1
|
Kim S, Kang SW, Kim SE, Kim HJ, Kim SA, Lee YW, Kim EY, Shin C, Lee HW. Genome-wide identification and functional validation of the WW domain containing oxidoreductase gene associated with sleep duration. Sci Rep 2025; 15:5552. [PMID: 39952983 PMCID: PMC11828923 DOI: 10.1038/s41598-024-81158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
Individual differences in sleep duration have been reported, and genetic components of sleep duration have been identified showing various heritability. To identify genetic variants that contribute to sleep duration, we conducted a human genome-wide identification on sleep duration and performed confirmatory experiments using a Drosophila model. Genome-wide association study in human was analyzed to determine the association of the genetic variants with self-aware sleep duration from two community-based cohort, Ansan (cohort 1, n = 4635) and Ansung (cohort 2, n = 4205), recruited from the Korean Genome and Epidemiology Study. Individual single nucleotide variants (rs16948804 and rs4887991) in the WW domain containing oxidoreductase (WWOX) gene were associated with self-aware sleep duration in human (p-values, 1.11 × 10- 7 and 2.05 × 10- 7, retrospectively). To examine the functional relevance of the WWOX gene identified in the genome-wide association study, we analyzed the sleep duration of Drosophila loss-of-function mutants. The deletion of Wwox in flies reduced sleep duration and quality with average bout length during daytime and increased night-time sleep duration (all of p-values < 0.01). Our findings suggested that WWOX expression is associated with sleep duration in both humans and Drosophila and genetic factors play a role in inter-individual variability in sleep characteristics.
Collapse
Affiliation(s)
- Soriul Kim
- Department of Paramedicine, Seowon University, Cheongju, South Korea
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Song E Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Hyeon Jin Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Department of Neurology, Asan Medical Center, Seoul, South Korea
| | - Sol Ah Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Yae Won Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea.
- Institute of Human Genomic Study, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hyang Woon Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
- Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul, South Korea.
- Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Zeng Z, Abdelwahid E, Chen W, Ascoli C, Pham T, Jacobson JR, Dudek SM, Natarajan V, Aldaz CM, Machado RF, Singla S. Endothelial knockdown of the tumor suppressor, WWOX, increases inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L687-L697. [PMID: 38563965 PMCID: PMC11380939 DOI: 10.1152/ajplung.00277.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1β, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, the First Affiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Eltyeb Abdelwahid
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Trinh Pham
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - C Marcelo Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
5
|
Repudi S, Kustanovich I, Abu‐Swai S, Stern S, Aqeilan RI. Neonatal neuronal WWOX gene therapy rescues Wwox null phenotypes. EMBO Mol Med 2021; 13:e14599. [PMID: 34747138 PMCID: PMC8649866 DOI: 10.15252/emmm.202114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | | | - Sara Abu‐Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
6
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
7
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
8
|
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. J Virol 2021; 95:JVI.00121-21. [PMID: 33536174 PMCID: PMC8103691 DOI: 10.1128/jvi.00121-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.
Collapse
|
9
|
Zeng Z, Chen W, Moshensky A, Shakir Z, Khan R, Crotty Alexander LE, Ware LB, Aldaz CM, Jacobson JR, Dudek SM, Natarajan V, Machado RF, Singla S. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2021; 64:89-99. [PMID: 33058734 PMCID: PMC7780991 DOI: 10.1165/rcmb.2020-0145oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | - Zaid Shakir
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Raheel Khan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | | | - C. M. Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas; and
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
10
|
Aldaz CM, Hussain T. WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E8922. [PMID: 33255508 PMCID: PMC7727818 DOI: 10.3390/ijms21238922] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.
Collapse
Affiliation(s)
- C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA;
| | | |
Collapse
|
11
|
Chou YT, Lai FJ, Chang NS, Hsu LJ. Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Front Cell Dev Biol 2020; 8:558432. [PMID: 33195192 PMCID: PMC7652735 DOI: 10.3389/fcell.2020.558432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Deficiency of tumor suppressor WW domain-containing oxidoreductase (WWOX) in humans and animals leads to growth retardation and premature death during postnatal developmental stages. Skin integrity is essential for organism survival due to its protection against dehydration and hypothermia. Our previous report demonstrated that human epidermal suprabasal cells express WWOX protein, and the expression is gradually increased toward the superficial differentiated cells prior to cornification. Here, we investigated whether abnormal skin development and homeostasis occur under Wwox deficiency that may correlate with early death. We determined that keratinocyte proliferation and differentiation were decreased, while apoptosis was increased in Wwox–/– mouse epidermis and primary keratinocyte cultures and WWOX-knockdown human HaCaT cells. Without WWOX, progenitor cells in hair follicle junctional zone underwent massive proliferation in early postnatal developmental stages and the stem/progenitor cell pools were depleted at postnatal day 21. These events lead to significantly decreased epidermal thickness, dehydration state, and delayed hair development in Wwox–/– mouse skin, which is associated with downregulation of prosurvival MEK/ERK signaling in Wwox–/– keratinocytes. Moreover, Wwox depletion results in substantial downregulation of dermal collagen contents in mice. Notably, Wwox–/– mice exhibit severe loss of subcutaneous adipose tissue and significant hypothermia. Collectively, our knockout mouse model supports the validity of WWOX in assisting epidermal and adipose homeostasis, and the involvement of prosurvival ERK pathway in the homeostatic responses regulated by WWOX.
Collapse
Affiliation(s)
- Ying-Tsen Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Tochigi Y, Takamatsu Y, Nakane J, Nakai R, Katayama K, Suzuki H. Loss of Wwox Causes Defective Development of Cerebral Cortex with Hypomyelination in a Rat Model of Lethal Dwarfism with Epilepsy. Int J Mol Sci 2019; 20:ijms20143596. [PMID: 31340538 PMCID: PMC6678113 DOI: 10.3390/ijms20143596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.
Collapse
Affiliation(s)
- Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Yutaka Takamatsu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Jun Nakane
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Rika Nakai
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan.
| |
Collapse
|
13
|
McBride KM, Kil H, Mu Y, Plummer JB, Lee J, Zelazowski MJ, Sebastian M, Abba MC, Aldaz CM. Wwox Deletion in Mouse B Cells Leads to Genomic Instability, Neoplastic Transformation, and Monoclonal Gammopathies. Front Oncol 2019; 9:517. [PMID: 31275852 PMCID: PMC6593956 DOI: 10.3389/fonc.2019.00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
WWOX (WW domain containing oxidoreductase) expression loss is common in various cancers and characteristic of poor prognosis. Deletions, translocations, and loss of expression affecting the WWOX gene are a common feature of various B cell neoplasms such as certain B cell lymphomas and multiple myeloma. However, the role of this common abnormality in B cell tumor initiation and/or progression has not been defined. In this study, we conditionally deleted Wwox early in B cell development by means of breeding Cd19-Cre transgenic mice crossed to Wwox floxed mice (Cd19 Wwox KO). We observed a significant reduced survival in Cd19 Wwox KO mice and the development of B cell neoplasms including B cell lymphomas, plasma cell neoplasias characterized by increased numbers of CD138+ populations as well as monoclonal gammopathies detected by serum protein electrophoresis. To investigate whether Wwox loss could play a role in genomic instability, we analyzed DNA repair functions during immunoglobulin class switch joining between DNA segments in antibody genes. While class switch recombination (CSR) was only slightly impaired, Wwox deficiency resulted in a dramatic shift of double strand break (DSB) repair from normal classical-NHEJ toward the microhomology-mediated alternative-NHEJ pathway, a pathway associated with chromosome translocations and genome instability. Consistent with this, Wwox deficiency resulted in a marked increase of spontaneous translocations during CSR. This work defines for the first time a role for Wwox for maintaining B cell genome stability during a process that can promote neoplastic transformation and monoclonal gammopathies.
Collapse
Affiliation(s)
- Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maciej J Zelazowski
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Manu Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- School of Medicine, Center for Immunological Basic and Applied Research (CINIBA), National University of La Plata (UNLP), La Plata, Argentina
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
14
|
Li J, Feng X, Li C, Liu J, Li P, Wang R, Chen H, Liu P. Downregulation of WW domain-containing oxidoreductase leads to tamoxifen-resistance by the inactivation of Hippo signaling. Exp Biol Med (Maywood) 2019; 244:972-982. [PMID: 31155927 DOI: 10.1177/1535370219854678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acquired tamoxifen-resistance is an important cause of death in patients with hormone-dependent breast tumors. Therefore, understanding the molecular mechanisms underlying the development of tamoxifen-resistance is critical for successful endocrine therapy. This study aimed to define the role of WW domain-containing oxidoreductase (WWOX) in acquired tamoxifen-resistance. Our results show that low WWOX expression was significantly related to tamoxifen-resistance. Moreover, WWOX-knockdown increased resistance to tamoxifen, while WWOX overexpression decreased the resistance. Furthermore, WWOX silencing decreased Yes-associated protein (YAP) phosphorylation and increased YAP nuclear translocation. Finally, YAP silencing decreased tamoxifen-resistance in WWOX-knockdown cells. Our findings demonstrate that WWOX downregulation can lead to the development of tamoxifen-resistance by inactivating Hippo signaling. Thus, WWOX might be a valuable target and prognostic marker for tamoxifen-resistance. Impact statement Understanding the molecular pathways leading to the development of tamoxifen-resistance is an important research focus as acquired tamoxifen-resistance is the main cause of death in patients with benign primary prognosis. Although WW domain-containing oxidoreductase (WWOX) has been related to breast tumorigenesis, its role in acquired tamoxifen-resistance has not yet been demonstrated. Our findings show that WWOX might be a valuable therapeutic target and prognostic marker for tamoxifen-resistance.
Collapse
Affiliation(s)
- Juan Li
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,1 *Co-first authors
| | - Xuefei Feng
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,1 *Co-first authors
| | - Canyu Li
- 3 Health science center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jie Liu
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Pingping Li
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ruiqi Wang
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - He Chen
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peijun Liu
- 1 Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,2 Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
15
|
Hussain T, Lee J, Abba MC, Chen J, Aldaz CM. Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Front Oncol 2018; 8:591. [PMID: 30619736 PMCID: PMC6300487 DOI: 10.3389/fonc.2018.00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
It has become clear from multiple studies that WWOX (WW domain-containing oxidoreductase) operates as a "non-classical" tumor suppressor of significant relevance in cancer progression. Additionally, WWOX has been recognized for its role in a much wider array of human pathologies including metabolic conditions and central nervous system related syndromes. A myriad of putative functional roles has been attributed to WWOX mostly through the identification of various binding proteins. However, the reality is that much remains to be learned on the key relevant functions of WWOX in the normal cell. Here we employed a Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach in order to better define direct WWOX protein interactors and by extension interaction with multiprotein complexes under physiological conditions on a proteomic scale. This work led to the identification of both well-known, but more importantly novel high confidence WWOX interactors, suggesting the involvement of WWOX in specific biological and molecular processes while delineating a comprehensive portrait of WWOX protein interactome. Of particular relevance is WWOX interaction with key proteins from the endoplasmic reticulum (ER), Golgi, late endosomes, protein transport, and lysosomes networks such as SEC23IP, SCAMP3, and VOPP1. These binding partners harbor specific PPXY motifs which directly interact with the amino-terminal WW1 domain of WWOX. Pathway analysis of WWOX interactors identified a significant enrichment of metabolic pathways associated with proteins, carbohydrates, and lipids breakdown. Thus, suggesting that WWOX likely plays relevant roles in glycolysis, fatty acid degradation and other pathways that converge primarily in Acetyl-CoA generation, a fundamental molecule not only as the entry point to the tricarboxylic acid (TCA) cycle for energy production, but also as the key building block for de novo synthesis of lipids and amino acids. Our results provide a significant lead on subsets of protein partners and enzymatic complexes with which full-length WWOX protein interacts with in order to carry out its metabolic and other biological functions while also becoming a valuable resource for further mechanistic studies.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata, Argentina
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
16
|
Davids M, Markello T, Wolfe LA, Chepa-Lotrea X, Tifft CJ, Gahl WA, Malicdan MCV. Early infantile-onset epileptic encephalopathy 28 due to a homozygous microdeletion involving the WWOX gene in a region of uniparental disomy. Hum Mutat 2018; 40:42-47. [PMID: 30362252 DOI: 10.1002/humu.23675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/25/2018] [Accepted: 10/21/2018] [Indexed: 01/28/2023]
Abstract
The genetic etiologies of many rare disorders, including early infantile epileptic encephalopathies, are largely undiagnosed. A 6-year-old girl was admitted to the National Institutes of Health Undiagnosed Diseases Program with profound intellectual disability, infantile-onset seizures, chronic respiratory failure, facial dysmorphisms, skeletal abnormalities, and atrial septum defect. A large region of homozygosity was discovered on chromosome 16, spanning 16q22.1-16q24.3' caused by uniparental disomy (UPD) that included a maternally inherited homozygous microdeletion covering exon 6 of WWOX (NM_016373.3). mRNA expression analysis revealed that the deletion led to nonsense-mediated decay of the NM_016373.3 transcript; the exon 6 of an alternative transcript (NM_130791.3), lacking the short-chain dehydrogenase, was utilized. The microdeletion in WWOX explains the seizures and intellectual disability, while pathogenic variants in another gene, HSPG2, are likely responsible for the patient's skeletal abnormalities. This report describes a rare autosomal recessive disorder with multiple genetic etiologies, one of which involves UPD.
Collapse
Affiliation(s)
- Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland.,Office of the Clinical Director, NHGRI, NIH, Bethesda, Maryland
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland.,Office of the Clinical Director, NHGRI, NIH, Bethesda, Maryland
| | - Xenia Chepa-Lotrea
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland.,Office of the Clinical Director, NHGRI, NIH, Bethesda, Maryland
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland.,Office of the Clinical Director, NHGRI, NIH, Bethesda, Maryland
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland.,Office of the Clinical Director, NHGRI, NIH, Bethesda, Maryland
| |
Collapse
|
17
|
Tanna M, Aqeilan RI. Modeling WWOX Loss of Function in vivo: What Have We Learned? Front Oncol 2018; 8:420. [PMID: 30370248 PMCID: PMC6194312 DOI: 10.3389/fonc.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The WW domain–containing oxidoreductase (WWOX) gene encompasses a common fragile sites (CFS) known as FRA16D, and is implicated in cancer. WWOX encodes a 46kDa adaptor protein, which contains two N-terminal WW–domains and a catalytic domain at its C–terminus homologous to short–chain dehydrogenase/reductase (SDR) family proteins. A high sequence conservation of WWOX orthologues from insects to rodents and ultimately humans suggest its significant role in physiology and homeostasis. Indeed, data obtained from several animal models including flies, fish, and rodents demonstrate WWOX in vivo requirement and that its deregulation results in severe pathological consequences including growth retardation, post–natal lethality, neuropathy, metabolic disorders, and tumorigenesis. Altogether, these findings set WWOX as an essential protein that is necessary to maintain normal cellular/physiological homeostasis. Here, we review and discuss lessons and outcomes learned from modeling loss of WWOX expression in vivo.
Collapse
Affiliation(s)
- Mayur Tanna
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
18
|
Hussain T, Kil H, Hattiangady B, Lee J, Kodali M, Shuai B, Attaluri S, Takata Y, Shen J, Abba MC, Shetty AK, Aldaz CM. Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus. Neurobiol Dis 2018; 121:163-176. [PMID: 30290271 DOI: 10.1016/j.nbd.2018.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- CINIBA, School of Medicine, UNLP, La Plata, Argentina
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| |
Collapse
|
19
|
Saigo C, Kito Y, Takeuchi T. Cancerous Protein Network That Inhibits the Tumor Suppressor Function of WW Domain-Containing Oxidoreductase (WWOX) by Aberrantly Expressed Molecules. Front Oncol 2018; 8:350. [PMID: 30214895 PMCID: PMC6125347 DOI: 10.3389/fonc.2018.00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Recent findings indicate that the WW domain-containing oxidoreductase (WWOX) is a tumor suppressor protein that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. WWOX protein mediates multiple signaling networks that suppress carcinogenesis through binding of its first WW domain to various cancer-associated proteins, i.e., p73, AP-2γ, and others. Although the tumor suppressor property of WWOX is inarguable, WWOX is not inactivated in the manner characteristic of the canonical Knudson hypothesis. Impairment of both alleles of WWOX is thought to be a rare event, only occurring in a few cancer cell lines. How is the tumor suppressor function of WWOX impaired in cancer cells? Recent advances highlight that a small transmembrane protein possessing a PPxY motif, called TMEM207, and its relatives are aberrantly expressed in various cancer cells and hinder the tumor suppressor function of WWOX through inhibiting its WW domain. Here, we review the recent findings related to the pathobiological properties of TMEM207 and its relatives based on clinicopathological and experimental pathological studies.
Collapse
Affiliation(s)
- Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
20
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
22
|
Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ, Gabra H. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis 2017; 8:e2955. [PMID: 28749468 PMCID: PMC5550887 DOI: 10.1038/cddis.2017.346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Abstract
There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Szymon Janczar
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Yi Xiao
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Edward Curry
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Mingjun Sun
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisa Zanini
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Adam Jw Paige
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Life Sciences, University of Bedfordshire, Luton, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Clinical Discovery Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| |
Collapse
|
23
|
Handa H, Sasaki Y, Hattori H, Alkebsi L, Kasamatsu T, Saitoh T, Mitsui T, Yokohama A, Tsukamoto N, Matsumoto M, Murakami H. Recurrent alterations of the WW domain containing oxidoreductase gene spanning the common fragile site FRA16D in multiple myeloma and monoclonal gammopathy of undetermined significance. Oncol Lett 2017; 14:4372-4378. [PMID: 28943951 DOI: 10.3892/ol.2017.6672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The putative tumor suppressor gene WW domain containing oxidoreductase (WWOX) spans a common fragile site (CFS) on chromosome 16q23.3. CFSs are regions of profound genomic instability and sites for genomic deletions in cancer cells. Therefore, WWOX is structurally altered in diverse nonhematological cancer types. However, the function of WWOX in hematological tumor types, including multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) remains unclear. WWOX expression and methylation in patients with MM, MGUS, or noninvasive lymphoma (control) were analyzed using reverse transcription- and methylation specific-polymerase chain reaction analysis. Variant WWOX transcripts were detected in 65 and 50% of patients with MM and MGUS, respectively, compared with 10% of controls. WWOX expression was higher in patients with MM, and WWOX promoter methylation was detected in 35% of patients with MM compared with 5% of patients with MGUS and 4% of controls. WWOX promoter methylation was significantly associated with shorter overall survival time of patients, in particular those with MM who were never treated with novel agents. Genomic alterations, including deletions and promoter methylation that affect WWOX expression occur early and may be involved in the pathogenesis, progression, and prognosis of MM.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yoshiko Sasaki
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hikaru Hattori
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lobna Alkebsi
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takeki Mitsui
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma 377-0280, Japan
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
24
|
Schrock MS, Batar B, Lee J, Druck T, Ferguson B, Cho JH, Akakpo K, Hagrass H, Heerema NA, Xia F, Parvin JD, Aldaz CM, Huebner K. Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 2017; 36:2215-2227. [PMID: 27869163 PMCID: PMC5398941 DOI: 10.1038/onc.2016.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1-Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers, dysregulates DSB repair, enhancing efficiency of likely mutagenic repair, and enabling radiation and cisplatin treatment resistance.
Collapse
Affiliation(s)
- M S Schrock
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Batar
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Lee
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - T Druck
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Ferguson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - J H Cho
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - K Akakpo
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - H Hagrass
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - N A Heerema
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - F Xia
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J D Parvin
- Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C M Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - K Huebner
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
25
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|
27
|
Choo A, O'Keefe LV, Lee CS, Gregory SL, Shaukat Z, Colella A, Lee K, Denton D, Richards RI. Tumor suppressor WWOX moderates the mitochondrial respiratory complex. Genes Chromosomes Cancer 2015; 54:745-61. [PMID: 26390919 DOI: 10.1002/gcc.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.
Collapse
Affiliation(s)
- Amanda Choo
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen L Gregory
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zeeshan Shaukat
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Colella
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kristie Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Donna Denton
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert I Richards
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
28
|
O’Keefe LV, Lee CS, Choo A, Richards RI. Tumor Suppressor WWOX Contributes to the Elimination of Tumorigenic Cells in Drosophila melanogaster. PLoS One 2015; 10:e0136356. [PMID: 26302329 PMCID: PMC4547717 DOI: 10.1371/journal.pone.0136356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.
Collapse
Affiliation(s)
- Louise V. O’Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert I. Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
29
|
Del Mare S, Aqeilan RI. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function. Sci Rep 2015; 5:12959. [PMID: 26256646 PMCID: PMC4542681 DOI: 10.1038/srep12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis bothin vitroandin vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| |
Collapse
|
30
|
Li J, Liu J, Ren Y, Liu P. Roles of the WWOX in pathogenesis and endocrine therapy of breast cancer. Exp Biol Med (Maywood) 2015; 240:324-8. [PMID: 25476151 PMCID: PMC4935229 DOI: 10.1177/1535370214561587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Breast cancer is one of the most common malignancies, often with complicated etiology and poor clinical outcome. In recent years, a critical role has emerged for the WW domain-containing oxidoreductase (WWOX) in breast cancer. WWOX is a tumor suppressor; it is deleted or attenuated in 29-63.2% of breast cancer tissues and is associated with a poor prognosis of breast cancer patients. WWOX heterozygous knockout mice show a higher incidence of mammary tumors and impaired branching morphogenesis. At the molecular level, WWOX interacts with AP2γ, ErbB4, SMAD3, and WBP2 suppressing their transcription activities in breast cancer cell lines. This review provides comprehensive insights into the current knowledge of WWOX activities in the pathogenesis and endocrine therapy of breast cancer.
Collapse
Affiliation(s)
- Juan Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Yu Ren
- Department of Surgical Oncology, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
31
|
Baryła I, Styczeń-Binkowska E, Bednarek AK. Alteration of WWOX in human cancer: a clinical view. Exp Biol Med (Maywood) 2015; 240:305-14. [PMID: 25681467 DOI: 10.1177/1535370214561953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WWOX gene is located in FRA16D, the highly affected chromosomal fragile site. Its tumor suppressor activity has been proposed on a basis of numerous genomic alterations reported in chromosome 16q23.3-24.1 locus. WWOX is affected in many cancers, showing as high as 80% loss of heterozygosity in breast tumors. Unlike most tumor suppressors impairing of both alleles of WWOX is very rare. Despite cellular and animal models information on a WWOX role in cancer tissue is limited and sometimes confusing. This review summarizes information on WWOX in human tumors.
Collapse
Affiliation(s)
- Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
32
|
El-Hage P, Petitalot A, Monsoro-Burq AH, Maczkowiak F, Driouch K, Formstecher E, Camonis J, Sabbah M, Bièche I, Lidereau R, Lallemand F. The Tumor-Suppressor WWOX and HDAC3 Inhibit the Transcriptional Activity of the β-Catenin Coactivator BCL9-2 in Breast Cancer Cells. Mol Cancer Res 2015; 13:902-12. [PMID: 25678599 DOI: 10.1158/1541-7786.mcr-14-0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The WW domain containing oxidoreductase (WWOX) has recently been shown to inhibit of the Wnt/β-catenin pathway by preventing the nuclear import of disheveled 2 (DVL2) in human breast cancer cells. Here, it is revealed that WWOX also interacts with the BCL9-2, a cofactor of the Wnt/β-catenin pathway, to enhance the activity of the β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer factors family) transcription factor complexes. By using both a luciferase assay in MCF-7 cells and a Xenopus secondary axis induction assay, it was demonstrated that WWOX inhibits the BCL9-2 function in Wnt/β-catenin signaling. WWOX does not affect the BCL9-2-β-catenin association and colocalizes with BCL9-2 and β-catenin in the nucleus of the MCF-7 cells. Moreover, WWOX inhibits the β-catenin-TCF1 interaction. Further examination found that HDAC3 associates with BCL9-2, enhances the inhibitory effect of WWOX on BCL9-2 transcriptional activity, and promotes the WWOX-BCL9-2 interaction, independent of its deacetylase activity. However, WWOX does not influence the HDAC3-BCL9-2 interaction. Altogether, these results strongly indicate that nuclear WWOX interacts with BCL9-2 associated with β-catenin only when BCL9-2 is in complex with HDAC3 and inhibits its transcriptional activity, in part, by inhibiting the β-catenin-TCF1 interaction. The promotion of the WWOX-BCL9-2 interaction by HDAC3, independent of its deacetylase activity, represents a new mechanism by which this HDAC inhibits transcription. IMPLICATIONS The inhibition of the transcriptional activity of BCL9-2 by WWOX and HDAC3 constitutes a new molecular mechanism and provides new insight for a broad range of cancers.
Collapse
Affiliation(s)
- Perla El-Hage
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Ambre Petitalot
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Anne-Hélène Monsoro-Burq
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Frédérique Maczkowiak
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Keltouma Driouch
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | | | | | - Michèle Sabbah
- INSERM U938, hôpital Saint-Antoine, Université Pierre et Marie Curie, Paris, France
| | - Ivan Bièche
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Rosette Lidereau
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - François Lallemand
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France.
| |
Collapse
|
33
|
Tsuruwaka Y, Konishi M, Shimada E. Loss of wwox expression in zebrafish embryos causes edema and alters Ca(2+) dynamics. PeerJ 2015; 3:e727. [PMID: 25649963 PMCID: PMC4312067 DOI: 10.7717/peerj.727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of the WW domain-containing oxidoreductase (wwox) gene in the embryonic development of zebrafish, with particular emphasis on intracellular Ca2+ dynamics because Ca2+ is an important intracellular messenger. Comparisons between zebrafish wwox and human WWOX sequences identified highly conserved domain structures. wwox was expressed in developing heart tissues in the zebrafish embryo. Moreover, wwox knockdown induced pericardial edema with similarities to conditions observed in human breast cancer. The wwox knockdown embryos with the edema died within a week. High Ca2+ levels were observed at the boundary between the edema and yolk in wwox knockdown embryos.
Collapse
Affiliation(s)
- Yusuke Tsuruwaka
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , Yokosuka , Japan
| | - Masataka Konishi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) , Nomi, Ishikawa , Japan
| | - Eriko Shimada
- Department of Animal Science, University of California , Davis, CA , USA
| |
Collapse
|
34
|
Richards RI, Choo A, Lee CS, Dayan S, O'Keefe L. WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp Biol Med (Maywood) 2015; 240:338-44. [PMID: 25595186 DOI: 10.1177/1535370214565990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The WWOX gene spans the common chromosomal fragile site FRA16D that is located within a massive (780 kb) intron. The WWOX gene is very long, at 1.1 Mb, which may contribute to the very low abundance of the full-length 1.4 kb mRNA. Alternative splicing also accounts for a variety of aberrant transcripts, most of which are devoid of C-terminal sequences required for WWOX to act as an oxidoreductase. The mouse WWOX gene also spans a chromosomal fragile site implying some sort of functional relationship that confers a selective advantage. The encoded protein domains of WWOX are conserved through evolution (between humans and Drosophila melanogaster) and include WW domains, an NAD -binding site, short-chain dehydrogenase/reductase enzyme and nuclear compartmentalization signals. This homology has enabled functional analyses in D. melanogaster that demonstrate roles for WWOX in reactive oxygen species regulation and metabolism. Indeed the human WWOX gene is also responsive to altered metabolism. Cancer cells typically exhibit altered metabolism (Warburg effect). Many cancers exhibit FRA16D DNA instability that results in aberrant WWOX expression and is associated with poor prognosis for these cancers. It is therefore thought that aberrant WWOX expression contributes to the altered metabolism in cancer. In addition, others have found that a specific (low-expression) allele of WWOX genotype contributes to cancer predisposition.
Collapse
Affiliation(s)
- Robert I Richards
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Amanda Choo
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Cheng Shoou Lee
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Sonia Dayan
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Louise O'Keefe
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
35
|
Abu-Remaileh M, Aqeilan RI. The tumor suppressor WW domain-containing oxidoreductase modulates cell metabolism. Exp Biol Med (Maywood) 2014; 240:345-50. [PMID: 25491415 DOI: 10.1177/1535370214561956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3-4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91220, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91220, Israel Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Chang Y, Lan YY, Hsiao JR, Chang NS. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2014; 240:329-37. [PMID: 25488911 DOI: 10.1177/1535370214561957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis.
Collapse
Affiliation(s)
- Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
37
|
Aqeilan RI, Abu-Remaileh M, Abu-Odeh M. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability. Cell Mol Life Sci 2014; 71:4589-99. [PMID: 25245215 PMCID: PMC11113097 DOI: 10.1007/s00018-014-1724-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.
Collapse
Affiliation(s)
- Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, 91220, Jerusalem, Israel,
| | | | | |
Collapse
|
38
|
Tumor suppressor WWOX regulates glucose metabolism via HIF1α modulation. Cell Death Differ 2014; 21:1805-14. [PMID: 25012504 DOI: 10.1038/cdd.2014.95] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/27/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently lost in many cancer types. Wwox-deficient mice develop normally but succumb to a lethal hypoglycemia early in life. Here, we identify WWOX as a tumor suppressor with emerging role in regulation of aerobic glycolysis. WWOX controls glycolytic genes' expression through hypoxia-inducible transcription factor 1α (HIF1α) regulation. Specifically, WWOX, via its first WW domain, physically interacts with HIF1α and modulates its levels and transactivation function. Consistent with this notion, Wwox-deficient cells exhibited increased HIF1α levels and activity and displayed increased glucose uptake. Remarkably, WWOX deficiency is associated with enhanced glycolysis and diminished mitochondrial respiration, conditions resembling the 'Warburg effect'. Furthermore, Wwox-deficient cells are more tumorigenic and display increased levels of GLUT1 in vivo. Finally, WWOX expression is inversely correlated with GLUT1 levels in breast cancer samples highlighting WWOX as a modulator of cancer metabolism. Our studies uncover an unforeseen role for the tumor-suppressor WWOX in cancer metabolism.
Collapse
|
39
|
Aldaz CM, Ferguson BW, Abba MC. WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim Biophys Acta Rev Cancer 2014; 1846:188-200. [PMID: 24932569 DOI: 10.1016/j.bbcan.2014.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023]
Abstract
WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFβ/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling in breast cancer. Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism. Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.
Collapse
Affiliation(s)
- C Marcelo Aldaz
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Brent W Ferguson
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Martin C Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
40
|
Iatan I, Choi HY, Ruel I, Reddy MVPL, Kil H, Lee J, Odeh MA, Salah Z, Abu-Remaileh M, Weissglas-Volkov D, Nikkola E, Civelek M, Awan Z, Croce CM, Aqeilan RI, Pajukanta P, Aldaz CM, Genest J. The WWOX gene modulates high-density lipoprotein and lipid metabolism. ACTA ACUST UNITED AC 2014; 7:491-504. [PMID: 24871327 DOI: 10.1161/circgenetics.113.000248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low levels of high-density lipoprotein (HDL) cholesterol constitutes a major risk factor for atherosclerosis. Recent studies from our group reported a genetic association between the WW domain-containing oxidoreductase (WWOX) gene and HDL cholesterol levels. Here, through next-generation resequencing, in vivo functional studies and gene microarray analyses, we investigated the role of WWOX in HDL and lipid metabolism. METHODS AND RESULTS Using next-generation resequencing of the WWOX region, we first identified 8 variants significantly associated and perfectly segregating with the low-HDL trait in 2 multigenerational French Canadian dyslipidemic families. To understand in vivo functions of WWOX, we used liver-specific Wwox(hep-/-) and total Wwox(-/-) mice models, where we found decreased ApoA-I and Abca1 levels in hepatic tissues. Analyses of lipoprotein profiles in Wwox(-/-), but not Wwox(hep-/-) littermates, also showed marked reductions in serum HDL cholesterol concentrations, concordant with the low-HDL findings observed in families. We next obtained evidence of a sex-specific effect in female Wwox(hep-/-) mice, where microarray analyses revealed an increase in plasma triglycerides and altered lipid metabolic pathways. We further identified a significant reduction in ApoA-I and Lpl and an upregulation in Fas, Angptl4, and Lipg, suggesting that the effects of Wwox involve multiple pathways, including cholesterol homeostasis, ApoA-I/ABCA1 pathway, and fatty acid biosynthesis/triglyceride metabolism. CONCLUSIONS Our data indicate that WWOX disruption alters HDL and lipoprotein metabolism through several mechanisms and may account for the low-HDL phenotype observed in families expressing the WWOX variants. These findings thus describe a novel gene involved in cellular lipid homeostasis, which effects may impact atherosclerotic disease development.
Collapse
Affiliation(s)
- Iulia Iatan
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Hong Y Choi
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Isabelle Ruel
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - M V Prasad Linga Reddy
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Hyunsuk Kil
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Jaeho Lee
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Mohammad Abu Odeh
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Zaidoun Salah
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Muhannad Abu-Remaileh
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Daphna Weissglas-Volkov
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Elina Nikkola
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Mete Civelek
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Zuhier Awan
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Carlo M Croce
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Rami I Aqeilan
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Päivi Pajukanta
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - C Marcelo Aldaz
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.)
| | - Jacques Genest
- From the Cardiovascular Research Laboratories, Department of Biochemistry, Faculty of Medicine, Division of Cardiology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada (I.I., H.Y.C., I.R., Z.A., J.G.); Department of Human Genetics (M.V.P.L.R., D.W.-V., E.N., P.P.) and Department of Medicine (M.V.P.L.R., D.W.-V., E.N., P.P.), David Geffen School of Medicine at University of California at Los Angeles; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville (H.K., J.L., C.M.A.); The Lautenberg Cancer Research Center, Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel (M.A.O., M.A.-R., R.I.A.); The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel and Al-Quds-Bard College for Arts and Sciences, Al-Quds University, East Jerusalem-Abu Dis, Palestine (Z.S.); and Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus (M.C., C.M.C., R.I.A.).
| |
Collapse
|
41
|
Abdel-Salam G, Thoenes M, Afifi HH, Körber F, Swan D, Bolz HJ. The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J Rare Dis 2014; 9:12. [PMID: 24456803 PMCID: PMC3918143 DOI: 10.1186/1750-1172-9-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background WWOX, encoding WW domain-containing oxidoreductase, spans FRA16D, the second most common chromosomal fragile site frequently altered in cancers. It is therefore considered a tumor suppressor gene, but its direct implication in cancerogenesis remains controversial. Methods and results By whole-exome sequencing, we identified a homozygous WWOX nonsense mutation, p.Arg54*, in a girl from a consanguineous family with a severe syndrome of growth retardation, microcephaly, epileptic seizures, retinopathy and early death, a phenotype highly similar to the abormalities reported in lde/lde rats with a spontaneous functional null mutation of Wwox. As in rats, no tumors were observed in the patient or heterozygous mutation carriers. Conclusions Our finding, a homozygous loss-of-function germline mutation in WWOX in a patient with a lethal autosomal recessive syndrome, supports an alternative role of WWOX and indicates its importance for human viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanno Jörn Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
42
|
Li J, Liu J, Ren Y, Yang J, Liu P. Common Chromosomal Fragile Site Gene WWOX in Metabolic Disorders and Tumors. Int J Biol Sci 2014; 10:142-8. [PMID: 24520212 PMCID: PMC3920169 DOI: 10.7150/ijbs.7727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/14/2013] [Indexed: 11/14/2022] Open
Abstract
WWOX, a gene that spans the second most common chromosomal fragile site (FRA16D), often exhibits homozygous deletions and translocation breakpoints under multiple cellular stresses induced by extrinsic or intrinsic factors, such as hypoxia, UV, and DNA damage regents. Loss of WWOX is closely related to genomic instability, tumorigenesis, cancer progression and therapy resistance. WWOX heterozygous knockout mice show an increased incidence of spontaneous or induced tumors. WWOX can interact via the WW domain with proteins that possess proline PPxY motifs and is involved in a variety of cellular processes. Accumulating evidence has shown that WWOX that contains a short-chain dehydrogenase/reductase (SDR) domain is involved in steroid metabolism and bone development. Reduced or lost expression of WWOX will lead to development of metabolic disease. In this review, we focus on the roles of WWOX in metabolic disorders and tumors.
Collapse
Affiliation(s)
- Juan Li
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Jie Liu
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Yu Ren
- 2. Department of Surgical Oncology, The First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Jin Yang
- 3. Department of Oncology, The First Affiliated Hospital of Xian Jiaotong University College of Medicine
| | - Peijun Liu
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University College of Medicine
| |
Collapse
|
43
|
Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, Drouot N, Renaud M, Klein FAC, Anheim M, Tranchant C, Mignot C, Mandel JL, Bedford M, Bauer P, Salih MA, Schüle R, Schöls L, Aldaz CM, Koenig M. The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. ACTA ACUST UNITED AC 2013; 137:411-9. [PMID: 24369382 DOI: 10.1093/brain/awt338] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We previously localized a new form of recessive ataxia with generalized tonic-clonic epilepsy and mental retardation to a 19 Mb interval in 16q21-q23 by homozygosity mapping of a large consanguineous Saudi Arabian family. We now report the identification by whole exome sequencing of the missense mutation changing proline 47 into threonine in the first WW domain of the WW domain containing oxidoreductase gene, WWOX, located in the linkage interval. Proline 47 is a highly conserved residue that is part of the WW motif consensus sequence and is part of the hydrophobic core that stabilizes the WW fold. We demonstrate that proline 47 is a key amino acid essential for maintaining the WWOX protein fully functional, with its mutation into a threonine resulting in a loss of peptide interaction for the first WW domain. We also identified another highly conserved homozygous WWOX mutation changing glycine 372 to arginine in a second consanguineous family. The phenotype closely resembled the index family, presenting with generalized tonic-clonic epilepsy, mental retardation and ataxia, but also included prominent upper motor neuron disease. Moreover, we observed that the short-lived Wwox knock-out mouse display spontaneous and audiogenic seizures, a phenotype previously observed in the spontaneous Wwox mutant rat presenting with ataxia and epilepsy, indicating that homozygous WWOX mutations in different species causes cerebellar ataxia associated with epilepsy.
Collapse
Affiliation(s)
- Martial Mallaret
- 1 Department of Neurology, Hôpital de Hautepierre, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferguson BW, Gao X, Zelazowski MJ, Lee J, Jeter CR, Abba MC, Aldaz CM. The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding. BMC Cancer 2013; 13:593. [PMID: 24330518 PMCID: PMC3871008 DOI: 10.1186/1471-2407-13-593] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/06/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. METHODS Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFβ-signaling. RESULTS WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFβ responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFβ target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOX(lo)/ANGPTL4(hi) cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFβ targeted therapies. CONCLUSIONS We show for the first time that WWOX modulates SMAD3 signaling in breast cells via direct WW-domain mediated binding and potential cytoplasmic sequestration of SMAD3 protein. Since loss of WWOX expression increases with breast cancer progression and it behaves as an inhibitor of SMAD3 transcriptional activity these observations may help explain, at least in part, the paradoxical pro-tumorigenic effects of TGFβ signaling in advanced breast cancer.
Collapse
Affiliation(s)
- Brent W Ferguson
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xinsheng Gao
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Maciej J Zelazowski
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jaeho Lee
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene R Jeter
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Martin C Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - C Marcelo Aldaz
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
45
|
Abdeen SK, Salah Z, Khawaled S, Aqeilan RI. Characterization of WWOX inactivation in murine mammary gland development. J Cell Physiol 2013; 228:1391-6. [PMID: 23254778 DOI: 10.1002/jcp.24310] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 12/28/2022]
Abstract
The WW domain-containing oxidoreductase (WWOX) is commonly inactivated in multiple human cancers, including breast cancer. Wwox null mice die prematurely precluding adult tumor analysis. Nevertheless, aging Wwox-heterozygous mice at C3H genetic background develop higher incidence of mammary tumors. We recently generated a Wwox conditional knockout mouse in which loxp sites flank exon 1 in the Wwox allele and showed that total ablation of WWOX in these mice resembles that of conventional targeting of Wwox. Here, we report the characterization of WWOX ablation in mouse mammary gland using MMTV-Cre transgenic line. We demonstrated that WWOX ablation leads to impaired mammary ductal growth. Moreover, targeted deletion of WWOX is associated with increased levels of fibronectin, a component of the extracellular matrix. In addition, we showed that shRNA knockdown of WWOX in MCF10A breast epithelial cells dramatically increased fibronectin and is associated with enhanced cell survival and impaired growth in three-dimensional culture Matrigel assay. Taken together our results are consistent with a critical role for WWOX in normal breast development and tumorigenesis.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
46
|
Abdeen SK, Del Mare S, Hussain S, Abu-Remaileh M, Salah Z, Hagan J, Rawahneh M, Pu XA, Russell S, Stein JL, Stein GS, Lian JB, Aqeilan RI. Conditional inactivation of the mouse Wwox tumor suppressor gene recapitulates the null phenotype. J Cell Physiol 2013; 228:1377-82. [PMID: 23254685 DOI: 10.1002/jcp.24308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 11/07/2022]
Abstract
WW domain-containing oxidoreductase (WWOX) is highly conserved in both human and murine. WWOX spans the second most common human chromosomal fragile site, FRA16D, and is commonly inactivated in multiple human cancers. Modeling WWOX inactivation in mice revealed a complex phenotype including postnatal lethality, defects in bone metabolism and steroidogenesis and tumor suppressor function resulting in osteosarcomas. For better understanding of WWOX roles in different tissues at distinct stages of development and in pathological conditions, Wwox conditional knockout mice were generated in which loxp sites flank exon 1 in the Wwox allele. We demonstrated that Cre-mediated recombination using EIIA-Cre, a Cre line expressed in germline, results in postnatal lethality by age of 3 weeks and decreased bone mineralization resembling total ablation of WWOX as in conventional null mice. This animal model will be useful to study distinct roles of WWOX in multiple tissues at different ages.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang Z, Zhao T, Liu Y. Upregulation of tumor suppressor WWOX promotes immune response in glioma. Cell Immunol 2013; 285:1-5. [PMID: 24044959 DOI: 10.1016/j.cellimm.2013.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
Previous studies demonstrate that human glioma cells could evade the host's immune surveillance system, result in aggressive proliferation. WWOX, a tumor suppressor gene affected in multiple cancers, induces tumor apoptosis and suppresses growth in vitro and in vivo. However, the effect of WWOX expression in glioma cells to immune cells is still unknown. In the present study, we transduced WWOX into human glioma cell line U251, and cocultured with Jurkat T cells together. We demonstrated that upregulation of WWOX could increase proliferation of Jurkat T cells and decrease the FasL and TGF-β expression of U251 cells, result in inhibiting apoptosis of Jurkat T cells. Therefore, our results suggested that loss of WWOX expression not only resulted in glioma carcinogenesis, but also suppressed immune cell attack by inducing Fas/FasL mediated apoptotic signaling.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | |
Collapse
|
48
|
Dayan S, O'Keefe LV, Choo A, Richards RI. Common chromosomal fragile siteFRA16Dtumor suppressorWWOXgene expression and metabolic reprograming in cells. Genes Chromosomes Cancer 2013; 52:823-31. [DOI: 10.1002/gcc.22078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sonia Dayan
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Louise V. O'Keefe
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Amanda Choo
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Robert I. Richards
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
49
|
Ferguson BW, Gao X, Kil H, Lee J, Benavides F, Abba MC, Aldaz CM. Conditional Wwox deletion in mouse mammary gland by means of two Cre recombinase approaches. PLoS One 2012; 7:e36618. [PMID: 22574198 PMCID: PMC3344920 DOI: 10.1371/journal.pone.0036618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/03/2012] [Indexed: 11/23/2022] Open
Abstract
Loss of WWOX expression has been reported in many different cancers including breast cancer. Elucidating the function of this gene in adult tissues has not been possible with full Wwox knockout models. Here we characterize the first conditional models of Wwox ablation in mouse mammary epithelium utilizing two transgenic lines expressing Cre recombinase, keratin 5-Cre (BK5-Cre) and MMTV-Cre. In the BK5-Cre model we observed very efficient Wwox ablation in KO mammary glands. However, BK5-Cre Wwox KO animals die prematurely for unknown reasons. In the MMTV-Cre model we observed significant ablation of Wwox in mammary epithelium with no effect on survival. In both of these models we found that Wwox deletion resulted in impaired mammary branching morphogenesis. We demonstrate that loss of Wwox is not carcinogenic in our KO models. Furthermore, no evidence of increase proliferation or development of premalignant lesions was observed. In none of the models did loss of a single Wwox allele (i.e. haploinsufficiency) have any observable phenotypic effect in mammary gland. To better understand the function of Wwox in the mammary gland, transcriptome profiling was performed. We observed that Wwox ablation results in the deregulation of genes involved in various cellular processes. We found that expression of the non-canonical Wnt ligand, Wnt5a, was significantly upregulated in Wwox KO mammary epithelium. Interestingly, we also determined that components of the Jak/Stat3 signaling pathway were upregulated in KO mice and this correlated with a very robust increase in phospho-Stat3 signaling, which warrants further testing. Even though the loss of Wwox expression in breast and other cancers is very well documented, our findings suggest that Wwox does not act as a classical tumor suppressor as previously thought.
Collapse
Affiliation(s)
- Brent W. Ferguson
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hyunsuk Kil
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Jaeho Lee
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Fernando Benavides
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
| | - Martin C. Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - C. Marcelo Aldaz
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Chiang MF, Yeh ST, Liao HF, Chang NS, Chen YJ. Overexpression of WW domain-containing oxidoreductase WOX1 preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. Biomed Pharmacother 2012; 66:433-8. [PMID: 22898080 DOI: 10.1016/j.biopha.2012.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/01/2012] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Human WWOX gene encoding WW domain-containing oxidoreductase, named WWOX, FOR, or WOX1, has been studied in various types of cancer cells and shown to be a tumor suppressor with pro-apoptotic properties. Mutation or gain-of-function of p53 in glioma cells is associated with resistance to radiation therapy and poor prognosis. In this study, we overexpressed WOX1 to examine the pro-apoptotic activity against human glioblastoma cells harboring mutant p53. METHODS Overexpression of WOX1 in glioblastoma cell lines and apoptosis-related assays were performed. RESULTS Our results showed that overexpressed WOX1 induced apoptosis of glioblastoma U373MG harboring mutant p53 by causing hypoploidy and DNA fragmentation. However, ectopic WOX1 had no effect with U87MG possessing wild type p53. Unlike temozolomide, WOX1 induced apoptosis of U373MG cells via a mitochondria-independent and caspase-3-independent pathway. CONCLUSIONS Overexpression of WOX1 preferentially inhibited viability and induced apoptosis in human glioblastoma cells expressing mutant p53 via a mechanism independent of the intrinsic apoptotic pathway. Conceivably, the survival of human glioblastoma cells depends upon interactions between the gain-of-function of p53 and WOX1. This suggests that modulation of WOX1 expression may be a novel strategy for treating human glioblastoma cells with mutant p53.
Collapse
Affiliation(s)
- Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 104, Taiwan
| | | | | | | | | |
Collapse
|