1
|
Moss CE, Roy CR. InSeq analysis of defined Legionella pneumophila libraries identifies a transporter-encoding gene cluster important for intracellular replication in mammalian hosts. mBio 2024; 15:e0195524. [PMID: 39365064 PMCID: PMC11559062 DOI: 10.1128/mbio.01955-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates inside human alveolar macrophages to cause a severe pneumonia known as Legionnaires' disease. L. pneumophila requires the Dot/Icm Type IV secretion system to deliver hundreds of bacterial proteins to the host cytosol that manipulate cellular processes to establish a protected compartment for bacterial replication known as the Legionella-containing vacuole. To better understand mechanisms apart from the Dot/Icm system that support survival and replication in this vacuole, we used transposon insertion sequencing in combination with defined mutant sublibraries to identify L. pneumophila fitness determinants in primary mouse macrophages and the mouse lung. This approach validated that many previously identified genes important for intracellular replication were critical for infection of a mammalian host. Further, the screens uncovered additional genes contributing to L. pneumophila replication in mammalian infection models. This included a cluster of seven genes in which insertion mutations resulted in L. pneumophila fitness defects in mammalian hosts. Generation of isogenic deletion mutants and genetic complementation studies verified the importance of genes within this locus for infection of mammalian cells. Genes in this cluster are predicted to encode nucleotide-modifying enzymes, a protein of unknown function, and an atypical ATP-binding cassette (ABC) transporter with significant homology to multidrug efflux pumps that has been named Lit, for Legionella infectivity transporter. Overall, these data provide a comprehensive overview of the bacterial processes that support L. pneumophila replication in a mammalian host and offer insight into the unique challenges posed by the intravacuolar environment.IMPORTANCEIntracellular bacteria employ diverse mechanisms to survive and replicate inside the inhospitable environment of host cells. Legionella pneumophila is an opportunistic human pathogen and a model system for studying intracellular host-pathogen interactions. Transposon sequencing is an invaluable tool for identifying bacterial genes contributing to infection, but current animal models for L. pneumophila are suboptimal for conventional screens using saturated mutant libraries. This study employed a series of defined transposon mutant libraries to identify determinants of L. pneumophila fitness in mammalian hosts, which include a newly identified bacterial transporter called Lit. Understanding the requirements for survival and replication inside host cells informs us about the environment bacteria encounter during infection and the mechanisms they employ to make this environment habitable. Such knowledge will be key to addressing future challenges in treating infections caused by intracellular bacteria.
Collapse
Affiliation(s)
- Caitlin E. Moss
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Bao X, Yang C, Li T, Wang Y, Cui A, Meng X, Huang Q, Li S. Efflux of TolC protein to different antimicrobials can be replaced by other outer membrane proteins with similar β-barrel structures in extraintestinal pathogenic Escherichia coli. J Appl Microbiol 2024; 135:lxae214. [PMID: 39217099 DOI: 10.1093/jambio/lxae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
AIM As a major efflux pump system in Gram-negative bacteria, AcrAB-TolC plays a key role in the transport of multiple drug substrates and is considered a potential target for the development of novel antimicrobials. Our previous study found that TolC inactivation compromised the resistance to different antimicrobials in porcine extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC042 (WT). This study was designed to investigate the functional substitution of TolC by other outer membrane proteins (OMPs) with similar β-barrel structures in pumping out different antimicrobials. METHODS AND RESULTS In this study, we found that over-expression of several OMPs with similar β-barrel structures, OmpX, OmpC, OmpN, OmpW, and PhoE, in the ΔtolC strain restored the resistance to macrolides, quinolones, or tetracyclines to the level of WT strain. However, the introduction of any one of the five OMPs did not affect the resistance of the strains ΔacrA, ΔacrB, and ΔacrAΔtolC. Further study revealed that the efflux activity was significantly reduced in the ΔtolC strain, but not in the WT strain and the ΔtolC strains over-expressing various OMPs. Additionally, Nile red dye test and ciprofloxacin accumulation test confirmed that the lost efflux activity and drug accumulation in bacterial periplasm by TolC inactivation was restored by the over-expression of each OMP, depending on the presence of genes acrA and acrB. CONCLUSION All five OMPs can replace the TolC protein to play the efflux role in pumping out the drugs from the periplasm to the extracellular space with the help of proteins AcrA and AcrB.
Collapse
Affiliation(s)
- Xue Bao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglong Yang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanlin Wang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailian Cui
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianrong Meng
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowen Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
4
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Abstract
Vibrio cholerae is a Gram-negative bacterium that causes the enteric disease cholera. V. cholerae colonization of the human intestine is dependent on the expression of both virulence genes and environmental adaptation genes involved in antimicrobial resistance. The expression of virulence genes, including the genes encoding for the main virulence factors cholera toxin (CT) and the toxin coregulated pilus (TCP), are coordinately regulated by the ToxR regulon. Tripartite transport systems belonging to the ATP binding cassette, major facilitator, and Resistance-Nodulation-Division families are critical for V. cholerae pathogenesis. Transport systems belonging to these families contribute to myriad phenotypes including protein secretion, antimicrobial resistance and virulence. TolC plays a central role in bacterial physiology by functioning as the outer membrane pore protein for tripartite transport systems. Consistent with this, V. cholerae tolC was previously found to be required for MARTX toxin secretion and antimicrobial resistance. Herein we investigated the contribution of TolC to V. cholerae virulence. We documented that tolC was required for CT and TCP production in O1 El Tor V. cholerae. This phenotype was linked to repression of the critical ToxR regulon transcription factor aphA. Decreased aphA transcription correlated with increased expression of the LysR-family transcription factor leuO. Deletion of leuO restored aphA expression, and CT and TCP production, in a tolC mutant. The collective results document that tolC is required for ToxR regulon expression and further suggest that tolC may participate in a efflux-dependent feedback circuit to regulate virulence gene expression.
Collapse
|
6
|
Allombert J, Jaboulay C, Michard C, Andréa C, Charpentier X, Vianney A, Doublet P. Deciphering Legionella effector delivery by Icm/Dot secretion system reveals a new role for c-di-GMP signaling. J Mol Biol 2021; 433:166985. [PMID: 33845084 DOI: 10.1016/j.jmb.2021.166985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.
Collapse
Affiliation(s)
- J Allombert
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Michard
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Andréa
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - X Charpentier
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| |
Collapse
|
7
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli. Front Microbiol 2021; 12:640923. [PMID: 33717036 PMCID: PMC7952520 DOI: 10.3389/fmicb.2021.640923] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biocide use is essential and ubiquitous, exposing microbes to sub-inhibitory concentrations of antiseptics, disinfectants, and preservatives. This can lead to the emergence of biocide resistance, and more importantly, potential cross-resistance to antibiotics, although the degree, frequency, and mechanisms that give rise to this phenomenon are still unclear. Here, we systematically performed adaptive laboratory evolution of the gut bacteria Escherichia coli in the presence of sub-inhibitory, constant concentrations of ten widespread biocides. Our results show that 17 out of 40 evolved strains (43%) also decreased the susceptibility to medically relevant antibiotics. Through whole-genome sequencing, we identified mutations related to multidrug efflux proteins (mdfA and acrR), porins (envZ and ompR), and RNA polymerase (rpoA and rpoBC), as mechanisms behind the resulting (cross)resistance. We also report an association of several genes (yeaW, pyrE, yqhC, aes, pgpA, and yeeP-isrC) and specific mutations that induce cross-resistance, verified through mutation repairs. A greater capacity for biofilm formation with respect to the parent strain was also a common feature in 11 out of 17 (65%) cross-resistant strains. Evolution in the biocides chlorophene, benzalkonium chloride, glutaraldehyde, and chlorhexidine had the most impact in antibiotic susceptibility, while hydrogen peroxide and povidone-iodine the least. No cross-resistance to antibiotics was observed for isopropanol, ethanol, sodium hypochlorite, and peracetic acid. This work reinforces the link between exposure to biocides and the potential for cross-resistance to antibiotics, presents evidence on the underlying mechanisms of action, and provides a prioritized list of biocides that are of greater concern for public safety from the perspective of antibiotic resistance. SIGNIFICANCE STATEMENT Bacterial resistance and decreased susceptibility to antimicrobials is of utmost concern. There is evidence that improper biocide (antiseptic and disinfectant) use and discard may select for bacteria cross-resistant to antibiotics. Understanding the cross-resistance emergence and the risks associated with each of those chemicals is relevant for proper applications and recommendations. Our work establishes that not all biocides are equal when it comes to their risk of inducing antibiotic resistance; it provides evidence on the mechanisms of cross-resistance and a risk assessment of the biocides concerning antibiotic resistance under residual sub-inhibitory concentrations.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Xiaokang Wang
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Zhang G, Guan Y, Zhao R, Feng J, Huang J, Ma L, Li B. Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123170. [PMID: 32590136 DOI: 10.1016/j.jhazmat.2020.123170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 05/08/2023]
Abstract
Metagenomic and network analyses were applied to decipher the profiles and co-occurrence of resistome and microbial taxa in the reclaimed wastewater distribution system, including reclaimed wastewater and two types of biofilms, i.e., surface layer biofilms and inner layer biofilms. The effects of chlorination, UV irradiation and no disinfection treatment on ARG relative abundance and composition were systemically investigated. The reclaimed wastewater possesses more diverse and abundant ARGs than biofilms and total ARG relative abundance followed the order of reclaimed wastewater samples > surface layer biofilms > inner layer biofilms. Multidrug, bacitracin, sulfonamide, aminoglycoside, beta-lactam, and macrolide-lincosamide-streptogramin resistance genes were the six most dominant ARG types and their sum accounted for 90.1 %-96.0 % of the total ARG relative abundance in different samples. Beta-lactam resistance gene was the discriminative ARG type for reclaimed wastewater. Bacitracin resistance gene and bacA were the discriminative ARG type and subtype for biofilms. Chlorination significantly reduced ARG relative abundance in the reclaimed wastewater. Nevertheless, it could not reduce ARG relative abundance in biofilms. Regarding to the total ARG profiles, there were no obvious increasing or decreasing trends over time during one year period. Co-occurrence results revealed twenty-six genera were deduced as the potential hosts of twenty-two ARG subtypes.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
9
|
Denet E, Triadou S, Michalet S, Nazaret S, Favre-Bonté S. Growth of Stenotrophomonas maltophilia and expression of Sme efflux pumps encoding genes in the presence of supernatants from amoebal and bacterial co-cultures: towards the role of amoebal secondary metabolites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:702-711. [PMID: 32902135 DOI: 10.1111/1758-2229.12884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Resistance-Nodulation-Division (RND) efflux pumps are relevant determinants of Stenotrophomonas maltophilia multidrug resistance as they can extrude a broad range of antibiotics and compounds involved in virulence and physiological functions. S. maltophilia, an environmental bacterium, was shown to be associated with amoebae and able to multiply inside them. To explore whether S. maltophilia RND efflux pumps play a role when interacting with amoebae, we evaluated the effect of amoebal culture and co-culture supernatants on the growth of S. maltophilia and the expression of sme efflux pump genes. Acanthamoeba castellanii and Willaertia magna were used as amoebal models and strain S. maltophilia BurE1 as bacterial one. Our data showed that both bacterial growth and sme gene expression were not modified by amoebal culture supernatants. On the contrary, co-culture supernatants negatively impacted the growth of BurE1 and induced the expression of three out of eight efflux pump genes, i.e. smeE, smeN and smeZ. Finally, we evidenced the production of A. castellanii secondary metabolites, putatively belonging to the diterpene family, in the amoebal supernatant and in the co-culture supernatant of A. castellanii and BurE1. Whether these compounds act directly as substrates of the efflux pumps and/or inducers of the sme genes need further investigations.
Collapse
Affiliation(s)
- Elodie Denet
- Université Lyon 1, Research Group on Environmental Multi-Resistance and Bacterial Efflux, UMR CNRS 5557/ UMR INRAe 1418 Ecologie Microbienne, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France
| | - Sylvain Triadou
- Université Lyon 1, Research Group on Environmental Multi-Resistance and Bacterial Efflux, UMR CNRS 5557/ UMR INRAe 1418 Ecologie Microbienne, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France
| | - Serge Michalet
- Université Lyon 1, Research Group on Environmental Multi-Resistance and Bacterial Efflux, UMR CNRS 5557/ UMR INRAe 1418 Ecologie Microbienne, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France
| | - Sylvie Nazaret
- Université Lyon 1, Research Group on Environmental Multi-Resistance and Bacterial Efflux, UMR CNRS 5557/ UMR INRAe 1418 Ecologie Microbienne, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France
| | - Sabine Favre-Bonté
- Université Lyon 1, Research Group on Environmental Multi-Resistance and Bacterial Efflux, UMR CNRS 5557/ UMR INRAe 1418 Ecologie Microbienne, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France
| |
Collapse
|
10
|
Whole genome sequence analysis reveals the broad distribution of the RtxA type 1 secretion system and four novel putative type 1 secretion systems throughout the Legionella genus. PLoS One 2020; 15:e0223033. [PMID: 31935215 PMCID: PMC6959600 DOI: 10.1371/journal.pone.0223033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and translocate effectors with diverse function across the bacterial cell membrane. Legionella pneumophila, the species most commonly associated with Legionellosis, encodes a T1SS at the lssXYZABD locus which is responsible for the secretion of the virulence factor RtxA. Many investigations have failed to detect lssD, the gene encoding the membrane fusion protein of the RtxA T1SS, in non-pneumophila Legionella, which has led to the assumption that this system is a virulence factor exclusively possessed by L. pneumophila. Here we discovered RtxA and its associated T1SS in a novel Legionella taurinensis strain, leading us to question whether this system may be more widespread than previously thought. Through a bioinformatic analysis of publicly available data, we classified and determined the distribution of four T1SSs including the RtxA T1SS and four novel T1SSs among diverse Legionella spp. The ABC transporter of the novel Legionella T1SS Legionella repeat protein secretion system shares structural similarity to those of diverse T1SS families, including the alkaline protease T1SS in Pseudomonas aeruginosa. The Legionella bacteriocin (1-3) secretion systems T1SSs are novel putative bacteriocin transporting T1SSs as their ABC transporters include C-39 peptidase domains in their N-terminal regions, with LB2SS and LB3SS likely constituting a nitrile hydratase leader peptide transport T1SSs. The LB1SS is more closely related to the colicin V T1SS in Escherichia coli. Of 45 Legionella spp. whole genomes examined, 19 (42%) were determined to possess lssB and lssD homologs. Of these 19, only 7 (37%) are known pathogens. There was no difference in the proportions of disease associated and non-disease associated species that possessed the RtxA T1SS (p = 0.4), contrary to the current consensus regarding the RtxA T1SS. These results draw into question the nature of RtxA and its T1SS as a singular virulence factor. Future studies should investigate mechanistic explanations for the association of RtxA with virulence.
Collapse
|
11
|
Martynenko IV, Kusić D, Weigert F, Stafford S, Donnelly FC, Evstigneev R, Gromova Y, Baranov AV, Rühle B, Kunte HJ, Gun’ko YK, Resch-Genger U. Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe3O4 Nanoparticles and AIS/ZnS Quantum Dots. Anal Chem 2019; 91:12661-12669. [DOI: 10.1021/acs.analchem.9b01812] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Irina V. Martynenko
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | - Dragana Kusić
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Division Biodeterioration and Reference Organisms, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Florian Weigert
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | | | | | - Roman Evstigneev
- ITMO University, 49 Kronverksky Prospekt, St. Petersburg 197101, Russia
| | - Yulia Gromova
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | | | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | - Hans-Jörg Kunte
- Federal Institute for Materials Research and Testing (BAM), Division Biodeterioration and Reference Organisms, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
- ITMO University, 49 Kronverksky Prospekt, St. Petersburg 197101, Russia
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
12
|
Li Y, Cao S, Zhang L, Yuan J, Zhao Q, Wen Y, Wu R, Huang X, Yan Q, Huang Y, Ma X, Han X, Miao C, Wen X. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microb Pathog 2019; 134:103596. [PMID: 31212036 DOI: 10.1016/j.micpath.2019.103596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
To establish infection in the host, pathogens have evolved sophisticated systems to cope with environmental conditions and to protect cells against host immunity. TolC is the outer membrane channel component of type 1 secretion systems and multidrug efflux pumps that plays critical roles during the infection process in many pathogens. However, little is known about the exact roles of TolC1 in the pathogenicity of A. pleuropneumoniae, an etiological agent of the porcine contagious pleuropneumoniae that causes severe respiratory disease. In this study, deletion of tolC1 causes apparent ultrastructural defects in A. pleuropneumoniae cell examined by transmission electron microscopy. The tolC1 mutant is hypersensitivity to oxidative, osmotic and acid challenges by in vitro stress assays. Analysis on secreted proteins shows that the excretion of ApxIIA and an ApxIVA-like protein, ApxIVA-S, is abolished in the absence of TolC1. This result confirms the essential role of TolC1 in the secretion of Apx toxins and this is the first identification of an ApxIVA-like protein in in vitro culture of A. pleuropneumoniae. Besides, disruption of TolC1 leads to a significant attenuation of virulence in mice by an intraperitoneal route of A. pleuropneumoniae. The basis for the attenuation is further investigated using a mouse intranasal infection model, which reveals an impaired ability to colonize and induce lesions in the lungs for the loss of TolC1 of A. pleuropneumoniae. In conclusion, our findings demonstrate significant roles of TolC1 in facilitating bacterial survival in hostile conditions, maximum colonization as well as pathogenicity during the infection of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China; Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoping Ma
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xinfeng Han
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Chang Miao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Birteksoz-Tan AS, Zeybek Z, Hacioglu M, Savage PB, Bozkurt-Guzel C. In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. J Antibiot (Tokyo) 2019; 72:291-297. [DOI: 10.1038/s41429-019-0148-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
|
14
|
Nishida T, Hara N, Watanabe K, Shimizu T, Fujishima M, Watarai M. Crucial Role of Legionella pneumophila TolC in the Inhibition of Cellular Trafficking in the Protistan Host Paramecium tetraurelia. Front Microbiol 2018; 9:800. [PMID: 29743879 PMCID: PMC5930787 DOI: 10.3389/fmicb.2018.00800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular Gram-negative bacterium, which is a major causative agent of Legionnaires’ disease. In the environment, this bacterium survives in free-living protists such as amoebae and Tetrahymena. The association of L. pneumophila and protists leads to the replication and spread of this bacterium. Thus, from a public health perspective, their association can enhance the risk of L. pneumophila infection for humans. Paramecium spp. are candidates of natural hosts of L. pneumophila, but their detailed relationships remain unclear. In the present study, we used an environmental strain, L. pneumophila Ofk308 (Ofk308) and Paramecium tetraurelia st110-1a to reveal the relationship between L. pneumophila and Paramecium spp. Ofk308 was cytotoxic to P. tetraurelia in an infection-dependent manner. We focused on TolC, a component of the type I secretion system, which is a virulence factor of L. pneumophila toward protists and found that cytotoxicity was dependent on TolC but not on other T1SS components. Further, the number of bacteria in P. tetraurelia was not associated with cytotoxicity and TolC was not involved in the mechanism of resistance against the digestion of P. tetraurelia in Ofk308. We used a LysoTracker to evaluate the maturation process of P. tetraurelia phagosomes containing Ofk308. We found that there was no difference between Ofk308 and the tolC-deletion mutant. To assess the phagocytic activity of P. tetraurelia, Texas Red-conjugated dextran-uptake assays were performed. Ofk308 inhibited phagosome formation by P. tetraurelia through a TolC-dependent mechanism. Further, we evaluated the excretion of Legionella-containing vacuoles from P. tetraurelia. We found that P. tetraurelia failed to excrete undigested Ofk308 and that Ofk308 remained within cells through a TolC-dependent mechanism. Our results suggest that TolC is essential for L. pneumophila to remain within Paramecium cells and to show cytotoxicity. Because of the high mobility and high cell division rate of Paramecium spp., living with Paramecium spp. would be beneficial for L. pneumophila to expand its habitat. To control Legionaries’ disease, understanding the ecology of L. pneumophila in the environment is essential.
Collapse
Affiliation(s)
- Takashi Nishida
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Naho Hara
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Fujishima
- Department of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,National BioResource Project, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
15
|
Adaptation of Amoeba Plate Test To Recover Legionella Strains from Clinical Samples. J Clin Microbiol 2018; 56:JCM.01361-17. [PMID: 29467193 DOI: 10.1128/jcm.01361-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/12/2018] [Indexed: 11/20/2022] Open
Abstract
The isolation of Legionella from respiratory samples is the gold standard for diagnosis of Legionnaires' disease (LD) and enables epidemiological studies and outbreak investigations. The purpose of this work was to adapt and to evaluate the performance of an amoebic coculture procedure (the amoeba plate test [APT]) for the recovery of Legionella strains from respiratory samples, in comparison with axenic culture and liquid-based amoebic coculture (LAC). Axenic culture, LAC, and APT were prospectively performed with 133 respiratory samples from patients with LD. The sensitivities and times to results for the three techniques were compared. Using the three techniques, Legionella strains were isolated in 46.6% (n = 62) of the 133 respiratory samples. The sensitivity of axenic culture was 42.9% (n = 57), that of LAC was 30.1% (n = 40), and that of APT was 36.1% (n = 48). Seven samples were positive by axenic culture only; for those samples, there were <10 colonies in total. Five samples, all sputum samples, were positive by an amoebic procedure only (5/5 samples by APT and 2/5 samples by LAC); all had overgrowth by oropharyngeal flora with axenic culture. The combination of axenic culture with APT yielded a maximal isolation rate (i.e., 46.6%). Overall, the APT significantly reduced the median time for Legionella identification to 4 days, compared with 7 days for LAC (P < 0.0001). The results of this study support the substitution of LAC by APT, which could be implemented as a second-line technique for culture-negative samples and samples with microbial overgrowth, especially sputum samples. The findings provide a logical basis for further studies in both clinical and environmental settings.
Collapse
|
16
|
Li Y, Cao S, Zhang L, Yuan J, Yang Y, Zhu Z, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Ma X, Wen X. TolC2 is required for the resistance, colonization and virulence of Actinobacillus pleuropneumoniae. J Med Microbiol 2017; 66:1170-1176. [DOI: 10.1099/jmm.0.000544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Luhua Zhang
- College of Preclinical Medicine, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, PR China
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yusheng Yang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Zhuang Zhu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xiaoping Ma
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| |
Collapse
|
17
|
David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C, Buchrieser C, Harrison TG, Parkhill J. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet 2017. [PMID: 28650958 PMCID: PMC5507463 DOI: 10.1371/journal.pgen.1006855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.
Collapse
Affiliation(s)
- Sophia David
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Leonor Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Aalto, Espoo, Finland
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Timothy G. Harrison
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
19
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
20
|
Abstract
Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.
Collapse
Affiliation(s)
- Marjorie E Doyle
- Food Research Institute, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
21
|
AbuO, a TolC-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrob Agents Chemother 2014; 59:1236-45. [PMID: 25512405 DOI: 10.1128/aac.03626-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Acinetobacter baumannii is well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC from Escherichia coli. Inactivation of abuO led to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuO mutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pump acrD, 8-fold; SMR-type emrE homolog, 12-fold; and major facilitator superfamily [MFS]-type ampG homolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold; ompR, 10.43-fold) in the ΔabuO mutant together with downregulation of rstA (4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P<0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeled abuO promoter suggests regulation of abuO by SoxR in A. baumannii.
Collapse
|
22
|
Functional type 1 secretion system involved in Legionella pneumophila virulence. J Bacteriol 2014; 197:563-71. [PMID: 25422301 DOI: 10.1128/jb.02164-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila is a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires' disease. The involvement of type II and IV secretion systems in the virulence of L. pneumophila is now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle of L. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that the repeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation of L. pneumophila, via its T1SS, in its internalization into host cells.
Collapse
|
23
|
Three antagonistic cyclic di-GMP-catabolizing enzymes promote differential Dot/Icm effector delivery and intracellular survival at the early steps of Legionella pneumophila infection. Infect Immun 2013; 82:1222-33. [PMID: 24379287 DOI: 10.1128/iai.01077-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole.
Collapse
|
24
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 677] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
Affiliation(s)
- Alejandro Beceiro
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña, Spain
| | | | | |
Collapse
|
25
|
Masi M, Pagès JM. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22-33. [PMID: 23569467 PMCID: PMC3617542 DOI: 10.2174/1874285801307010022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps’ overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport.
Collapse
Affiliation(s)
- Muriel Masi
- CNRS-UMR 8619, Institut de Biophysique et de Biochimie Moléculaire et Cellulaire (IBBMC), Université Paris Sud, Orsay, France
| | | |
Collapse
|
26
|
Chaabna Z, Forey F, Reyrolle M, Jarraud S, Atlan D, Fontvieille D, Gilbert C. Molecular diversity and high virulence of Legionella pneumophila strains isolated from biofilms developed within a warm spring of a thermal spa. BMC Microbiol 2013; 13:17. [PMID: 23350929 PMCID: PMC3564684 DOI: 10.1186/1471-2180-13-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/14/2013] [Indexed: 01/13/2023] Open
Abstract
Background Several cases of legionellosis have been diagnosed in the same French thermal spa in 1986, 1994 and 1997. L. pneumophila serogroup 1 (Lp1) strains have been isolated from several patients, but the source of contamination was not identified despite the presence of different Lp1 in water samples of the three natural springs feeding the spa at this period. Results Our strategy was to investigate L. pneumophila (Lp) strains from natural biofilms developed in a sulphur-rich warm spring of this contaminated site. Biofilm analysis revealed the presence of three Lp serogroups (Lp1, Lp10 and Lp12). Surprisingly, Lp10 and Lp12 were not reported in the previous described studies from water samples. Besides, the new seven Lp1 we isolated exhibit a high molecular diversity and have been differentiated in five classes according to their DNA genome patterns obtained by PFGE and mip sequences. It must be noted that these DNA patterns are original and unknown in databases. Interestingly, the 27 Lp environmental strains we isolated display a higher cytotoxicity and virulence towards the amoeba Acanthamoeba castellanii than those of known Lp1 epidemic strains. Conclusion The characteristics of Legionella pneumophila Lp1 strains isolated from the warm spring are in agreement with their presence in biofilms and their probable long-term persistence in this ecosystem.
Collapse
Affiliation(s)
- Zineddine Chaabna
- UMR CARRTEL, Université de Savoie-INRA, Le Bourget du Lac F-73376, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 2013; 374:81-108. [PMID: 23242857 PMCID: PMC3859842 DOI: 10.1007/82_2012_300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for lengthy treatment to cure tuberculosis stems from phenotypic drug resistance, also known as drug tolerance, which has been previously attributed to slowed bacterial growth in vivo. We discuss recent findings that challenge this model and instead implicate macrophage-induced mycobacterial efflux pumps in antimicrobial tolerance. Although mycobacterial efflux pumps may have originally served to protect against environmental toxins, in the pathogenic mycobacteria, they appear to have been repurposed for intracellular growth. In this light, we discuss the potential of efflux pump inhibitors such as verapamil to shorten tuberculosis treatment by their dual inhibition of tolerance and growth.
Collapse
Affiliation(s)
- John D Szumowski
- Department of Medicine (Division of Infectious Diseases), University of Washington, Seattle, WA, USA,
| | | | | | | |
Collapse
|
28
|
Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J, Turner AK, Bellgard MI, La T, Phillips ND, La Ragione RM, Hampson DJ. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454. [PMID: 22947175 PMCID: PMC3532143 DOI: 10.1186/1471-2164-13-454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Reading University, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 2012; 445:219-28. [PMID: 22545684 DOI: 10.1042/bj20120528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments. The molecular mechanisms by which this bacterium detoxifies these chemicals remain poorly understood. In particular, the expression and functions of XMEs (xenobiotic-metabolizing enzymes) that could contribute to chemical detoxification in L. pneumophila have been poorly documented at the molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to detoxify aromatic amine chemicals and grow in their presence. The present study provides a new enzymatic mechanism by which the opportunistic pathogen L. pneumophila biotransforms and detoxifies toxic aromatic chemicals. These data also emphasize the role of XMEs in the environmental adaptation of certain prokaryotes.
Collapse
|
30
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
31
|
TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J Bacteriol 2012; 194:4920-32. [PMID: 22773786 DOI: 10.1128/jb.00793-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rickettsia typhi, the causative agent of murine (endemic) typhus, is an obligate intracellular pathogen with a life cycle involving both vertebrate and invertebrate hosts. In this study, we characterized a gene (RT0218) encoding a C-terminal ankyrin repeat domain-containing protein, named Rickettsia ankyrin repeat protein 1 (RARP-1), and identified it as a secreted effector protein of R. typhi. RT0218 showed differential transcript abundance at various phases of R. typhi intracellular growth. RARP-1 was secreted by R. typhi into the host cytoplasm during in vitro infection of mammalian cells. Transcriptional analysis revealed that RT0218 was cotranscribed with adjacent genes RT0217 (hypothetical protein) and RT0216 (TolC) as a single polycistronic mRNA. Given one of its functions as a facilitator of extracellular protein secretion in some Gram-negative bacterial pathogens, we tested the possible role of TolC in the secretion of RARP-1. Using Escherichia coli C600 and an isogenic tolC insertion mutant as surrogate hosts, our data demonstrate that RARP-1 is secreted in a TolC-dependent manner. Deletion of either the N-terminal signal peptide or the C-terminal ankyrin repeats abolished RARP-1 secretion by wild-type E. coli. Importantly, expression of R. typhi tolC in the E. coli tolC mutant restored the secretion of RARP-1, suggesting that TolC has a role in RARP-1 translocation across the outer membrane. This work implies that the TolC component of the putative type 1 secretion system of R. typhi is involved in the secretion process of RARP-1.
Collapse
|
32
|
Micriamoeba tesseris nov. gen. nov. sp.: a new taxon of free-living small-sized Amoebae non-permissive to virulent Legionellae. Protist 2012; 163:888-902. [PMID: 22677099 DOI: 10.1016/j.protis.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 11/22/2022]
Abstract
Investigation of soil amoebae in 11 cooling towers allowed us to isolate a major unknown small-sized amoeba population (SZA). However, SZA did not appear to be specific to cooling tower ecosystems since they are also a major amoeba population found in muds isolated from different points of a water treatment plant. The SSU-rDNA sequences from SZA strains did not match any known database sequences, suggesting that SZA constitutes a new amoeba taxon. We isolated and further described one of the SZA that we named Micriamoeba tesseris. The phylogenetic analyses showed that Micriamoeba tesseris belongs to the Amebozoa and branched together with genus Echinamoeba+Vermamoeba vermiformis. Phylogenetic analyses within the Micriamoeba group distinguished different subgroups of Micriamoeba strains according to their origin, i.e. cooling tower or mud. Although Micriamoeba are able to feed on viable E. coli cells, they do not uptake virulent Legionella pneumophila strains, thus enabling them to avoid infection by Legionella. Consequently, Micriamoeba is not directly involved in L. pneumophila multiplication. However, an indirect role of Micriamoeba in Legionella risk is discussed.
Collapse
|
33
|
Schweizer HP. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Expert Opin Drug Discov 2012; 7:633-42. [PMID: 22607346 DOI: 10.1517/17460441.2012.688949] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Bacteria evolved an arsenal of mechanisms to deal with toxic compounds and metabolic stresses, including antimicrobial agents. Efflux pumps are major players in the multidrug resistance of Gram-negative bacteria and pose major hurdles in the drug discovery process. However, recent advances in our understanding of efflux in these bacteria provide opportunities and assets for drug discovery. AREAS COVERED This review provides an overview of drug efflux in Gram-negative bacteria and its role in antimicrobial resistance, stress responses and other biological processes such as biofilm formation, and virulence. The discussion includes comments on the significance of synergy between a low-permeability outer membrane and efflux, notably the role of porins and lipopolysaccharide. The author then summarizes efforts aimed at inhibiting efflux pumps as a means to extend the utility of clinically useful antibiotics. This includes highlights of identification and characterization of small molecule efflux pump inhibitors (EPIs) from natural and synthetic sources, as well as novel strategies such as gene silencing and inhibitory antibodies. EXPERT OPINION Options for treating infections caused by multidrug-resistant bacteria are limited. Given the attractiveness of the therapeutic potential of efflux pump inhibition, further studies exploring novel strategies to interfere with efflux pump expression and function are warranted. This includes rational EPI design facilitated by pump structure information, exploitation of genetically defined efflux-proficient and efflux-compromised strain panels and non-traditional approaches such as pump inhibition by gene silencing, antibodies and perhaps even phage.
Collapse
Affiliation(s)
- Herbert P Schweizer
- Colorado State University, IDRC at Foothills Campus, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80523-0922, USA.
| |
Collapse
|
34
|
Abstract
The ability of bacteria to transport proteins across their membranes is integral for interaction with their environment. Distinct families of secretion systems mediate bacterial protein secretion. The human pathogen, Coxiella burnetii encodes components of the Sec-dependent secretion pathway, an export system used for type IV pilus assembly, and a complete type IV secretion system. The type IVB secretion system in C. burnetii is functionally analogous to the Legionella pneumophila Dot/Icm secretion system. Both L. pneumophila and C. burnetii require the Dot/Icm apparatus for intracellular replication. The Dot/Icm secretion system facilitates the translocation of many bacterial effector proteins across the bacterial and vacuole membranes to enter the host cytoplasm where the effector proteins mediate their specific activities to manipulate a variety of host cell processes. Several studies have identified cohorts of C. burnetii Dot/Icm effector proteins that are predicted to be involved in modulation of host cell functions. This chapter focuses specifically on these secretion systems and the role they may play during C. burnetii replication in eukaryotic host cells.
Collapse
|
35
|
Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2:189. [PMID: 21954395 PMCID: PMC3174397 DOI: 10.3389/fmicb.2011.00189] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023] Open
Abstract
TolC is an archetypal member of the outer membrane efflux protein (OEP) family. These proteins are involved in export of small molecules and toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse environments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | | | | | | |
Collapse
|
36
|
Staron P, Forchhammer K, Maldener I. Novel ATP-driven pathway of glycolipid export involving TolC protein. J Biol Chem 2011; 286:38202-38210. [PMID: 21917923 DOI: 10.1074/jbc.m111.269332] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon depletion of combined nitrogen, N(2)-fixing heterocysts are formed from vegetative cells in the case of the filamentous cyanobacterium Anabaena sp. strain PCC 7120. A heterocyst-specific layer composed of glycolipids (heterocyst envelope glycolipids (HGLs)) that functions as an O(2) diffusion barrier is deposited over the heterocyst outer membrane and is surrounded by an outermost heterocyst polysaccharide envelope. Mutations in any gene of the devBCA operon or tolC result in the absence of the HGL layer, preventing growth on N(2) used as the sole nitrogen source. However, those mutants do not have impaired HGL synthesis. In this study, we show that DevBCA and TolC form an ATP-driven efflux pump required for the export of HGLs across the Gram-negative cell wall. By performing protein-protein interaction studies (in vivo formaldehyde cross-linking, surface plasmon resonance, and isothermal titration calorimetry), we determined the kinetics and stoichiometric relations for the transport process. For sufficient glycolipid export, the membrane fusion protein DevB had to be in a hexameric form to connect the inner membrane factor DevC and the outer membrane factor TolC. A mutation that impaired the ability of DevB to form a hexameric arrangement abolished the ability of DevC to recognize its substrate. The physiological relevance of a hexameric DevB is shown in complementation studies. We provide insights into a novel pathway of glycolipid export across the Gram-negative cell wall.
Collapse
Affiliation(s)
- Peter Staron
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
37
|
The surfactant of Legionella pneumophila Is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species. J Bacteriol 2011; 193:5971-84. [PMID: 21890700 DOI: 10.1128/jb.05405-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment.
Collapse
|
38
|
Deininger KNW, Horikawa A, Kitko RD, Tatsumi R, Rosner JL, Wachi M, Slonczewski JL. A requirement of TolC and MDR efflux pumps for acid adaptation and GadAB induction in Escherichia coli. PLoS One 2011; 6:e18960. [PMID: 21541325 PMCID: PMC3082540 DOI: 10.1371/journal.pone.0018960] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/14/2011] [Indexed: 12/04/2022] Open
Abstract
Background The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown. Methods and Principal Findings TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 105-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5–6.0, but not at pH 6.5–8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5. Conclusions TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.
Collapse
Affiliation(s)
| | - Akina Horikawa
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryan D. Kitko
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Ryoko Tatsumi
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Judah L. Rosner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaaki Wachi
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Joan L. Slonczewski
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Weissenmayer BA, Prendergast JGD, Lohan AJ, Loftus BJ. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 2011; 6:e17570. [PMID: 21408607 PMCID: PMC3048289 DOI: 10.1371/journal.pone.0017570] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
Second generation sequencing has prompted a number of groups to re-interrogate the transcriptomes of several bacterial and archaeal species. One of the central findings has been the identification of complex networks of small non-coding RNAs that play central roles in transcriptional regulation in all growth conditions and for the pathogen's interaction with and survival within host cells. Legionella pneumophila is a gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila during exponential and post-exponential broth growth and during the replicative and transmissive phase of infection inside A. castellanii. We extend previous microarray based studies as well as uncovering evidence of a complex regulatory architecture underpinned by numerous non-coding RNAs. Over seventy new non-coding RNAs could be identified; many of them appear to be strain specific and in configurations not previously reported. We discover a family of non-coding RNAs preferentially expressed during infection conditions and identify a second copy of 6S RNA in L. pneumophila. We show that the newly discovered putative 6S RNA as well as a number of other non-coding RNAs show evidence for antisense transcription. The nature and extent of the non-coding RNAs and their expression patterns suggests that these may well play central roles in the regulation of Legionella spp. specific traits and offer clues as to how L. pneumophila adapts to its intracellular niche. The expression profiles outlined in the study have been deposited into Genbank's Gene Expression Omnibus (GEO) database under the series accession GSE27232.
Collapse
Affiliation(s)
| | | | - Amanda J. Lohan
- UCD Conway Institute for Biomolecular and Biomedical Research, Dublin, Ireland
| | - Brendan J. Loftus
- UCD Conway Institute for Biomolecular and Biomedical Research, Dublin, Ireland
| |
Collapse
|
40
|
Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 2011; 79:1936-50. [PMID: 21321072 DOI: 10.1128/iai.00805-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila is the etiological agent of Legionnaires' disease. Crucial to the pathogenesis of this intracellular pathogen is its ability to subvert host cell defenses, permitting intracellular replication in specialized vacuoles within host cells. The Dot/Icm type IV secretion system (T4SS), which translocates a large number of bacterial effectors into host cell, is absolutely required for rerouting the Legionella phagosome. Many Legionella effectors display distinctive eukaryotic domains, among which are protein kinase domains. In silico analysis and in vitro phosphorylation assays identified five functional protein kinases, LegK1 to LegK5, encoded by the epidemic L. pneumophila Lens strain. Except for LegK5, the Legionella protein kinases are all T4SS effectors. LegK2 plays a key role in bacterial virulence, as demonstrated by gene inactivation. The legK2 mutant containing vacuoles displays less-efficient recruitment of endoplasmic reticulum markers, which results in delayed intracellular replication. Considering that a kinase-dead substitution mutant of legK2 exhibits the same virulence defects, we highlight here a new molecular mechanism, namely, protein phosphorylation, developed by L. pneumophila to establish a replicative niche and evade host cell defenses.
Collapse
|
41
|
Abstract
The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC-dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD(+) and high NADH/NAD(+) ratios. The increased amounts of PspA and decreased rates of NADH oxidation in Delta tolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The Delta tolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.
Collapse
Affiliation(s)
- Girija Dhamdhere
- Department of Chemistry and Biochemistry University of Oklahoma 620 Parrington Oval, Room 208 Norman, OK 73019
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry University of Oklahoma 620 Parrington Oval, Room 208 Norman, OK 73019
| |
Collapse
|
42
|
Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 2010; 11:1403-12. [PMID: 20480026 PMCID: PMC2871122 DOI: 10.3390/ijms11041403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/28/2010] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
The inducible Mar phenotype of Escherichia coli is associated with increased tolerance to multiple hydrophobic antibiotics as well as some highly hydrophobic organic solvents such as cyclohexane, mediated mainly through the AcrAB/TolC efflux system. The influence of water miscible alcohols ethanol and 1-propanol on a Mar constitutive mutant and a mar deletion mutant of E. coli K-12, as well as the corresponding strains carrying the additional acrAB deletion, was investigated. In contrast to hydrophobic solvents, all strains were killed in exponential phase by 1-propanol and ethanol at rates comparable to the parent strain. Thus, the Mar phenotype does not protect E. coli from killing by these more polar solvents. Surprisingly, AcrAB does not contribute to an increased alcohol tolerance. In addition, sodium salicylate, at concentrations known to induce the mar operon, was unable to increase 1-propanol or ethanol tolerance. Rather, the toxicity of both solvents was increased in the presence of sodium salicylate. Collectively, the results imply that the resilience of E. coli to water miscible alcohols, in contrast to more hydrophobic solvents, does not depend upon the AcrAB/TolC efflux system, and suggests a lower limit for substrate molecular size and functionality. Implications for the application of microbiological systems in environments containing high contents of water miscible organic solvents, e.g., phage display screening, are discussed.
Collapse
|