S, Sanchez E, Gordón M, Fernández V, Del Castillo A, Marcos MA, Villanueva B, López CJ, Rodríguez-Domínguez M, Galan JC, Cantón R, Lietor A, Rojo S, Eiros JM, Hinojosa C, Gonzalez I, Torner N, Banner D, Leon A, Cuesta P, Rowe T, Kelvin DJ. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R201. [PMID: 20003352 PMCID: PMC2811892 DOI: 10.1186/cc8208] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/03/2009] [Accepted: 12/11/2009] [Indexed: 12/29/2022]
Abstract
Introduction Human host immune response following infection with the new variant of A/H1N1 pandemic influenza virus (nvH1N1) is poorly understood. We utilize here systemic cytokine and antibody levels in evaluating differences in early immune response in both mild and severe patients infected with nvH1N1. Methods We profiled 29 cytokines and chemokines and evaluated the haemagglutination inhibition activity as quantitative and qualitative measurements of host immune responses in serum obtained during the first five days after symptoms onset, in two cohorts of nvH1N1 infected patients. Severe patients required hospitalization (n = 20), due to respiratory insufficiency (10 of them were admitted to the intensive care unit), while mild patients had exclusively flu-like symptoms (n = 15). A group of healthy donors was included as control (n = 15). Differences in levels of mediators between groups were assessed by using the non parametric U-Mann Whitney test. Association between variables was determined by calculating the Spearman correlation coefficient. Viral load was performed in serum by using real-time PCR targeting the neuraminidase gene. Results Increased levels of innate-immunity mediators (IP-10, MCP-1, MIP-1β), and the absence of anti-nvH1N1 antibodies, characterized the early response to nvH1N1 infection in both hospitalized and mild patients. High systemic levels of type-II interferon (IFN-γ) and also of a group of mediators involved in the development of T-helper 17 (IL-8, IL-9, IL-17, IL-6) and T-helper 1 (TNF-α, IL-15, IL-12p70) responses were exclusively found in hospitalized patients. IL-15, IL-12p70, IL-6 constituted a hallmark of critical illness in our study. A significant inverse association was found between IL-6, IL-8 and PaO2 in critical patients. Conclusions While infection with the nvH1N1 induces a typical innate response in both mild and severe patients, severe disease with respiratory involvement is characterized by early secretion of Th17 and Th1 cytokines usually associated with cell mediated immunity but also commonly linked to the pathogenesis of autoimmune/inflammatory diseases. The exact role of Th1 and Th17 mediators in the evolution of nvH1N1 mild and severe disease merits further investigation as to the detrimental or beneficial role these cytokines play in severe illness.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- National Centre of Influenza, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|