1
|
Ostwaldt F, Los B, Heyd F. In silico analysis of alternative splicing events implicated in intracellular trafficking during B-lymphocyte differentiation. Front Immunol 2022; 13:1030409. [DOI: 10.3389/fimmu.2022.1030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
There are multiple regulatory layers that control intracellular trafficking and protein secretion, ranging from transcriptional to posttranslational mechanisms. Finely regulated trafficking and secretion is especially important for lymphocytes during activation and differentiation, as the quantity of secretory cargo increases once the activated cells start to produce and secrete large amounts of cytokines, cytotoxins, or antibodies. However, how the secretory machinery dynamically adapts its efficiency and specificity in general and specifically in lymphocytes remains incompletely understood. Here we present a systematic bioinformatics analysis to address RNA-based mechanisms that control intracellular trafficking and protein secretion during B-lymphocyte activation, and differentiation, with a focus on alternative splicing. Our in silico analyses suggest that alternative splicing has a substantial impact on the dynamic adaptation of intracellular traffic and protein secretion in different B cell subtypes, pointing to another regulatory layer to the control of lymphocyte function during activation and differentiation. Furthermore, we suggest that NERF/ELF2 controls the expression of some COPII-related genes in a cell type-specific manner. In addition, T cells and B cells appear to use different adaptive strategies to adjust their secretory machineries during the generation of effector and memory cells, with antibody secreting B cell specifically increasing the expression of components of the early secretory pathway. Together, our data provide hypotheses how cell type-specific regulation of the trafficking machinery during immune cell activation and differentiation is controlled that can now be tested in wet lab experiments.
Collapse
|
2
|
Kuan PF, Yang X, Ren X, Che C, Waszczuk M, Kotov R, Clouston S, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Mapping the transcriptomics landscape of post-traumatic stress disorder symptom dimensions in World Trade Center responders. Transl Psychiatry 2021; 11:310. [PMID: 34031375 PMCID: PMC8144574 DOI: 10.1038/s41398-021-01431-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Gene expression has provided promising insights into the pathophysiology of post-traumatic stress disorder (PTSD); however, specific regulatory transcriptomic mechanisms remain unknown. The present study addressed this limitation by performing transcriptome-wide RNA-Seq of whole-blood samples from 226 World Trade Center responders. The investigation focused on differential expression (DE) at the gene, isoform, and for the first time, alternative splicing (AS) levels associated with the symptoms of PTSD: total burden, re-experiencing, avoidance, numbing, and hyperarousal subdimensions. These symptoms were associated with 76, 1, 48, 15, and 49 DE genes, respectively (FDR < 0.05). Moreover, they were associated with 103, 11, 0, 43, and 32 AS events. Avoidance differed the most from other dimensions with respect to DE genes and AS events. Gene set enrichment analysis (GSEA) identified pathways involved in inflammatory and metabolic processes, which may have implications in the treatment of PTSD. Overall, the findings shed a novel light on the wide range of transcriptomic alterations associated with PTSD at the gene and AS levels. The results of DE analysis associated with PTSD subdimensions highlights the importance of studying PTSD symptom heterogeneity.
Collapse
Affiliation(s)
- Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
| | - Xiaohua Yang
- grid.36425.360000 0001 2216 9681Department of Medicine, Stony Brook University, Stony Brook, NY USA
| | - Xu Ren
- grid.36425.360000 0001 2216 9681Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY USA
| | - Chang Che
- grid.36425.360000 0001 2216 9681Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY USA
| | - Monika Waszczuk
- grid.262641.50000 0004 0388 7807Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Roman Kotov
- Department of Psychiatry, Stony Book University, Stony Brook, NY USA
| | - Sean Clouston
- Department of Family and Preventive Medicine, Stony Book University, Stony Brook, NY USA
| | - Prashant K. Singh
- grid.240614.50000 0001 2181 8635Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Sean T. Glenn
- grid.240614.50000 0001 2181 8635Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Eduardo Cortes Gomez
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Jianmin Wang
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Evelyn Bromet
- Department of Psychiatry, Stony Book University, Stony Brook, NY USA
| | - Benjamin J. Luft
- grid.36425.360000 0001 2216 9681Department of Medicine, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
3
|
Byun S, Han S, Zheng Y, Planelles V, Lee Y. The landscape of alternative splicing in HIV-1 infected CD4 T-cells. BMC Med Genomics 2020; 13:38. [PMID: 32241262 PMCID: PMC7118826 DOI: 10.1186/s12920-020-0680-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Elucidating molecular mechanisms that are altered during HIV-1 infection may provide a better understanding of the HIV-1 life cycle and how it interacts with infected T-cells. One such mechanism is alternative splicing (AS), which has been studied for HIV-1 itself, but no systematic analysis has yet been performed on infected T-cells. We hypothesized that AS patterns in infected T-cells may illuminate the molecular mechanisms underlying HIV-1 infection and identify candidate molecular markers for specifically targeting infected T-cells. Methods We downloaded previously published raw RNA-seq data obtained from HIV-1 infected and non-infected T-cells. We estimated percent spliced in (PSI) levels for each AS exon, then identified differential AS events in the infected cells (FDR < 0.05, PSI difference > 0.1). We performed functional gene set enrichment analysis on the genes with differentially expressed AS exons to identify their functional roles. In addition, we used RT-PCR to validate differential alternative splicing events in cyclin T1 (CCNT1) as a case study. Results We identified 427 candidate genes with differentially expressed AS exons in infected T-cells, including 20 genes related to cell surface, 35 to kinases, and 121 to immune-related genes. In addition, protein-protein interaction analysis identified six essential subnetworks related to the viral life cycle, including Transcriptional regulation by TP53, Class I MHC mediated antigen, G2/M transition, and late phase of HIV life cycle. CCNT1 exon 7 was more frequently skipped in infected T-cells, leading to loss of the key Cyclin_N motif and affecting HIV-1 transcriptional elongation. Conclusions Our findings may provide new insight into systemic host AS regulation under HIV-1 infection and may provide useful initial candidates for the discovery of new markers for specifically targeting infected T-cells.
Collapse
Affiliation(s)
- Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yue Zheng
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Differential Interleukin-2 Transcription Kinetics Render Mouse but Not Human T Cells Vulnerable to Splicing Inhibition Early after Activation. Mol Cell Biol 2019; 39:MCB.00035-19. [PMID: 31160491 DOI: 10.1128/mcb.00035-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
T cells are nodal players in the adaptive immune response against pathogens and malignant cells. Alternative splicing plays a crucial role in T cell activation, which is analyzed mainly at later time points upon stimulation. Here we have discovered a 2-h time window early after stimulation where optimal splicing efficiency or, more generally, gene expression efficiency is crucial for successful T cell activation. Reducing the splicing efficiency at 4 to 6 h poststimulation significantly impaired murine T cell activation, which was dependent on the expression dynamics of the Egr1-Nab2-interleukin-2 (IL-2) pathway. This time window overlaps the time of peak IL-2 de novo transcription, which, we suggest, represents a permissive time window in which decreased splicing (or transcription) efficiency reduces mature IL-2 production, thereby hampering murine T cell activation. Notably, the distinct expression kinetics of the Egr1-Nab2-IL-2 pathway between mouse and human render human T cells refractory to this vulnerability. We propose that the rational temporal modulation of splicing or transcription during peak de novo expression of key effectors can be used to fine-tune stimulation-dependent biological outcomes. Our data also show that critical consideration is required when extrapolating mouse data to the human system in basic and translational research.
Collapse
|
5
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
6
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
7
|
Karczewski J, Dobrowolska A, Rychlewska-Hańczewska A, Adamski Z. New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity 2016; 49:435-450. [DOI: 10.3109/08916934.2016.1166214] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Gamonet C, Bole-Richard E, Delherme A, Aubin F, Toussirot E, Garnache-Ottou F, Godet Y, Ysebaert L, Tournilhac O, Caroline D, Larosa F, Deconinck E, Saas P, Borg C, Deschamps M, Ferrand C. New CD20 alternative splice variants: molecular identification and differential expression within hematological B cell malignancies. Exp Hematol Oncol 2016; 5:7. [PMID: 26937306 PMCID: PMC4774009 DOI: 10.1186/s40164-016-0036-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CD20 is a B cell lineage-specific marker expressed by normal and leukemic B cells and targeted by several antibody immunotherapies. We have previously shown that the protein from a CD20 mRNA splice variant (D393-CD20) is expressed at various levels in leukemic B cells or lymphoma B cells but not in resting, sorted B cells from the peripheral blood of healthy donors. RESULTS Western blot (WB) analysis of B malignancy primary samples showed additional CD20 signals. Deep molecular PCR analysis revealed four new sequences corresponding to in-frame CD20 splice variants (D657-CD20, D618-CD20, D480-CD20, and D177-CD20) matching the length of WB signals. We demonstrated that the cell spliceosome machinery can process ex vivo D480-, D657-, and D618-CD20 transcript variants by involving canonical sites associated with cryptic splice sites. Results of specific and quantitative RT-PCR assays showed that these CD20 splice variants are differentially expressed in B malignancies. Moreover, Epstein-Barr virus (EBV) transformation modified the CD20 splicing profile and mainly increased the D393-CD20 variant transcripts. Finally, investigation of three cohorts of chronic lymphocytic leukemia (CLL) patients showed that the total CD20 splice variant expression was higher in a stage B and C sample collection compared to routinely collected CLL samples or relapsed refractory stage A, B, or C CLL. CONCLUSION The involvement of these newly discovered alternative CD20 transcript variants in EBV transformation makes them interesting molecular indicators, as does their association with oncogenesis rather than non-oncogenic B cell diseases, differential expression in B cell malignancies, and correlation with CLL stage and some predictive CLL markers. This potential should be investigated in further studies.
Collapse
Affiliation(s)
- Clémentine Gamonet
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France
| | - Elodie Bole-Richard
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France
| | - Aurélia Delherme
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France
| | - François Aubin
- EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France
| | - Eric Toussirot
- EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France ; CHRU, Department of Rheumatology, Université de Franche-Comté EA 4266, INSERM CIC-1431, 25000 Besançon, France ; EA 4266, Université de Franche-Comté, Besançon, France
| | - Francine Garnache-Ottou
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France
| | - Yann Godet
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France
| | - Loïc Ysebaert
- Inserm U1037, Université Toulouse 3-ERL CNRS, CHU Purpan, Toulouse, France
| | - Olivier Tournilhac
- Hématologie Clinique, CHU Estaing, 1 Place Lucie Aubrac, 63003 Clermont-Ferrand Cedex 1, France
| | | | - Fabrice Larosa
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; Hematology Department, CHU Jean Minjoz, 25020 Besançon, France
| | - Eric Deconinck
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France ; Hematology Department, CHU Jean Minjoz, 25020 Besançon, France
| | - Philippe Saas
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France
| | - Christophe Borg
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; EA3181 et Service de Dermatologie, Université de Franche Comté, CHU de Besançon, Besançon, France
| | - Marina Deschamps
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France
| | - Christophe Ferrand
- INSERM UMR1098, Établissement Français du Sang Bourgogne Franche Comté, Université de Franche-Comté, SFR FED4234, 25020 Besançon, France ; Laboratoire de Thérapeutique Immuno-Moléculaire et cellulaire des cancers, INSERM UMR1098, Etablissement Français du Sang-Bourgogne/Franche-Comté, 8, rue du Docteur Jean-François-Xavier Girod, 25020 Besançon Cedex, France
| |
Collapse
|
9
|
Whisenant TC, Peralta ER, Aarreberg LD, Gao NJ, Head SR, Ordoukhanian P, Williamson JR, Salomon DR. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells. PLoS One 2015; 10:e0144409. [PMID: 26641092 PMCID: PMC4671683 DOI: 10.1371/journal.pone.0144409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation.
Collapse
Affiliation(s)
- Thomas C. Whisenant
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eigen R. Peralta
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lauren D. Aarreberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nina J. Gao
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phillip Ordoukhanian
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jamie R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Greenwood EJD, Schmidt F, Kondova I, Niphuis H, Hodara VL, Clissold L, McLay K, Guerra B, Redrobe S, Giavedoni LD, Lanford RE, Murthy KK, Rouet F, Heeney JL. Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes) Shares Features of Both Pathogenic and Non-pathogenic Lentiviral Infections. PLoS Pathog 2015; 11:e1005146. [PMID: 26360709 PMCID: PMC4567047 DOI: 10.1371/journal.ppat.1005146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023] Open
Abstract
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in ‘natural host’ species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections. The HIV-1/AIDS pandemic is the result of cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees to humans. Many African primates are infected with SIV, but those studied in captivity generally do not develop disease. However, wild chimpanzees infected with SIVcpz are at increased risk of death and may develop an AIDS-like disease. It has therefore been suggested that the viral features which SIVcpz and HIV-1 share, that differentiate them from other species’ SIV, may be critical in the development of disease in both humans and chimpanzees. Here, we present a long-term follow-up of 7 SIVcpz infected chimpanzees, housed in primate centres in the US and Europe, under similar conditions to other studied models. These animals did not develop an AIDS-like disease, after up to 25 years of infection, and showed features similar to other species where disease rarely develops, such as limited immune activation in the blood. However, they also had significantly reduced CD4+ T-cells and disruption to the secondary lymphoid tissues, normally associated with pathogenic primate lentiviral infections. Thus, while SIVcpz infection of chimpanzees shares features of both pathogenic and non-pathogenic infections, disease has not developed in captivity.
Collapse
Affiliation(s)
| | - Fabian Schmidt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivanela Kondova
- Division of Pathology and Microbiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Leah Clissold
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Kirsten McLay
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Bernadette Guerra
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sharon Redrobe
- Twycross Zoo - East Midland Zoological Society, Atherstone, United Kingdom
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Robert E. Lanford
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Krishna K. Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - François Rouet
- Laboratoire de Rétrovirologie, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Yin Y, Zhang S, Luo H, Zhang X, Geng G, Li J, Guo X, Cai W, Li L, Liu C, Zhang H. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem 2014; 290:35-45. [PMID: 25411246 DOI: 10.1074/jbc.m114.598631] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 (IL-7) has been used as an immunoregulatory and latency-reversing agent in human immunodeficiency virus type 1 (HIV-1) infection. Although IL-7 can restore circulating CD4(+) T cell counts in HIV-1-infected patients, the anti-apoptotic and proliferative effects of IL-7 appear to benefit survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. IL-7 has been shown to elevate CD95 on CD4(+) T cells in HIV-1-infected individuals and prime CD4(+) T lymphocytes to CD95-mediated proliferative or apoptotic signals. Here we observed that through increasing microRNA-124, IL-7 down-regulates the splicing regulator polypyrimidine tract binding protein (PTB), leading to inclusion of the transmembrane domain-encoding exon 6 of CD95 mRNA and, subsequently, elevation of CD95 on memory CD4(+) T cells. Moreover, IL-7 up-regulates cellular FLICE-like inhibitory protein (c-FLIP) and stimulates c-Jun N-terminal kinase (JNK) phosphorylation, which switches CD95 signaling to survival mode in memory CD4(+) T lymphocytes. As a result, co-stimulation through IL-7/IL-7R and FasL/CD95 signal pathways augments IL-7-mediated survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. Collectively, we have demonstrated a novel mechanism for IL-7-mediated maintenance of HIV-1 reservoir.
Collapse
Affiliation(s)
- Yue Yin
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Shaoying Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Haihua Luo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xu Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Guannan Geng
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Jun Li
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xuemin Guo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chao Liu
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Hui Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| |
Collapse
|
12
|
Sussman DA, Santaolalla R, Bejarano PA, Garcia-Buitrago MT, Perez MT, Abreu MT, Clarke J. In silico and Ex vivo approaches identify a role for toll-like receptor 4 in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:45. [PMID: 24887394 PMCID: PMC4046523 DOI: 10.1186/1756-9966-33-45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inflammation increases the risk of colorectal cancer (CRC). We and others have described a role for TLR4, the receptor for LPS, in colon cancer. To explore the relationships between TLR4 expression and CRC, we combined the strength of transcriptome array data and immunohistochemical (IHC) staining. METHODS TLR4 signal intensity was scored in the stromal and epithelial compartments. Detection of differential expression between conditions of interest was performed using linear models, Cox proportional hazards models, and empirical Bayes methods. RESULTS A strong association between TLR4 expression and survival was noted, though a dichotomous relationship between survival and specific TLR4 transcripts was observed. Increasing TLR4 expression was seen with advancing tumor stage and was also over-expressed in some adenomas. IHC staining confirmed the positive relationship between TLR4 staining score in the CRC tumor stroma and epithelium with tumor stage, with up to 47% of colon cancer stroma positive for TLR4 staining. Increased TLR4 expression by IHC was also marginally associated with decreased survival. We now also describe that pericryptal myofibroblasts are responsible for a portion of the TLR4 stromal staining. CONCLUSIONS Increased TLR4 expression occurs early in colonic neoplasia. TLR4 is associated with the important cancer-related outcomes of survival and stage.
Collapse
Affiliation(s)
- Daniel A Sussman
- Division of Gastroenterology, Department of Medicine, University of Miami, 1120 NW 14th Street, Clinical Research Building 310J, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sun Y, Tawara I, Zhao M, Qin ZS, Toubai T, Mathewson N, Tamaki H, Nieves E, Chinnaiyan AM, Reddy P. Allogeneic T cell responses are regulated by a specific miRNA-mRNA network. J Clin Invest 2014; 123:4739-54. [PMID: 24216511 DOI: 10.1172/jci70013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses.
Collapse
|
14
|
Scherer A. Clinical and ethical considerations of massively parallel sequencing in transplantation science. World J Transplant 2013; 3:62-67. [PMID: 24392310 PMCID: PMC3879525 DOI: 10.5500/wjt.v3.i4.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 10/12/2013] [Indexed: 02/05/2023] Open
Abstract
Massively parallel sequencing (MPS), alias next-generation sequencing, is making its way from research laboratories into applied sciences and clinics. MPS is a framework of experimental procedures which offer possibilities for genome research and genetics which could only be dreamed of until around 2005 when these technologies became available. Sequencing of a transcriptome, exome, even entire genomes is now possible within a time frame and precision that we could only hope for 10 years ago. Linking other experimental procedures with MPS enables researchers to study secondary DNA modifications across the entire genome, and protein binding sites, to name a few applications. How the advancements of sequencing technologies can contribute to transplantation science is subject of this discussion: immediate applications are in graft matching via human leukocyte antigen sequencing, as part of systems biology approaches which shed light on gene expression processes during immune response, as biomarkers of graft rejection, and to explore changes of microbiomes as a result of transplantation. Of considerable importance is the socio-ethical aspect of data ownership, privacy, informed consent, and result report to the study participant. While the technology is advancing rapidly, legislation is lagging behind due to the globalisation of data requisition, banking and sharing.
Collapse
|
15
|
Köstler WJ, Zeisel A, Körner C, Tsai JM, Jacob-Hirsch J, Ben-Chetrit N, Sharma K, Cohen-Dvashi H, Yitzhaky A, Lader E, Tschulena U, Rechavi G, Domany E, Wiemann S, Yarden Y. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration. PLoS One 2013; 8:e80566. [PMID: 24324612 PMCID: PMC3855657 DOI: 10.1371/journal.pone.0080566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Abstract
Signal-induced transcript isoform variation (TIV) includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF). We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.
Collapse
Affiliation(s)
- Wolfgang J. Köstler
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Zeisel
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Jonathan M. Tsai
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Ben-Chetrit
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Sharma
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hadas Cohen-Dvashi
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Assif Yitzhaky
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Lader
- Qiagen, Frederick, Maryland, United States of America
| | - Ulrich Tschulena
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Gideon Rechavi
- Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Domany
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Yosef Yarden
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW One of the seven key scientific priorities identified in the road map on HIV cure research is to 'determine the host mechanisms that control HIV replication in the absence of therapy'. This review summarizes the recent work in genomics and in epigenetic control of viral replication that is relevant for this mission. RECENT FINDINGS New technologies allow the joint analysis of host and viral transcripts. They identify the patterns of antisense transcription of the viral genome and its role in gene regulation. High-throughput studies facilitate the assessment of integration at the genome scale. Integration site, orientation and host genomic context modulate the transcription and should also be assessed at the level of single cells. The various models of latency in primary cells can be followed using dynamic study designs to acquire transcriptome and proteome data of the process of entry, maintenance and reactivation of latency. Dynamic studies can be applied to the study of transcription factors and chromatin modifications in latency and upon reactivation. SUMMARY The convergence of primary cell models of latency, new high-throughput quantitative technologies applied to the study of time series and the identification of compounds that reactivate viral transcription bring unprecedented precision to the study of viral latency.
Collapse
|
17
|
Kewitz S, Staege MS. Expression and Regulation of the Endogenous Retrovirus 3 in Hodgkin's Lymphoma Cells. Front Oncol 2013; 3:179. [PMID: 23847767 PMCID: PMC3706881 DOI: 10.3389/fonc.2013.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (ERV) are an integral part of our genome. Expression of ERV is usually switched off but reactivation of ERV has been observed in varying human diseases including cancer. Recently, reactivation of ERV associated promoters in Hodgkin's lymphoma (HL) cells has been described. Despite relatively good prognosis, not all patients with HL can be cured with the established therapy and this therapy is associated with severe late side effects. Therefore, new targets are required for the development of future treatment strategies. Reactivated ERV might represent such target structures. Therefore, we asked which ERV loci are expressed in HL cells. Using DNA microarray analysis, we found no evidence for a general activation of ERV transcription in HL cells. In contrast, we observed down-regulation of ERV3, an ERV with potential tumor suppressor function, in HL cells in comparison to normal blood cells. Interestingly, ERV3 was also differentially expressed in published DNA microarray data from resting versus cycling B cells. Treatment of HL cells with the histone deacetylase inhibitor vorinostat strongly up-regulated ERV3 expression. In addition, we observed up-regulation in HL cells after treatment with hypoxia-mimetic cobalt(II) chloride. Like vorinostat, cobalt(II) chloride inhibited cell growth of HL cells. Our results suggest that cell cycle inhibition of HL cells is accompanied by up-regulation of ERV3.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | | |
Collapse
|
18
|
Martinez NM, Lynch KW. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev 2013; 253:216-36. [PMID: 23550649 PMCID: PMC3621013 DOI: 10.1111/imr.12047] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most mammalian pre-mRNAs are alternatively spliced in a manner that alters the resulting open reading frame. Consequently, alternative pre-mRNA splicing provides an important RNA-based layer of protein regulation and cellular function. The ubiquitous nature of alternative splicing coupled with the advent of technologies that allow global interrogation of the transcriptome have led to an increasing awareness of the possibility that widespread changes in splicing patterns contribute to lymphocyte function during an immune response. Indeed, a few notable examples of alternative splicing have clearly been demonstrated to regulate T-cell responses to antigen. Moreover, several proteins key to the regulation of splicing in T cells have recently been identified. However, much remains to be done to truly identify the spectrum of genes that are regulated at the level of splicing in immune cells and to determine how many of these are controlled by currently known factors and pathways versus unknown mechanisms. Here, we describe the proteins, pathways, and mechanisms that have been shown to regulate alternative splicing in human T cells and discuss what is and is not known about the genes regulated by such factors. Finally, we highlight unifying themes with regards to the mechanisms and consequences of alternative splicing in the adaptive immune system and give our view of important directions for future studies.
Collapse
Affiliation(s)
- Nicole M Martinez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
19
|
Riedel A, Mofolo B, Avota E, Schneider-Schaulies S, Meintjes A, Mulder N, Kneitz S. Accumulation of splice variants and transcripts in response to PI3K inhibition in T cells. PLoS One 2013; 8:e50695. [PMID: 23383294 PMCID: PMC3562341 DOI: 10.1371/journal.pone.0050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022] Open
Abstract
Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.
Collapse
Affiliation(s)
- Alice Riedel
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | - Boitumelo Mofolo
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | | | - Ayton Meintjes
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Susanne Kneitz
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Ryder LR, Ryder LP, Bartels EM, Woetmann A, Madsen HO, Ødum N, Danneskiold-Samsøe B, Ribel-Madsen S, Bliddal H. Differential effects of decoy receptor- and antibody-mediated tumour necrosis factor blockage on FoxP3 expression in responsive arthritis patients. APMIS 2012; 121:337-47. [PMID: 23031059 DOI: 10.1111/apm.12004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/26/2012] [Indexed: 12/14/2022]
Abstract
Our aim was to clarify if anti-tumour necrosis factor (TNF) drugs have effect on expression of three splice forms of FoxP3 mRNA in blood CD4+ T cells from rheumatoid arthritis (RA) patients compared with healthy controls. Forty-five rheumatoid arthritis patients treated with anti-TNF therapy were investigated in a 12-week prospective cohort study. FoxP3 isoforms, CD25 and CTLA-4 mRNA in blood CD4+ T cells were measured with quantitative real-time PCR. Patients benefitting from the treatment, based on changes in DAS28 scores, revealed a significant decrease in expression of full-length FoxP3 following 12 weeks treatment with TNF receptor 2 fusion protein (Etanercept), but not following treatment with anti-TNF antibodies (Adalimumab or Infliximab). A partial normalization of the CTLA-4/FoxP3fl ratio and a correlation between clinical improvement and change in FoxP3 mRNA expression were also seen in Etanercept responders. These changes were not observed in responsive patients treated with the antibody therapies. Our data suggest that TNF decoy receptor and anti-TNF antibodies differ in their effect on FoxP3 expression in responsive patients. As Etanercept binds both TNF-α and Lymphotoxin-α (LT-α), whereas the antibodies only target TNF-α, LT-α may regulate FoxP3 expression in a subset of RA patients. Our findings support the view that anti-TNF treatment is mainly symptomatic.
Collapse
Affiliation(s)
- L Rebekka Ryder
- The Parker Institute, Department of Rheumatology, Copenhagen University Hospital, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moindrot B, Audit B, Klous P, Baker A, Thermes C, de Laat W, Bouvet P, Mongelard F, Arneodo A. 3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Res 2012; 40:9470-81. [PMID: 22879376 PMCID: PMC3479194 DOI: 10.1093/nar/gks736] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts.
Collapse
Affiliation(s)
- Benoit Moindrot
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, CNRS, F-69007 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Turner M, Hodson DJ. An emerging role of RNA-binding proteins as multifunctional regulators of lymphocyte development and function. Adv Immunol 2012; 115:161-85. [PMID: 22608259 DOI: 10.1016/b978-0-12-394299-9.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sequence-specific RNA-binding proteins (RBP) and the regulation of RNA decay have long been recognized as important regulators of the inflammatory response. RBP influence gene expression throughout the lifespan of the mRNA by regulating splicing, polyadenylation, cellular localization, translation, and decay. Increasing evidence now indicates that these proteins, together with the RNA decay machinery that they recruit, also regulate the development and activation of lymphocytes. The activity of RBP is regulated by the same signal transduction pathways that govern lymphocyte development and differentiation in response to antigen and cytokine receptor engagement. Roles for these proteins in regulating the diverse functions of lymphocytes are becoming increasingly apparent.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | |
Collapse
|
23
|
Ryder LR, Bartels EM, Woetmann A, Madsen HO, Odum N, Bliddal H, Danneskiold-Samsøe B, Ribel-Madsen S, Ryder LP. FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis. APMIS 2011; 120:387-96. [PMID: 22515293 DOI: 10.1111/j.1600-0463.2011.02848.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our aim was to elucidate the relative amount of the different splice forms of FoxP3 mRNA in CD4+ T cells in peripheral blood (PB) compared to synovial fluid (SF) in RA and PsA patients. FoxP3 mRNA was measured using a quantitative real-time PCR method. CD4+ T cells were isolated from 17 paired samples of PB and SF from RA and PsA patients, and PB from 10 controls. FoxP3fl and FoxP3Δ2 mRNA was significantly increased (6.7 and 2.1-fold, respectively) in PB CD4+ T cells from RA patients compared to controls. FoxP3fl and Δ2 mRNA in SF CD4+ T cells was increased compared to controls in sero-negative RA and PsA, but not in sero-positive RA patients, who had a high FoxP3 expression in both PB and SF. The FoxP3Δ2Δ7 mRNA was barely detectable in patient samples, and not at all in healthy individuals. We provide evidence of an increased expression of FoxP3 splice forms in synovial CD4+ T cells from RA patients. A skewed, high expression profile of FoxP3, but not CTLA-4, in sero-negative RA and PsA, indicates that synovial CD4+ T cells may represent unique subsets of T cells which have been induced locally or selectively recruited to the joint.
Collapse
|
24
|
Maisey K, Toro-Ascuy D, Montero R, Reyes-López FE, Imarai M. Identification of CD3ε, CD4, CD8β splice variants of Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2011; 31:815-822. [PMID: 21821134 DOI: 10.1016/j.fsi.2011.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/12/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
In vertebrates, CD3 complex and CD4 and CD8 co-receptors are essential for signal transduction during T cell activation. In the present study, we report the mRNA spliced variants of the Atlantic salmon CD3ε, CD4 and CD8β and the effect of pathogen encounter on the expression of these variants. CD3ε is alternatively spliced in thymus, head kidney, spleen and gills to give rise to the complete mRNA sequence and to an alternative product that lacks the transmembrane exon. CD4 is also alternatively spliced in the thymus, head kidney, spleen and gills to form two variants, although the alternative product is barely detectable. The alternative product lacks the exon 1B encoding the D1 domain, which is essential for binding to MHC class II proteins. Two amplicons were also found for the CD8β gene; sequencing analysis revealed that the main PCR product corresponds to the previously reported CD8β sequence, whereas the variant sequence encodes a potential protein that lacks the Ig-like domain. The expression of CD3, CD4, CD8β genes also analyzed in head kidney of LPS-treated and IPNV infected salmon and different patterns of expression were observed. The presence and balance of the different variants of T cell co-receptors could be related to the ability of fish to induce a particular type of immune response, as well as, the ability of the pathogen to modify the fish immune response.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
25
|
Maisey K, Imarai M. Diversity of teleost leukocyte molecules: role of alternative splicing. FISH & SHELLFISH IMMUNOLOGY 2011; 31:663-672. [PMID: 20723604 DOI: 10.1016/j.fsi.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Alternative splicing is an important mechanism of gene expression control that also produces a large proteome from a limited number of genes. In the immune system of mammals, numerous relevant genes have been found to undergo alternative splicing that contributes to the complexity of immune response. An increasing number of reports have recently indicated that alternative splicing also occurs in other vertebrates, such as fish. In this review we summarize the general features of such molecular events in cytokines and leukocyte co-receptors and their contribution to diversity and regulation of fish leukocytes.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| | | |
Collapse
|
26
|
Sarwal MM, Sigdel TK, Salomon DR. Functional proteogenomics—Embracing complexity. Semin Immunol 2011; 23:235-51. [DOI: 10.1016/j.smim.2011.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/05/2011] [Indexed: 01/30/2023]
|
27
|
Grigoryev YA, Kurian SM, Hart T, Nakorchevsky AA, Chen C, Campbell D, Head SR, Yates JR, Salomon DR. MicroRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2233-43. [PMID: 21788445 DOI: 10.4049/jimmunol.1101233] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) regulate specific immune mechanisms, but their genome-wide regulation of T lymphocyte activation is largely unknown. We performed a multidimensional functional genomics analysis to integrate genome-wide differential mRNA, miRNA, and protein expression as a function of human T lymphocyte activation and time. We surveyed expression of 420 human miRNAs in parallel with genome-wide mRNA expression. We identified a unique signature of 71 differentially expressed miRNAs, 57 of which were previously not known as regulators of immune activation. The majority of miRNAs are upregulated, mRNA expression of these target genes is downregulated, and this is a function of binding multiple miRNAs (combinatorial targeting). Our data reveal that consideration of this complex signature, rather than single miRNAs, is necessary to construct a full picture of miRNA-mediated regulation. Molecular network mapping of miRNA targets revealed the regulation of activation-induced immune signaling. In contrast, pathways populated by genes that are not miRNA targets are enriched for metabolism and biosynthesis. Finally, we specifically validated miR-155 (known) and miR-221 (novel in T lymphocytes) using locked nucleic acid inhibitors. Inhibition of these two highly upregulated miRNAs in CD4(+) T cells was shown to increase proliferation by removing suppression of four target genes linked to proliferation and survival. Thus, multiple lines of evidence link top functional networks directly to T lymphocyte immunity, underlining the value of mapping global gene, protein, and miRNA expression.
Collapse
Affiliation(s)
- Yevgeniy A Grigoryev
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Perkins D, Verma M, Park KJ. Advances of genomic science and systems biology in renal transplantation: a review. Semin Immunopathol 2011; 33:211-8. [PMID: 21318414 PMCID: PMC3082700 DOI: 10.1007/s00281-011-0243-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/07/2011] [Indexed: 12/24/2022]
Abstract
The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process.
Collapse
Affiliation(s)
- David Perkins
- Division of Nephrology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
| | | | | |
Collapse
|
29
|
Merchant ML. Mass spectrometry in chronic kidney disease research. Adv Chronic Kidney Dis 2010; 17:455-68. [PMID: 21044768 DOI: 10.1053/j.ackd.2010.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/21/2010] [Indexed: 01/14/2023]
Abstract
Proteomics has evolved into an invaluable tool for biomedical research and for research on renal diseases. A central player in the proteomic revolution is the mass spectrometer and its application in analyzing biological samples. Our need to understand both the identity of proteins and their abundance has led to improvements in the ability of mass spectrometers (such as with the use of the LTQ-Orbitrap mass spectrometer) to analyze complex (tryptic) peptide mixtures with high sensitivity and high mass accuracy in a high-throughput manner. Unsurprisingly, this occurred coincidentally with dramatic improvements in our understanding of CKD, the mechanisms through which CKD progresses, and the development of candidate CKD biomarkers. This review attempts to present a basic framework for the operational components of mass spectrometers, basic insight into how they are used in renal research, and a discussion on CKD research related to mass spectrometry.
Collapse
|
30
|
Whistler T, Chiang CF, Lonergan W, Hollier M, Unger ER. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis. BMC Genomics 2010; 11:496. [PMID: 20840771 PMCID: PMC2996992 DOI: 10.1186/1471-2164-11-496] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/14/2010] [Indexed: 12/22/2022] Open
Abstract
Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for alternate exon usage. Conclusions This study illustrates that the Exon array technology has the potential to provide information on both transcript expression and isoform usage, with very little increase in expense.
Collapse
Affiliation(s)
- Toni Whistler
- Chronic Viral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases (proposed), Centers for Disease Control and Prevention, Atlanta GA 30333, USA.
| | | | | | | | | |
Collapse
|
31
|
Evsyukova I, Somarelli JA, Gregory SG, Garcia-Blanco MA. Alternative splicing in multiple sclerosis and other autoimmune diseases. RNA Biol 2010; 7:462-73. [PMID: 20639696 DOI: 10.4161/rna.7.4.12301] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between "self" and "non-self", and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy.
Collapse
Affiliation(s)
- Irina Evsyukova
- Department of Biochemistry, Duke University Medical Center, Durham, NC USA
| | | | | | | |
Collapse
|