1
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|
2
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
3
|
Gao F, Tu L, Chen M, Chen H, Zhang X, Zhuang Y, Luo J, Chen M. Erythromycin resistance of clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front Microbiol 2023; 14:1145581. [PMID: 37260688 PMCID: PMC10229067 DOI: 10.3389/fmicb.2023.1145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023] Open
Abstract
Campylobacter species are zoonotic pathogens, as well as the prevalent cause of foodborne bacterial gastroenteritis. The spread of antimicrobial-resistant strains poses a serious threat to global public health and attracts attention worldwide, but information about clinical Campylobacter is relatively limited compared to isolates from food and animals. The current study illustrated the prevalence and antimicrobial resistance profiles of Campylobacter jejuni and Campylobacter coli isolates collected from a consecutive surveillance program between 2012 and 2019 in Shanghai, China, using antimicrobial susceptibility testing and whole-genome sequencing. Among the 891 Campylobacter strains (761 C. jejuni and 130 C. coli) isolates collected, high portions above 90% of resistance to ciprofloxacin, nalidixic acid, and tetracycline were observed for both C. jejuni and C. coli. The most common MDR profiles represented by C. jejuni and C. coli were combination of ciprofloxacin, tetracycline, florfenicol and nalidixic acid (5.39%), and azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, nalidixic acid (28.46%), respectively. The erythromycin resistance of C. coli (59.23%) is higher than C. jejuni (2.50%). A total of 76 erythromycin resistant isolates (16 C. jejuni and 60 C. coli) were sequenced using Illumina platform for determining the genotypes, antimicrobial resistance patterns and phylogeny analysis. Multilocus sequence typing (MLST) analysis showed a high genetic diversity with 47 sequence types (STs), including 4 novel alleles and 12 new STs. The most abundant clonal complexes (CCs) were CC-403 (31.25%) and CC-828 (88.33%) for C. jejuni and C. coli, respectively. Among the 76 erythromycin-resistant isolates, mutation A2075G in 23S rRNA and erm(B) gene were detected in 53.95 and 39.47%, respectively. The erm(B) gene was identified exclusively in 30 C. coli isolates. All these erm(B) positive isolates were multi-drug resistant. Furthermore, comparison of the erm(B)-carrying isolates of multiple sources worldwide demonstrated the possibility of zoonotic transmission of erm(B) in Campylobacter. These findings highlight the importance of continuous surveillance of erythromycin resistance dissemination in Campylobacter which may compromise the effectiveness of antimicrobial therapy.
Collapse
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lihong Tu
- Department of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongyou Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
4
|
Quino W, Caro-Castro J, Mestanza O, Hurtado V, Zamudio ML, Cruz-Gonzales G, Gavilan RG. Emergence and Molecular Epidemiology of Campylobacter jejuni ST-2993 Associated with a Large Outbreak of Guillain-Barré Syndrome in Peru. Microbiol Spectr 2022; 10:e0118722. [PMID: 35972275 PMCID: PMC9603473 DOI: 10.1128/spectrum.01187-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni infection is considered the most frequent factor associated with Guillain-Barré syndrome (GBS). In 2019, a large outbreak of GBS was detected in Peru, being associated with C. jejuni detected in stool samples from these patients. The aim of this study was to determine the molecular epidemiology of C. jejuni strains (ST-2993) associated with a large GBS outbreak in Peru. In this study, 26 C. jejuni strains belonging to the ST-2293, obtained from 2019 to 2020, were sequenced using Illumina technology. Five low-quality sequences were removed using bioinformatics, and 21 genomes (17 clinical strains and 4 chicken strains) were considered in the phylogenetic analysis and comparative genomics. Phylogenetic reconstruction, including genomes from international databases, showed a connection between Peruvian and Chinese GBS strains, both of them having lipooligosaccharides (LOS) locus genes related to molecular mimicry with gangliosides in peripheral nerves. Also, ST-2993 was detected in Amazon strains recovered many years before the 2019 outbreak, but with no epidemiological connection with GBS. Besides, a close relationship between human and chicken C. jejuni strains indicated chicken as one of the probable reservoirs. Finally, comparative genomics revealed differences between Chinese and Peruvian strains, including the presence of a prophage inserted into the genome. In conclusion, C. jejuni ST-2993 strains recovered from the GBS outbreak are closely related to Peruvian Amazon strains. Moreover, ST-2993 has been circulated in Peru since 2003 in the Peruvian Amazonia, showing the necessity to reinforce the epidemiological surveillance of C. jejuni to improve the prevention and control of future GBS outbreaks. IMPORTANCE This article describes the molecular epidemiology of C. jejuni strains (ST-2993) associated with a large Guillain-Barré Syndrome (GBS) outbreak in Peru, sequencing several strains recovered from GBS patients and chickens from 2019 to 2020. Phylogenetic analysis showed a connection between Peruvian and Chinese GBS strains, both of them having lipooligosaccharides (LOS) locus genes related to molecular mimicry with gangliosides in peripheral nerves. Also, ST-2993 strains were detected in isolates recovered many years before the 2019 outbreak, but with no epidemiological connection with GBS. Besides, a close relationship between human and chicken strains indicated those animals as a probable reservoir. This information will help to understand the real situation of GBS in Peru and its causal agent, C. jejuni ST-2993, showing the necessity to increase epidemiological tracking of these kinds of pathogens to detect them and avoid GBS outbreaks in the future.
Collapse
Affiliation(s)
- Willi Quino
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
- Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal, Lima, Perú
| | - Junior Caro-Castro
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
| | - Orson Mestanza
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
| | - Verónica Hurtado
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
| | - María Luz Zamudio
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
| | - Gloria Cruz-Gonzales
- Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal, Lima, Perú
| | - Ronnie G. Gavilan
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Perú
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| |
Collapse
|
5
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
6
|
Hameed A, Ketley JM, Woodacre A, Machado LR, Marsden GL. Molecular and in silico typing of the lipooligosaccharide biosynthesis gene cluster in Campylobacter jejuni and Campylobacter coli. PLoS One 2022; 17:e0265585. [PMID: 35358234 PMCID: PMC8970381 DOI: 10.1371/journal.pone.0265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
The extensive genetic variation in the lipooligosaccharide (LOS) core biosynthesis gene cluster has led to the development of a classification system; with 8 classes (I-VIII) for Campylobacter coli (C. coli) LOS region and with 23 classes (A-W) or four groups (1–4) for Campylobacter jejuni (C. jejuni) LOS region. PCR based LOS locus type identification for C. jejuni clinical isolates from a UK hospital as well as in silico LOS locus analysis for C. jejuni and C. coli genome sequences from GenBank was carried out to determine the frequencies of various LOS genotypes in C. jejuni and C. coli. Analysis of LOS gene content in 60 clinical C. jejuni isolates and 703 C. jejuni genome sequences revealed that class B (Group 1) was the most abundant LOS class in C. jejuni. The hierarchy of C. jejuni LOS group prevalence (group 1 > group 2 > group 3 > group 4) as well as the hierarchy of the frequency of C. jejuni LOS classes present within the group 1 (B > C > A > R > M > V), group 2 (H/P > O > E > W), group 3 (F > K > S) and group 4 (G > L) was identified. In silico analysis of LOS gene content in 564 C. coli genome sequences showed class III as the most abundant LOS locus type in C. coli. In silico analysis of LOS gene content also identified three novel LOS types of C. jejuni and previously unknown LOS biosynthesis genes in C. coli LOS locus types I, II, III, V and VIII. This study provides C. jejuni and C. coli LOS loci class frequencies in a smaller collection of C. jejuni clinical isolates as well as within the larger, worldwide database of C. jejuni and C. coli.
Collapse
Affiliation(s)
- Amber Hameed
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexandra Woodacre
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lee R. Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | | |
Collapse
|
7
|
Zang X, Lv H, Tang H, Jiao X, Huang J. Capsular Genotype and Lipooligosaccharide Class Associated Genomic Characterizations of Campylobacter jejuni Isolates From Food Animals in China. Front Microbiol 2021; 12:775090. [PMID: 34950120 PMCID: PMC8690235 DOI: 10.3389/fmicb.2021.775090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the leading causative agent of gastroenteritis and Guillain–Barré syndrome (GBS). Capsular polysaccharide (CPS) and lipooligosaccharide (LOS) contribute to the susceptibility of campylobacteriosis, which have been concern the major evaluation indicators of C. jejuni isolates from clinical patients. As a foodborne disease, food animal plays a primary role in the infection of campylobacteriosis. To assess the pathogenic characterizations of C. jejuni isolates from various ecological origins, 1609 isolates sampled from 2005 to 2019 in China were analyzed using capsular genotyping. Strains from cattle and poultry were further characterized by LOS classification and multilocus sequence typing (MLST), compared with the isolates from human patients worldwide with enteritis and GBS. Results showed that the disease associated capsular genotypes and LOS classes over-represented in human isolates were also dominant in animal isolates, especially cattle isolates. Based on the same disease associated capsular genotype, more LOS class types were represented by food animal isolates than human disease isolates. Importantly, high-risk lineages CC-22, CC-464, and CC-21 were found dominated in human isolates with GBS worldwide, which were also represented in the food animal isolates with disease associated capsular types, suggesting a possibility of clonal spread of isolates across different regions and hosts. This is the first study providing genetic evidence for food animal isolates of particular capsular genotypes harbor similar pathogenic characteristics to human clinical isolates. Collective efforts for campylobacteriosis hazard control need to be focused on the zoonotic pathogenicity of animal isolates, along the food chain “from farm to table.”
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongyue Lv
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
8
|
Heikema AP, Strepis N, Horst-Kreft D, Huynh S, Zomer A, Kelly DJ, Cooper KK, Parker CT. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb Genom 2021; 7. [PMID: 34723785 PMCID: PMC8743553 DOI: 10.1099/mgen.0.000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni strains that produce sialylated lipooligosaccharides (LOS) can cause the immune-mediated disease Guillain-Barré syndrome (GBS). The risk of GBS after infection with C. jejuni Penner serotype HS:19 is estimated to be at least six times higher than the average risk. Aside from LOS biosynthesis genes, genomic characteristics that promote an increased risk for GBS following C. jejuni HS:19 infection, remain uncharacterized. We hypothesized that strains with the HS:19 serotype have unique genomic features that explain the increased risk for GBS. We performed genome sequencing, alignments, single nucleotide polymorphisms' analysis and methylome characterization on a subset, and pan-genome analysis on a large number of genomes to compare HS:19 with non-HS:19 C. jejuni genome sequences. Comparison of 36 C. jejuni HS:19 with 874 C. jejuni non-HS:19 genome sequences led to the identification of three single genes and ten clusters containing contiguous genes that were significantly associated with C. jejuni HS:19. One gene cluster of seven genes, localized downstream of the capsular biosynthesis locus, was related to sulphation of biomolecules. This cluster also encoded the campylobacter sialyl transferase Cst-I. Interestingly, sulphated bacterial biomolecules such as polysaccharides can promote immune responses and, therefore, (in the presence of sialic acid) may play a role in the development of GBS. Additional gene clusters included those involved in persistence-mediated pathogenicity and gene clusters involved in restriction-modification systems. Furthermore, characterization of methylomes of two HS:19 strains exhibited novel methylation patterns (5′-CATG-3 and 5′-m6AGTNNNNNNRTTG-3) that could differentially effect gene-expression patterns of C. jejuni HS:19 strains. Our study provides novel insight into specific genetic features and possible virulence factors of C. jejuni associated with the HS:19 serotype that may explain the increased risk of GBS.
Collapse
Affiliation(s)
- Astrid P. Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
- *Correspondence: Astrid P. Heikema,
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Deborah Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
- *Correspondence: Craig T. Parker,
| |
Collapse
|
9
|
Campylobacter jejuni in Different Canine Populations: Characteristics and Zoonotic Potential. Microorganisms 2021; 9:microorganisms9112231. [PMID: 34835357 PMCID: PMC8618475 DOI: 10.3390/microorganisms9112231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
With most epidemiological studies focused on poultry, dogs are often overlooked as a reservoir of Campylobacter, even though these animals maintain close daily contact with humans. The present study aimed to obtain a first insight into the presence and characteristics of Campylobacter spp. in different canine populations in Portugal, and to evaluate its zoonotic potential through genomic analysis. From a total of 125 rectal swabs collected from companion (n = 71) and hunting dogs (n = 54) living in two different settings, rural (n = 75) and urban (n = 50), 32 Campylobacter spp. isolates were obtained. Four different Campylobacter species were identified by Multiplex PCR and MALDI-TOF mass spectrometry, of which Campylobacter jejuni (n = 14, 44%) was overall the most frequently found species. Relevant resistance phenotypes were detected in C. jejuni, with 93% of the isolates being resistant to ciprofloxacin, 64% to tetracycline, and 57% to ampicillin, and three isolates being multi-drug-resistant. Comparison of the phenotypic and genotypic traits with human isolates from Portuguese patients revealed great similarity between both groups. Particularly relevant, the wgMLST analysis allowed the identification of isolates from human and dogs without any apparent epidemiological relationship, sharing high genetic proximity. Notwithstanding the limited sample size, considering the high genomic diversity of C. jejuni, the genetic overlap between human and dog strains observed in this study confirmed that the occurrence of this species in dogs is of public health concern, reinforcing the call for a One Health approach.
Collapse
|
10
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Clarke TN, Schilling MA, Melendez LA, Isidean SD, Porter CK, Poly FM. A systematic review and meta-analysis of Penner serotype prevalence of Campylobacter jejuni in low- and middle-income countries. PLoS One 2021; 16:e0251039. [PMID: 33951106 PMCID: PMC8099051 DOI: 10.1371/journal.pone.0251039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/17/2021] [Indexed: 01/18/2023] Open
Abstract
Introduction While Campylobacter jejuni is a leading foodborne bacterial pathogen worldwide, it poses a particular risk to susceptible populations in low- and middle-income countries (LMICs). A capsule-conjugate vaccine approach has been proposed as a potential solution, but little information exists on circulating C. jejuni capsule types in LMICs. The capsule is the major serodeterminant of the Penner typing scheme, which is based on serum recognition of Campylobacter heat-stable antigens. We conducted a systematic review and meta-analysis to estimate the distribution of Penner serotypes associated with C. jejuni enteritis in LMICs. Vaccine coverage assessments for hypothetical regional and global C. jejuni vaccines were also estimated. Methods A systematic review of the literature published from 1980 to 2019 was performed using PubMed, Scopus, and Web of Science databases. Articles were assessed for eligibility and data were abstracted. Pooled C. jejuni serotype prevalence in LMICs was estimated by region and globally using random-effects models. Results A total of 36 studies were included, capturing 4,434 isolates from LMICs. Fifteen serotypes were present in a sufficient number of studies to be included in analyses. Among these, HS4c was the most common serotype globally (12.6%), though leading capsule types varied among regions. HS2, HS3c, HS4c, HS5/31, HS8/17, and HS10 were all among the 10 most common region-specific serotypes. Conclusions The results of this review suggest that an octavalent vaccine could provide up to 66.9% coverage of typable strains worldwide, and 56.8–69.0% regionally. This review also highlights the paucity of available data on capsules in LMICs; more testing is needed to inform vaccine development efforts.
Collapse
Affiliation(s)
- Tegan N. Clarke
- General Dynamics Information Technology, Silver Spring, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Megan A. Schilling
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca A. Melendez
- George Washington University School of Public Health, Washington, DC, United States of America
| | - Sandra D. Isidean
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Chad K. Porter
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Frédéric M. Poly
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
Draft Genome Sequences of Three Strains of Campylobacter jejuni Isolated from Patients with Guillain-Barré Syndrome in Bangladesh. Microbiol Resour Announc 2021; 10:10/17/e00005-21. [PMID: 33927026 PMCID: PMC8086200 DOI: 10.1128/mra.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is the pathogen most commonly associated with Guillain-Barré syndrome (GBS). The present work describes the draft genome sequences of 3 C. jejuni strains, BD39, BD67, and BD75, isolated from stool specimens of C. jejuni-triggered patients with GBS using Illumina technologies. Campylobacter jejuni is the pathogen most commonly associated with Guillain-Barré syndrome (GBS). The present work describes the draft genome sequences of 3 C. jejuni strains, BD39, BD67, and BD75, isolated from stool specimens of patients with C. jejuni-triggered GBS using Illumina technologies.
Collapse
|
13
|
Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108. [PMID: 33485317 PMCID: PMC7824915 DOI: 10.1186/s12879-021-05778-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni) is a leading cause of acute gastroenteritis in human worldwide. The aim of study was to assess the distribution of sialylated lipooligosaccharide (LOS) classes and capsular genotypes in C. jejuni isolated from Iranian children with gastroenteritis. Furthermore, the level of dnaK gene expression in C. jejuni strains with selected capsular genotypes and LOS classes was intended. Moreover, a comprehensive study of C. jejuni MLST-genotypes and inclusive comparison with peer sequences worldwide was intended. METHODS Twenty clinical C. jejuni strains were isolated from fecal specimens of 280 children aged 0-5 years, suspected of bacterial gastroenteritis, which admitted to 3 children hospitals from May to October, 2018. Distribution of sialylated LOS classes and specific capsular genotypes were investigated in C. jejuni of clinical origin. The expression of dnaK in C. jejuni strains was measured by Real-Time-PCR. MLST-genotyping was performed to investigate the clonal relationship of clinical C. jejuni strains and comparison with inclusive sequences worldwide. RESULTS C. jejuni HS23/36c was the predominant genotype (45%), followed by HS2 (20%), and HS19 and HS4 (each 10%). A total of 80% of isolates were assigned to LOS class B and C. Higher expression level of dnaK gene was detected in strains with HS23/36c, HS2 and HS4 capsular genotypes and sialylated LOS classes B or C. MLST analysis showed that isolates were highly diverse and represented 6 different sequence types (STs) and 3 clonal complexes (CCs). CC21 and CC257 were the most dominant CCs (75%) among our C. jejuni strains. No new ST and no common ST with our neighbor countries was detected. CONCLUSIONS The C. jejuni isolates with LOS class B or C, and capsular genotypes of HS23/36, HS2, HS4 and HS19 were dominant in population under study. The CC21 and CC257 were the largest CCs among our isolates. In overall picture, CC21 and CC353 complexes were the most frequently and widely distributed clonal complexes worldwide, although members of CC353 were not detected in our isolates. This provides a universal picture of movement of dominant Campylobacter strains worldwide.
Collapse
Affiliation(s)
- Mahnaz Sarhangi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Shahin Najar Peeraeyeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| |
Collapse
|
14
|
Hameed A, Woodacre A, Machado LR, Marsden GL. An Updated Classification System and Review of the Lipooligosaccharide Biosynthesis Gene Locus in Campylobacter jejuni. Front Microbiol 2020; 11:677. [PMID: 32508756 PMCID: PMC7248181 DOI: 10.3389/fmicb.2020.00677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Lipooligosaccharide (LOS) is an integral component of the Campylobacter cell membrane with a structure of core oligosaccharides forming inner and outer core regions and a lipid A moiety. The gene content of the LOS core biosynthesis cluster exhibits extensive sequence variation, which leads to the production of variable cell surface LOS structures in Campylobacter. Some LOS outer core molecules in Campylobacter jejuni are molecular mimics of host structures (such as neuronal gangliosides) and are thought to trigger neuronal disorders (particularly Guillain–Barré syndrome and Miller Fisher syndrome) in humans. The extensive genetic variation in the LOS biosynthesis gene cluster, a majority of which occurs in the LOS outer core biosynthesis gene content present between lgtF and waaV, has led to the development of a classification system with 23 classes (A–W) and four groups (1–4) for the C. jejuni LOS region. This review presents an updated and simplified classification system for LOS typing alongside an overview of the frequency of C. jejuni LOS biosynthesis genotypes and structures in various C. jejuni populations.
Collapse
Affiliation(s)
- Amber Hameed
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Alexandra Woodacre
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Lee R Machado
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | | |
Collapse
|
15
|
Detection, Identification, and Antimicrobial Susceptibility of Campylobacter spp. and Salmonella spp. from Free-ranging Nonhuman Primates in Sri Lanka. J Wildl Dis 2019. [PMID: 31021685 DOI: 10.7589/2018-08-199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infections with Campylobacter spp. and Salmonella spp. are the most frequently reported causes of human bacterial enteritis. Warm-blooded animals, including livestock, pets, and wildlife, can be carriers of the bacteria and may contaminate the environment and food products. The present study investigated the occurrence of Campylobacter spp. and Salmonella spp. in fecal pat samples from free-ranging toque macaques (Macaca sinica) and tufted gray langurs (Semnopithecus priam) collected in March-May 2015 in Sri Lanka. In 58 samples from toque macaques, Campylobacter jejuni was isolated in 10 (17%), Campylobacter coli in four (7%), and Salmonella enterica subsp. enterica serovar Virchow in two (3%). None of the bacteria were isolated in the 40 samples from tufted gray langurs. Pulse-field gel electrophoresis and multilocus sequence typing identified six profiles and four clonal complexes of C. jejuni. The isolated Campylobacter spp. showed varying susceptibility to antimicrobial substances. All Campylobacter spp. isolates were susceptible to chloramphenicol, erythromycin, florfenicol, gentamicin, and streptomycin. Four of the C. jejuni were resistant to at least one of the following: ampicillin, ciprofloxacin, nalidixic acid, and tetracycline, and one of the isolates was multidrug resistant. All four C. coli were resistant to ampicillin, whereas the two Salmonella Virchow strains were susceptible to all antibiotics tested. The presence of Campylobacter spp. and Salmonella spp. in toque macaques may have an impact on the conservation of endangered primates and public health in Sri Lanka.
Collapse
|
16
|
Kimura B. Will the emergence of core genome MLST end the role of in silico MLST? Food Microbiol 2017; 75:28-36. [PMID: 30056960 DOI: 10.1016/j.fm.2017.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022]
Abstract
The technological advancement of molecular epidemiological analysis using next-generation sequencing (NGS) for foodborne pathogens has a groundbreaking impact over the past three years. In particular, the emergence of cg (core genome) multilocus sequence typing(MLST) has a significant impact. This is because this technology made it possible for many researchers to carry out molecular epidemiological analysis on foodborne pathogens in a common language, using common definitions. The resolution of core genome MLST (cgMLST) far surpasses that of MLST, which only uses seven (usually, in some cases five) housekeeping genes. Therefore, cgMLST would in no doubt terminate the role of conventional MLST as the molecular epidemiological tool. However, the role of MLST would probably not end all together. Rather, the sequence type (ST) of the conventional MLST is expected to be used as in silico MLST by a wider range of researchers than ever in the next 10 years. This is because, with the arrival of the NGS era, we have come to be able to obtain ST of conventional MLST by simply entering the NGS text file into one's own PC. In other words, acquisition of ST data is no longer limited to researchers aiming to conduct MLST for the first place. The impact of such a change is large. In silico MLST will continue to be used as a tool for understanding the broad characteristics of bacterial strains. This review aimed to summarize the main information on STs that have been accumulated for representative foodborne pathogens, in particular for potential NGS users in this new era who have been not familiar with MLST until now.
Collapse
Affiliation(s)
- Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology (TUMSAT), Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
17
|
Liang H, Zhang A, Gu Y, You Y, Zhang J, Zhang M. Genetic Characteristics and Multiple-PCR Development for Capsular Identification of Specific Serotypes of Campylobacter jejuni. PLoS One 2016; 11:e0165159. [PMID: 27788180 PMCID: PMC5082957 DOI: 10.1371/journal.pone.0165159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 10/08/2016] [Indexed: 01/04/2023] Open
Abstract
The polysaccharide capsule (CPS) of Campylobacter jejuni is a virulence factor linked to cell surface carbohydrate diversity which mainly determines the serotypes. Thirty-four CPS gene cluster structures have been published and some of them can be distinguished by multiple-PCR. Penner serotypes HS1/44c, HS2, HS4c, HS19, HS23/36c and HS41 are markers for Guillain—Barré syndrome (GBS). The capsules may contribute to GBS susceptibility. Analysis of 18 CPS loci revealed high gene content diversity and a mosaic nature of the capsule loci, which are possibly due to gene gain/loss events, and demonstrated a high degree of conservation of genes within serotypes/serotype complexes. A method of multiple-PCR was developed to distinguish five specific serotypes and three GBS-related serotypes. Primers specific for each capsule type were designed on the basis of paralogs or a unique DNA region of the CPS locus. The multiple-PCR can distinguish the eight serotypes in two PCRs with sensitivity and specificity of 100% using 227 strains of known Penner type. The multiple-PCR method will help to distinguish serotypes simply and rapidly.
Collapse
Affiliation(s)
- Hao Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aiyu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Gu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Biomarkers of Guillain-Barré Syndrome: Some Recent Progress, More Still to Be Explored. Mediators Inflamm 2015; 2015:564098. [PMID: 26451079 PMCID: PMC4588351 DOI: 10.1155/2015/564098] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Guillain-Barré syndrome (GBS), the axonal subtype of which is mainly triggered by C. jejuni with ganglioside-mimicking lipooligosaccharides (LOS), is an immune-mediated disorder in the peripheral nervous system (PNS) accompanied by the disruption of the blood-nerve barrier (BNB) and the blood-cerebrospinal fluid barrier (B-CSF-B). Biomarkers of GBS have been extensively explored and some of them are proved to assist in the clinical diagnosis and in monitoring disease progression as well as in assessing the efficacy of immunotherapy. Herein, we systemically review the literature on biomarkers of GBS, including infection-/immune-/BNB, B-CSF-B, and PNS damage-associated biomarkers, aiming at providing an overview of GBS biomarkers and guiding further investigations. Furthermore, we point out further directions for studies on GBS biomarkers.
Collapse
|
19
|
Heikema AP, Islam Z, Horst-Kreft D, Huizinga R, Jacobs BC, Wagenaar JA, Poly F, Guerry P, van Belkum A, Parker CT, Endtz HP. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome. Clin Microbiol Infect 2015; 21:852.e1-9. [PMID: 26070960 DOI: 10.1016/j.cmi.2015.05.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/05/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sialylated LOS in stools derived from patients with uncomplicated enteritis implies that additional bacterial factors should be involved. To assess whether the polysaccharide capsule is a marker for GBS, the capsular genotypes of two geographically distinct GBS-associated C. jejuni strain collections and an uncomplicated enteritis control collection were determined. Capsular genotyping of C. jejuni strains from the Netherlands revealed that three capsular genotypes, HS1/44c, HS2 and HS4c, were dominant in GBS-associated strains and capsular types HS1/44c and HS4c were significantly associated with GBS (p 0.05 and p 0.01, respectively) when compared with uncomplicated enteritis. In a GBS-associated strain collection from Bangladesh, capsular types HS23/36c, HS19 and HS41 were most prevalent and the capsular types HS19 and HS41 were associated with GBS (p 0.008 and p 0.02, respectively). Next, specific combinations of the LOS class and capsular genotypes were identified that were related to the occurrence of GBS. Multilocus sequence typing revealed restricted genetic diversity for strain populations with the capsular types HS2, HS19 and HS41. We conclude that capsular types HS1/44c, HS2, HS4c, HS19, HS23/36c and HS41 are markers for GBS. Besides a crucial role for sialylated LOS of C. jejuni in GBS pathogenesis, the identified capsules may contribute to GBS susceptibility.
Collapse
Affiliation(s)
- A P Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, The Netherlands.
| | - Z Islam
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - D Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - R Huizinga
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - B C Jacobs
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands; Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - F Poly
- Naval Medical Research Center, Silver Spring, MD, USA
| | - P Guerry
- Naval Medical Research Center, Silver Spring, MD, USA
| | - A van Belkum
- bioMérieux, R&D Microbiology, La Balme Les Grottes, France
| | - C T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - H P Endtz
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, The Netherlands; International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh; Fondation Mérieux, Lyon, France
| |
Collapse
|
20
|
Guyard-Nicodème M, Rivoal K, Houard E, Rose V, Quesne S, Mourand G, Rouxel S, Kempf I, Guillier L, Gauchard F, Chemaly M. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets. Int J Food Microbiol 2015; 203:8-14. [DOI: 10.1016/j.ijfoodmicro.2015.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
|
21
|
Zhou P, Oyarzabal OA. Application of pulsed field gel electrophoresis to type Campylobacter jejuni. Methods Mol Biol 2015; 1301:139-156. [PMID: 25862055 DOI: 10.1007/978-1-4939-2599-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pulsed field gel electrophoresis (PFGE) is generally accepted as one of the most discriminatory methods available for genotyping Campylobacter jejuni. PFGE has been extensively used in epidemiological studies, including outbreak investigation, persistence of genotypes in a human population, environmental diversity of sporadic infection isolates, dissemination of antibiotic-resistant strains, and comparison of genotypes within and between hosts. The main purpose of this chapter is to present a working PFGE protocol for those interested in incorporating this technique in their laboratories.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Neurology, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35233, USA
| | | |
Collapse
|
22
|
Kwan PSL, Xavier C, Santovenia M, Pruckler J, Stroika S, Joyce K, Gardner T, Fields PI, McLaughlin J, Tauxe RV, Fitzgerald C. Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl Environ Microbiol 2014; 80:4540-6. [PMID: 24837383 PMCID: PMC4148789 DOI: 10.1128/aem.00537-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
From August to September 2008, the Centers for Disease Control and Prevention (CDC) assisted the Alaska Division of Public Health with an outbreak investigation of campylobacteriosis occurring among the residents of Southcentral Alaska. During the investigation, pulsed-field gel electrophoresis (PFGE) of Campylobacter jejuni isolates from human, raw pea, and wild bird fecal samples confirmed the epidemiologic link between illness and the consumption of raw peas contaminated by sandhill cranes for 15 of 43 epidemiologically linked human isolates. However, an association between the remaining epidemiologically linked human infections and the pea and wild bird isolates was not established. To better understand the molecular epidemiology of the outbreak, C. jejuni isolates (n=130; 59 from humans, 40 from peas, and 31 from wild birds) were further characterized by multilocus sequence typing (MLST). Here we present the molecular evidence to demonstrate the association of many more human C.jejuni infections associated with the outbreak with raw peas and wild bird feces. Among all sequence types (STs) identified, 26 of 39 (67%) were novel and exclusive to the outbreak. Five clusters of overlapping STs (n=32 isolates; 17 from humans, 2 from peas, and 13 from wild birds) were identified. In particular, cluster E (n=7 isolates; ST-5049) consisted of isolates from humans,peas, and wild birds. Novel STs clustered closely with isolates typically associated with wild birds and the environment but distinct from lineages commonly seen in human infections. Novel STs and alleles recovered from human outbreak isolates allowed additional infections caused by these rare genotypes to be attributed to the contaminated raw peas.
Collapse
Affiliation(s)
- Patrick S. L. Kwan
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Catherine Xavier
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Monica Santovenia
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet Pruckler
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Joyce
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracie Gardner
- Epidemic Intelligence Service Assigned to the State of Alaska Section of Epidemiology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia I. Fields
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joe McLaughlin
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Robert V. Tauxe
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Collette Fitzgerald
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Islam Z, van Belkum A, Wagenaar JA, Cody AJ, de Boer AG, Sarker SK, Jacobs BC, Talukder KA, Endtz HP. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh. Eur J Clin Microbiol Infect Dis 2014; 33:2173-81. [PMID: 24962195 DOI: 10.1007/s10096-014-2184-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022]
Abstract
Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of Campylobacter to humans in Bangladesh. We determined the population structure of C. jejuni isolated from poultry (n = 66) and patients with enteritis (n = 39) or GBS (n = 10). Lipooligosaccharide (LOS) typing showed that 50/66 (76 %) C. jejuni strains isolated from poultry could be assigned to one of five LOS locus classes (A-E). The distribution of neuropathy-associated LOS locus classes A, B, and C were 30/50 (60 %) among the typable strains isolated from poultry. The LOS locus classes A, B, and C were significantly associated with GBS and enteritis-related C. jejuni strains more than for the poultry strains [(31/38 (82 %) vs. 30/50 (60 %), p < 0.05]. Multilocus sequence typing (MLST) defined 15 sequence types (STs) and six clonal complexes (CCs) among poultry isolates, including one ST-3740 not previously documented. The most commonly identified type, ST-5 (13/66), in chicken was seen only once among human isolates (1/49) (p < 0.001). Amplified fragment length polymorphism (AFLP) revealed three major clusters (A, B, and C) among C. jejuni isolated from humans and poultry. There seems to be a lack of overlap between the major human and chicken clones, which suggests that there may be additional sources for campylobacteriosis other than poultry in Bangladesh.
Collapse
Affiliation(s)
- Z Islam
- Emerging Diseases and Immunobiology Research Group, Centre for Food and Waterborne Diseases (CFWD), International Centre for Diarrheal Diseases Research (ICDDR,B), GPO Box 128, Dhaka, 1000, Bangladesh,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
González-Hein G, Huaracán B, García P, Figueroa G. Prevalence of virulence genes in strains of Campylobacter jejuni isolated from human, bovine and broiler. Braz J Microbiol 2014; 44:1223-9. [PMID: 24688515 PMCID: PMC3958191 DOI: 10.1590/s1517-83822013000400028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 04/04/2013] [Indexed: 01/08/2023] Open
Abstract
Campylobacter jejuni isolates of different origins (bovine, broiler meat, human) were screened by polymerase chain reaction for the presence of 4 genes cdtB, cst-II, ggt, and virB11, previously linked to virulence such as adherence, invasion, colonization, molecular mimicry, and cytotoxin production. In addition, the isolates were screened for the presence of the global gene regulator csrA linked to oxidative stress responses, biofilms formation, and cell adhesion. All the C. jejuni isolates were positive for cdtB gene. The csrA gene was detected in 100% and 92% of C. jejuni isolates from human and animal origin and the virB11 gene was detected in 7.3% and 3.6% isolates from chicken and human respectively. All isolates from bovine were negative for the virB11 gene. The isolates showed a wide variation for the presence of the remaining genes. Of the C. jejuni recovered from human 83.6%, and 32.7% were positive for cst-II, and ggt respectively. Out of the isolates from chicken 40% and 5.5% isolates revealed the presence of cst-II, and ggt, respectively. Finally of the C. jejuni isolates from bovine, 97.7% and 22.7% were positive for cst-II, and ggt respectively. We conclude that the genes of this study circulate among humans and animals. These results led us to hypothesize that the isolates associated with enteritis (cdtB positives) are not selected by environmental or host-specific factors. On the other hand, the high frequencies of csrA gene in C. jejuni show that this gene is important for the survival of C. jejuni in animals and humans.
Collapse
Affiliation(s)
- Gisela González-Hein
- Microbiology and Probiotic Laboratory, INTA, University of Chile. ; Bioingentech
| | | | - Patricia García
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | | |
Collapse
|
25
|
Ellström P, Feodoroff B, Hänninen ML, Rautelin H. Lipooligosaccharide locus class of Campylobacter jejuni: sialylation is not needed for invasive infection. Clin Microbiol Infect 2013; 20:524-9. [PMID: 24102802 PMCID: PMC4235400 DOI: 10.1111/1469-0691.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a highly diverse enteropathogen that is commonly detected worldwide. It can sometimes cause bacteraemia, but the bacterial characteristics facilitating bloodstream infection are not known. A total of 73 C. jejuni isolates, consecutively collected from blood-borne infections during a 10-year period all over Finland and for which detailed clinical information of the patients were available, were included. We screened the isolates by PCR for the lipooligosaccharide (LOS) locus class and for the presence of the putative virulence genes ceuE, ciaB, fucP, and virB11. The isolates were also tested for γ-glutamyl transpeptidase production. The results were analysed with respect to the clinical characteristics of the patients, and the multilocus sequence types (MLSTs) and serum resistance of the isolates. LOS locus classes A, B, and C, which carry genes for sialylation of LOS, were detected in only 23% of the isolates. These isolates were not more resistant to human serum than those with the genes of non-sialylated LOS locus classes, but were significantly more prevalent among patients with underlying diseases (p 0.02). The fucose permease gene fucP was quite uncommon, but was associated with the isolates with the potential to sialylate LOS (p <0.0001). LOS locus classes and some of the putative virulence factors were associated with MLST clonal complexes. Although some of the bacterial characteristics studied here have been suggested to be important for the invasiveness of C. jejuni, they did not explain why the clinical isolates in the present study were able to cause bacteraemia.
Collapse
Affiliation(s)
- P Ellström
- Department of Medical Sciences, Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
26
|
Pike BL, Guerry P, Poly F. Global Distribution of Campylobacter jejuni Penner Serotypes: A Systematic Review. PLoS One 2013; 8:e67375. [PMID: 23826280 PMCID: PMC3694973 DOI: 10.1371/journal.pone.0067375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/16/2013] [Indexed: 11/30/2022] Open
Abstract
Penner serotyping has been the principal method for differentiating Campylobacter isolates since its inception. Campylobacter capsule polysaccharide (CPS), the principal serodeterminant on which Penner serotyping is based, is presently of interest as a vaccine component. To determine the required valency of an effective CPS-based vaccine, a comprehensive understanding of CPS distribution is needed. Because of the association between Penner serotype and CPS, we conducted a systematic review to estimate the frequency and distribution of Penner serotypes associated with cases of Campylobacteriosis. In total, more than 21,000 sporadic cases of C. jejuni cases were identified for inclusion. While regional variation exists, distribution estimates indicate that eight serotypes accounted for more than half of all sporadic diarrheal cases globally and three serotypes (HS4 complex, HS2, and HS1/44) were dominant inter-regionally as well as globally. Furthermore, a total of 17 different serotypes reached a representation of 2% or greater in at least one of the five regions sampled. While this review is an important first step in defining CPS distribution, these results make it clear that significant gaps remain in our knowledge. Eliminating these gaps will be critical to future vaccine development efforts.
Collapse
Affiliation(s)
- Brian L. Pike
- Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Patricia Guerry
- Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Frédéric Poly
- Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
27
|
Ling ZQ, Lv P, Lu XX, Yu JL, Han J, Ying LS, Zhu X, Zhu WY, Fang XH, Wang S, Wu YC. Circulating Methylated XAF1 DNA Indicates Poor Prognosis for Gastric Cancer. PLoS One 2013; 8:e67195. [PMID: 23826230 PMCID: PMC3695092 DOI: 10.1371/journal.pone.0067195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Methylated DNA in fluids may be a suitable biomarker for cancer patients. XAF1 has been shown to be frequently down-regulated in human gastric cancer (GC). Here, we investigated if XAF1 methylation in GC could be a useful biomarker. METHODS Real-time RT-PCR was used to detect XAF1 mRNA expression; immunohistochemistry and western blot were used to examine XAF1 protein expression in GC tissues (n = 202) and their corresponding para-cancerous histological normal tissues (PCHNTs). Real-time methylation specific-PCR was used to investigate XAF1 promoter methylation in the same panel of GC tissues, their PCHNTs and sera. RESULTS We confirmed frequent XAF1 down-regulation in both mRNA and protein levels in GC tissues as compared to normal controls and PCHNTs. XAF1 hypermethylation was evidenced in 83.2% (168/202) of GC tissues and 27.2% (55/202) of PCHNTs, while no methylation was detected in the 88 normal controls. The methylation level in GC tissues was significantly higher than that in PCHNTs (p<0.05). The hypermethylation of XAF1 significantly correlated with the down-regulation of XAF1 in GC tissues in both mRNA and protein levels (p<0.001 each). Moreover, we detected high frequency of XAF1 methylation (69.8%, 141 out of 202) in the sera DNAs from the same patients, while the sera DNAs from 88 non-tumor controls were negative for XAF1 methylation. The XAF1 methylation in both GC tissues and in the sera could be a good biomarker for diagnosis of GC (AUC = 0.85 for tissue and AUC = 0.91 for sera) and significantly correlated with poorer prognosis (p<0.001). In addition, after-surgery negative-to-positive transition of XAF1 methylation in sera strongly associated with tumor recurrence. CONCLUSIONS 1) Dysfunction of XAF1 is frequent and is regulated through XAF1 promoter hypermethylation; 2) Detection of circulating methylated XAF1 DNAs in the serum may be a useful biomarker in diagnosis, evaluating patient's outcome (prognosis and recurrence) for GC patients.
Collapse
Affiliation(s)
- Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Ping Lv
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Lu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Jiang-Liu Yu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Li-Sha Ying
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Wang-Yu Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Xian-Hua Fang
- Department of Pathology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Shi Wang
- Department of Endoscopy, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| | - Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Lipooligosaccharide locus classes are associated with certain Campylobacter jejuni multilocus sequence types. Eur J Clin Microbiol Infect Dis 2013; 31:2203-9. [PMID: 22298242 DOI: 10.1007/s10096-012-1556-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
The lipooligosaccharide (LOS) locus class was determined using polymerase chain reaction (PCR) in 335 Finnish Campylobacter jejuni strains isolated from humans, poultry and bovines with known multilocus sequence types. The results revealed an association between clonal complexes/sequence types (STs) and LOS locus classes. Based on these results, we further predicted the LOS locus classes distribution among the STs of 209 additional C. jejuni strains from Finnish human domestically acquired infections. Non-sialylated LOS locus classes were associated with STs that comprised ≈55% of patient strains. Sialylated LOS locus classes A and B were associated with STs infrequently isolated, whereas class C was correlated with the ST-21 complex, found in ≈14% of human strains. A combination of the LOS locus class and multilocus sequence type may provide new information on the epidemiology and association of C. jejuni strains with certain disease outcomes.
Collapse
|
29
|
Colles FM, Maiden MCJ. Campylobacter sequence typing databases: applications and future prospects. Microbiology (Reading) 2012; 158:2695-2709. [DOI: 10.1099/mic.0.062000-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- F. M. Colles
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - M. C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
30
|
Islam Z, Gilbert M, Mohammad QD, Klaij K, Li J, van Rijs W, Tio-Gillen AP, Talukder KA, Willison HJ, van Belkum A, Endtz HP, Jacobs BC. Guillain-Barré syndrome-related Campylobacter jejuni in Bangladesh: ganglioside mimicry and cross-reactive antibodies. PLoS One 2012; 7:e43976. [PMID: 22952833 PMCID: PMC3428305 DOI: 10.1371/journal.pone.0043976] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni is the predominant antecedent infection in Guillain-Barré syndrome (GBS). Molecular mimicry and cross-reactive immune responses to C. jejuni lipo-oligosaccharides (LOS) precipitate the development of GBS, although this mechanism has not been established in patients from developing countries. We determined the carbohydrate mimicry between C. jejuni LOS and gangliosides, and the cross-reactive antibody response in patients with GBS in Bangladesh. Methodology Sera from 97 GBS patients, and 120 neurological and family controls were tested for antibody reactivity against LOS from C. jejuni isolates from GBS patients in Bangladesh (BD-07, BD-39, BD-10, BD-67 and BD-94) by enzyme-linked immunosorbent assay (ELISA). Cross-reactivity to LOS was determined by ELISA. The LOS outer core structures of C. jejuni strains associated with GBS/MFS were determined by mass spectrometry. Principle Findings IgG antibodies to LOS from C. jejuni BD-07, BD-39, BD-10, and BD-67 IgG antibodies were found in serum from 56%, 58%, 14% and 15% of GBS patients respectively, as compared to very low frequency (<3%) in controls (p<0.001). Monoclonal antibodies specific for GM1 and GD1a reacted strongly with LOS from the C. jejuni strains (BD-07 and BD-39). Mass spectrometry analysis confirmed the presence of GM1 and GD1a carbohydrate mimics in the LOS from C. jejuni BD-07 and BD-39. Both BD-10 and BD-67 express the same LOS outer core, which appears to be a novel structure displaying GA2 and GD3 mimicry. Up to 90–100% of serum reactivity to gangliosides in two patients (DK-07 and DK-39) was inhibited by 50 µg/ml of LOS from the autologous C. jejuni isolates. However, patient DK-07 developed an anti-GD1a immune response while patient DK-39 developed an anti-GM1 immune response. Conclusion Carbohydrate mimicry between C. jejuni LOS and gangliosides, and cross-reactive serum antibody precipitate the majority of GBS cases in Bangladesh.
Collapse
Affiliation(s)
- Zhahirul Islam
- Emerging Diseases and Immunobiology, Centre for Food and Waterborne Diseases, icddr,b, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Agarkova IV, Lambrecht PA, Vidaver AK, Harveson RM. Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American high plains. Can J Microbiol 2012; 58:788-801. [PMID: 22642843 DOI: 10.1139/w2012-052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curtobacterium flaccumfaciens pv. flaccumfaciens is a Gram-positive bacterium and has reemerged as an incitant of bacterial wilt in common (dry, edible) beans in western Nebraska, eastern Colorado, and southeastern Wyoming. Curtobacterium flaccumfaciens pv. flaccumfaciens is diverse phenotypically and genotypically and is represented by several different pathogen color variants. The population structure of 67 strains collected between 1957 and 2009, including some isolated from alternate hosts, was determined with 3 molecular typing techniques: amplified fragment length polymorphism (AFLP), repetitive extragenic palindromic polymerase chain reaction (rep-PCR), and pulsed-field gel electrophoresis (PFGE). All 3 typing techniques showed a great degree of population heterogeneity, but they were not congruent in cluster analysis of the C. flaccumfaciens pv. flaccumfaciens populations. Cluster analysis of a composite data set (AFLP, PFGE, and rep-PCR) using averages from all experiments yielded 2 distinct groups: cluster A included strains with colonies of yellow, orange, and pink pigments, and cluster B had strains of only yellow pigment. Strains producing purple extracellular pigment were assigned to both clusters. Thus, C. flaccumfaciens pv. flaccumfaciens is diverse phenotypically and genotypically.
Collapse
Affiliation(s)
- I V Agarkova
- Plant Pathology Department, University of Nebraska-Lincoln, 204 Morrison Hall, Lincoln, NE 68583-0900, USA
| | | | | | | |
Collapse
|
32
|
Ahmed MU, Dunn L, Ivanova EP. Evaluation of Current Molecular Approaches for Genotyping ofCampylobacter jejuniStrains. Foodborne Pathog Dis 2012; 9:375-85. [DOI: 10.1089/fpd.2011.0988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Monir U. Ahmed
- Faculty of Life & Social Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Louise Dunn
- Faculty of Life & Social Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Elena P. Ivanova
- Faculty of Life & Social Sciences, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
33
|
Amon P, Klein D, Springer B, Jelovcan S, Sofka D, Hilbert F. Analysis of Campylobacter jejuni isolates of various sources for loci associated with Guillain-Barré Syndrome. Eur J Microbiol Immunol (Bp) 2012; 2:20-3. [PMID: 24611117 DOI: 10.1556/eujmi.2.2012.1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni is a major cause of the Guillain-Barré syndrome (GBS) and related diseases. These autoimmune diseases are caused by antibodies cross-reacting with the peripheral (GBS) and central neural tissue (Miller Fisher syndrome - MFS, Bicker-staff's brainstem encephalitis - BBE), leading to acute polyneuropathy. Recently, specific gene loci in C. jejuni have been distinguished which are associated with the onset of GBS, despite a molecular or phenotypic clustering. In this study, we used PCR to analyse C. jejuni isolates of different origin (i.e. bovine, poultry, human) for these genes. A total of 196 isolates were tested for cst-II and neuA. Of these, 101 isolates harboured the cst-II locus and 102 the neuA locus. Eighty-six isolates (44%) hold both genes. The frequency of cst-II in different sources of isolates of bovine, poultry and human isolates did not vary significantly (52, 50 and 52%, respectively). In contrast, the neuA locus was less often found in poultry isolates. Two human strains - from a family outbreak of campylobacteriosis (in 1989 in Austria) in which one person developed MFS - harboured both genes. Thus, although only one in more than 3000 patients with Campylobacter-associated enteritis develop GBS, about half of Campylobacter jejuni strains found in different environments are possibly able to cause GBS. These strains almost equally distributed in bovine, poultry and human isolates. Our results suggest that isolates associated with GBS are not selected by environmental or host-specific factors. Accordingly, this study indicates that host factors such as humoral and cellular immunity are possibly responsible for the development of these autoimmune diseases.
Collapse
|
34
|
Revez J, Rossi M, Ellström P, de Haan C, Rautelin H, Hänninen ML. Finnish Campylobacter jejuni strains of multilocus sequence type ST-22 complex have two lineages with different characteristics. PLoS One 2011; 6:e26880. [PMID: 22039552 PMCID: PMC3200363 DOI: 10.1371/journal.pone.0026880] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the major cause of human bacterial gastroenteritis worldwide, and in a minority of cases, post-infectious complications may occur. ST-22 complex (usually Penner serotype 19) strains have been overrepresented among patients with postinfectious complications of campylobacteriosis. We here present a characterization of a collection of 27 Finnish C. jejuni strains of ST-22 complex, from humans (22 strains) and animal sources (five strains), with the aim of contributing to our knowledge of the pathogenesis of C. jejuni infections. METHODOLOGY/PRINCIPAL FINDINGS All strains were analyzed by pulsed-field gel electrophoresis (PFGE) genotyping, lipo-oligosaccharide (LOS) locus class, Y-glutamyl transpeptidase (GGT) activity, in vitro biofilm formation ability, invasion and adhesion in HeLa cells and induction of IL-8 production. ST-22 complex contained five STs (ST-22; ST-1947; ST-1966; ST-3892; ST-3996) which were homogeneous in having sialylated LOS class A(1) but on the other hand were distinguished into two major lineages according to the major STs (ST-22 and ST-1947) by different PFGE genotypes and certain other characteristics. All ST-22 strains had similar SmaI PFGE profiles, were GGT positive, and formed biofilms, except one strain, while ST-1947 strains were all GGT negative, did not form biofilm, had significantly higher motility than ST-22 (p<0.05) and had their SmaI PFGE profile. Invasion and adhesion as well as induction of IL-8 production on HeLa cells were strain-dependent characteristics. CONCLUSIONS/SIGNIFICANCE ST-22 complex strains, reveal potential for molecular mimicry in host interactions upon infection as they all express sialylated LOS class A(1). The two major STs, ST-22 and ST-1947 formed two homogeneous lineages, which differed from each other both phenotypically and genetically, suggesting that the strains may have evolved separately, perhaps by interacting with different spectra of hosts. Further studies are needed in order to understand if these two lineages are associated with different disease outcomes.
Collapse
Affiliation(s)
- Joana Revez
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 2011; 60:661-669. [PMID: 21233296 DOI: 10.1099/jmm.0.026658-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Collapse
Affiliation(s)
- Nicola J Senior
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | - Olivia L Champion
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Stuart E Reynolds
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | | | | | - Richard W Titball
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| |
Collapse
|
36
|
Zhang M, Gu Y, He L, Ran L, Xia S, Han X, Li H, Zhou H, Cui Z, Zhang J. Molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni isolates from north China. J Med Microbiol 2010; 59:1171-1177. [PMID: 20651041 DOI: 10.1099/jmm.0.022418-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To obtain the genotype and antimicrobial susceptibility profiles of Campylobacter jejuni isolates from north China, 93 C. jejuni isolates (56 isolates from patients with diarrhoea, 7 isolates from Guillain-Barré syndrome patients and 30 isolates from chicken stools) were selected for multilocus sequence typing (MLST), PFGE and drug resistance testing. A total of 49 sequence types (STs) were identified from the entire panel of 93 C. jejuni isolates. Fifty-six isolates belonged to 14 clonal complexes, while 37 isolates could not be assigned to any known clonal complex. The most frequently observed clonal complexes were ST-21 (11 isolates), ST-353 (10 isolates) and ST-443 (6 isolates). Fifty-three PFGE SmaI patterns were identified among 93 isolates. No erythromycin-, gentamicin- or streptomycin-resistant isolates were found among the 44 strains isolated in 2008. Resistance to nalidixic acid, levofloxacin and ciprofloxacin was observed in 100 % (44/44) of the tested isolates. This study has shown the genetic characteristics of C. jejuni isolates in north China. In addition, overlapping clonal groups were defined by both MLST and PFGE for C. jejuni human and chicken isolates.
Collapse
Affiliation(s)
- Maojun Zhang
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yixin Gu
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Lihua He
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Lu Ran
- Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shengli Xia
- Branch for Enteric Disease Control and Prevention, Institute for Infectious Disease Control and Prevention, Henan Center for Disease Control and Prevention, PR China
| | - Xiaosheng Han
- Department of Microbiology, Zhoukou Center for Disease Control and Prevention, PR China
| | - Hongxing Li
- Department of Clinical Laboratory, Shangqiu Center for Disease Control and Prevention, PR China
| | - Haijian Zhou
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhigang Cui
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jianzhong Zhang
- Department of Diagnosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|