1
|
Lee J, Kim YH. Exploring the interrelationship of intra- and inter-network alteration in motor recovery after stroke. Sci Rep 2025; 15:12906. [PMID: 40234467 PMCID: PMC12000481 DOI: 10.1038/s41598-025-87164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 04/17/2025] Open
Abstract
Brain networks demonstrate various dynamics during recovery after a stroke. Recovery of interhemispheric interaction and balance and the occurrence of network reorganization have also been reported during stroke recovery. This study aimed to investigate the dynamics of brain networks after stroke. At the large-scale brain network level, this study focuses on determining whether changes in brain networks during the functional recovery period following a stroke, along with concurrent changes in connected networks, facilitate functional recovery. Eighty-three subacute ischemic stroke patients participated. All patients underwent resting-state functional MRI and motor function assessments at two weeks and three months after stroke onset. Intra- and inter-networks from 12 resting-state networks were extracted from functional MRI data. The interrelationship between intra-network values changes and inter-network values between the corresponding network and other networks during the recovery period was investigated. The interrelationship between the good and poor recovery subgroups was compared. The interrelationship of intra- and inter-network alterations could be observed in both groups. This interrelationship was more pronounced across multiple networks in the good recovery group compared to the poor recovery group. The group differences in the interrelationship of intra- and inter-network alteration were shown in diverse sub-networks, including cognitive and sensory networks as well as motor networks. This study suggests the importance of adopting a plasticity-oriented perspective focused on changes in intra- and inter-network connectivity throughout the entire brain rather than solely emphasizing the motor function area for predicting and treating motor function recovery.
Collapse
Affiliation(s)
- Jungsoo Lee
- Department of Biomedical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea.
- Myongji Choonhey Rehabilitation Hospital, 223, Daerim-ro, Yeongdeungpo-gu, Seoul, 07378, South Korea.
| |
Collapse
|
2
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Exp Physiol 2025; 110:321-344. [PMID: 39576175 PMCID: PMC11782206 DOI: 10.1113/ep092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thomas J. Vajtay
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shiva Salsabilian
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Nicholas Fliss
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aastha Suvarnakar
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jennifer Fang
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shavonne Teng
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Janet Alder
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Laleh Najafizadeh
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David J. Margolis
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
3
|
Niu B, Wu H, Li Y, Klugah-Brown B, Hanna G, Yao Y, Jing J, Baig TI, Xia Y, Yao D, Biswal B. Topological functional network analysis of cortical blood flow in hyperacute ischemic rats. Brain Struct Funct 2024; 230:20. [PMID: 39724244 PMCID: PMC11671571 DOI: 10.1007/s00429-024-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery. We also used a dense cortical grid atlas to construct CBF-based functional connectivity networks for hyperacute ischemic rodents. Graph theoretical analysis was used to measure network topological characteristics and construct topological connection graphs. Coactivation pattern (CAP) analysis was utilized to examine the spatiotemporal characteristics of the global network. Additionally, we measured evoked functional hyperemia and correlated it with network topologies. Network analysis indicated a significant increase in functional connectivity, global efficiency, local efficiency, small-worldness, clustering coefficient, and regional degree centrality primarily within the left ischemic intra-hemisphere, accompanied by weaker changes in the right intra-hemisphere. Inter-hemisphere networks exhibited reduced homologous connections, global efficiency, and small-worldness. CAP analysis revealed increased strength of the left negative activation brain network's state fraction of time and transition probability from equilibrium-to-imbalance states. Left network metrics declined following blood flow reperfusion. Furthermore, positive/negative correlations between barrel-evoked intensity and regional network topologies were reversed as negative/positive correlations after cerebral ischemia. These findings suggest a damaged CBF functional network mechanism following acute cerebral ischemia and a disrupted association between resting state and evoked hyperemia.
Collapse
Affiliation(s)
- Bochao Niu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hongzhou Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - George Hanna
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Youwang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Talha Imtiaz Baig
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
4
|
Madden DJ, Merenstein JL, Harshbarger TB, Cendales LC. Changes in Functional and Structural Brain Connectivity Following Bilateral Hand Transplantation. NEUROIMAGE. REPORTS 2024; 4:100222. [PMID: 40162089 PMCID: PMC11951133 DOI: 10.1016/j.ynirp.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
As a surgical treatment following amputation or loss of an upper limb, nearly 200 hand transplantations have been completed to date. We report here a magnetic resonance imaging (MRI) investigation of functional and structural brain connectivity for a bilateral hand transplant patient (female, 60 years of age), with a preoperative baseline and three postoperative testing sessions each separated by approximately six months. We used graph theoretical analyses to estimate connectivity within and between modules (networks of anatomical nodes), particularly a sensorimotor network (SMN), from resting-state functional MRI and structural diffusion-weighted imaging (DWI). For comparison, corresponding MRI measures of connectivity were obtained from 10 healthy, age-matched controls, at a single testing session. The patient's within-module functional connectivity (both SMN and non-SMN modules), and structural within-SMN connectivity, were higher preoperatively than that of the controls, indicating a response to amputation. Postoperatively, the patient's within-module functional connectivity decreased towards the control participants' values, across the 1.5 years postoperatively, particularly for hand-related nodes within the SMN module, suggesting a return to a more canonical functional organization. Whereas the patient's structural connectivity values remained relatively constant postoperatively, some evidence suggested that structural connectivity supported the postoperative changes in within-module functional connectivity.
Collapse
Affiliation(s)
- David J. Madden
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Jenna L. Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Todd B. Harshbarger
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Linda C. Cendales
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Colarusso B, Ortiz R, Yeboah J, Chang A, Gupta M, Kulkarni P, Ferris CF. APOE4 rat model of Alzheimer's disease: sex differences, genetic risk and diet. BMC Neurosci 2024; 25:57. [PMID: 39506641 PMCID: PMC11539573 DOI: 10.1186/s12868-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
The strongest genetic risk factor for Alzheimer's disease (AD) is the ε4 allele of apolipoprotein E (ApoE ε4). A high fat diet also adds to the risk of dementia and AD. In addition, there are sex differences as women carriers have a higher risk of an earlier onset and rapid decline in memory than men. The present study looked at the effect of the genetic risk of ApoE ε4 together with a high fat/high sucrose diet (HFD/HSD) on brain function in male and female rats using magnetic resonance imaging. We hypothesized female carriers would present with deficits in cognitive behavior together with changes in functional connectivity as compared to male carriers. Four-month-old wildtype and human ApoE ε4 knock-in (TGRA8960), male and female Sprague Dawley rats were put on a HFD/HSD for four months. Afterwards they were imaged for changes in function using resting state BOLD functional connectivity. Images were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on 173 different brain areas. Resting state functional connectivity showed male wildtype had greater connectivity between areas involved in feeding and metabolism while there were no differences between female and male carriers and wildtype females. The data were unexpected. The genetic risk was overshadowed by the diet. Male wildtype rats were most sensitive to the HFD/HSD presenting with a deficit in cognitive performance with enhanced functional connectivity in neural circuitry associated with food consumption and metabolism.
Collapse
Affiliation(s)
- Bradley Colarusso
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard Ortiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Julian Yeboah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Megha Gupta
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
6
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590835. [PMID: 38712183 PMCID: PMC11071467 DOI: 10.1101/2024.04.24.590835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Thomas J. Vajtay
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shiva Salsabilian
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas Fliss
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Aastha Suvarnakar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Jennifer Fang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| |
Collapse
|
7
|
Moazeni O, Northoff G, Batouli SAH. The subcortical brain regions influence the cortical areas during resting-state: an fMRI study. Front Hum Neurosci 2024; 18:1363125. [PMID: 39055533 PMCID: PMC11271203 DOI: 10.3389/fnhum.2024.1363125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Numerous modes or patterns of neural activity can be seen in the brain of individuals during the resting state. However, those functions do not persist long, and they are continuously altering in the brain. We have hypothesized that the brain activations during the resting state should themselves be responsible for this alteration of the activities. Methods Using the resting-state fMRI data of 63 healthy young individuals, we estimated the causality effects of each resting-state activation map on all other networks. The resting-state networks were identified, their causality effects on the other components were extracted, the networks with the top 20% of the causality were chosen, and the networks which were under the influence of those causal networks were also identified. Results Our results showed that the influence of each activation component over other components is different. The brain areas which showed the highest causality coefficients were subcortical regions, such as the brain stem, thalamus, and amygdala. On the other hand, nearly all the areas which were mostly under the causal effects were cortical regions. Discussion In summary, our results suggest that subcortical brain areas exert a higher influence on cortical regions during the resting state, which could help in a better understanding the dynamic nature of brain functions.
Collapse
Affiliation(s)
- Omid Moazeni
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fox R, Santana-Gomez C, Shamas M, Pavade A, Staba R, Harris NG. Different Trajectories of Functional Connectivity Captured with Gamma-Event Coupling and Broadband Measures of EEG in the Rat Fluid Percussion Injury Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597056. [PMID: 38895342 PMCID: PMC11185526 DOI: 10.1101/2024.06.02.597056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.
Collapse
|
9
|
Chan ST, Mercaldo N, Figueiro Longo MG, Welt J, Avesta A, Lee J, Lev MH, Ratai EM, Wenke MR, Parry BA, Drake L, Anderson RR, Rauch T, Diaz-Arrastia R, Kwong KK, Hamblin M, Vakoc BJ, Gupta R, Panzer A. Effects of Low-Level Light Therapy on Resting-State Connectivity Following Moderate Traumatic Brain Injury: Secondary Analyses of a Double-blinded Placebo-controlled Study. Radiology 2024; 311:e230999. [PMID: 38805733 PMCID: PMC11140530 DOI: 10.1148/radiol.230999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024]
Abstract
Background Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the impact of LLLT on the functional connectivity of the brain when at rest has not been well studied. Purpose To use functional MRI to assess the effect of LLLT on whole-brain resting-state functional connectivity (RSFC) in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases. Materials and Methods This is a secondary analysis of a prospective single-site double-blinded sham-controlled study conducted in patients presenting to the emergency department with moderate TBI from November 2015 to July 2019. Participants were randomized for LLLT and sham treatment. The primary outcome of the study was to assess structural connectivity, and RSFC was collected as the secondary outcome. MRI was used to measure RSFC in 82 brain regions in participants during the three recovery phases. Healthy individuals who did not receive treatment were imaged at a single time point to provide control values. The Pearson correlation coefficient was estimated to assess the connectivity strength for each brain region pair, and estimates of the differences in Fisher z-transformed correlation coefficients (hereafter, z differences) were compared between recovery phases and treatment groups using a linear mixed-effects regression model. These analyses were repeated for all brain region pairs. False discovery rate (FDR)-adjusted P values were computed to account for multiple comparisons. Quantile mixed-effects models were constructed to quantify the association between the Rivermead Postconcussion Symptoms Questionnaire (RPQ) score, recovery phase, and treatment group. Results RSFC was evaluated in 17 LLLT-treated participants (median age, 50 years [IQR, 25-67 years]; nine female), 21 sham-treated participants (median age, 50 years [IQR, 43-59 years]; 11 female), and 23 healthy control participants (median age, 42 years [IQR, 32-54 years]; 13 male). Seven brain region pairs exhibited a greater change in connectivity in LLLT-treated participants than in sham-treated participants between the acute and subacute phases (range of z differences, 0.37 [95% CI: 0.20, 0.53] to 0.45 [95% CI: 0.24, 0.67]; FDR-adjusted P value range, .010-.047). Thirteen different brain region pairs showed an increase in connectivity in sham-treated participants between the subacute and late-subacute phases (range of z differences, 0.17 [95% CI: 0.09, 0.25] to 0.26 [95% CI: 0.14, 0.39]; FDR-adjusted P value range, .020-.047). There was no evidence of a difference in clinical outcomes between LLLT-treated and sham-treated participants (range of differences in medians, -3.54 [95% CI: -12.65, 5.57] to -0.59 [95% CI: -7.31, 8.49]; P value range, .44-.99), as measured according to RPQ scores. Conclusion Despite the small sample size, the change in RSFC from the acute to subacute phases of recovery was greater in LLLT-treated than sham-treated participants, suggesting that acute-phase LLLT may have an impact on resting-state neuronal circuits in the early recovery phase of moderate TBI. ClinicalTrials.gov Identifier: NCT02233413 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - Maria G. Figueiro Longo
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Jonathan Welt
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Arman Avesta
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Jarone Lee
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael H. Lev
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Eva-Maria Ratai
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael R. Wenke
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Blair A. Parry
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Lynn Drake
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Richard R. Anderson
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Terry Rauch
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Ramon Diaz-Arrastia
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Kenneth K. Kwong
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | - Michael Hamblin
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| | | | | | - Ariane Panzer
- From the Athinoula A. Martinos Center for Biomedical Imaging (S.T.C.,
E.M.R., K.K.K.), Department of Radiology (S.T.C., N.M., M.G.F.L., A.A., M.H.L.,
E.M.R., K.K.K., R.G.), Wellman Center for Photomedicine (L.D., R.R.A., M.H.,
B.J.V.), Department of Emergency Medicine (J.L., B.A.P.), and Department of
Surgery (J.L.), Massachusetts General Hospital, 55 Fruit St, Boston, MA 02129;
Department of Anesthesiology and Perioperative Care, University of California
Irvine, Orange, Calif (J.W.); Department of Radiology, Yale School of Medicine,
New Haven, Conn (A.A.); Neuroscience Institute, Huck Institutes of the Life
Sciences, Pennsylvania State University, State College, Pa (M.R.W.);
Pennsylvania State College of Medicine, Milton S. Hershey Medical Center,
Hershey, Pa (M.R.W.); Office of Secretary of Defense, Department of Defense,
Washington, DC (T.R.); and Department of Neurology, University of Pennsylvania,
Philadelphia, Pa (R.D.A.)
| |
Collapse
|
10
|
Li J, Shu Y, Chen L, Wang B, Chen L, Zhan J, Kuang H, Xia G, Zhou F, Gong H, Zeng X. Disrupted topological organization of functional brain networks in traumatic axonal injury. Brain Imaging Behav 2024; 18:279-291. [PMID: 38044412 PMCID: PMC11156726 DOI: 10.1007/s11682-023-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Traumatic axonal injury (TAI) may result in the disruption of brain functional networks and is strongly associated with cognitive impairment. However, the neural mechanisms affecting the neurocognitive function after TAI remain to be elucidated. We collected the resting-state functional magnetic resonance imaging data from 28 patients with TAI and 28 matched healthy controls. An automated anatomical labeling atlas was used to construct a functional brain connectome. We utilized a graph theoretical approach to investigate the alterations in global and regional network topologies, and network-based statistics analysis was utilized to localize the connected networks more precisely. The current study revealed that patients with TAI and healthy controls both showed a typical small-world topology of the functional brain networks. However, patients with TAI exhibited a significantly lower local efficiency compared to healthy controls, whereas no significant difference emerged in other small-world properties (Cp, Lp, γ, λ, and σ) and global efficiency. Moreover, patients with TAI exhibited aberrant nodal centralities in some regions, including the frontal lobes, parietal lobes, caudate nucleus, and cerebellum bilaterally, and right olfactory cortex. The network-based statistics results showed alterations in the long-distance functional connections in the subnetwork in patients with TAI, involving these brain regions with significantly altered nodal centralities. These alterations suggest that brain networks of individuals with TAI present aberrant topological attributes that are associated with cognitive impairment, which could be potential biomarkers for predicting cognitive dysfunction and help understanding the neuropathological mechanisms in patients with TAI.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Guojin Xia
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China.
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China.
| |
Collapse
|
11
|
Caeyenberghs K, Imms P, Irimia A, Monti MM, Esopenko C, de Souza NL, Dominguez D JF, Newsome MR, Dobryakova E, Cwiek A, Mullin HAC, Kim NJ, Mayer AR, Adamson MM, Bickart K, Breedlove KM, Dennis EL, Disner SG, Haswell C, Hodges CB, Hoskinson KR, Johnson PK, Königs M, Li LM, Liebel SW, Livny A, Morey RA, Muir AM, Olsen A, Razi A, Su M, Tate DF, Velez C, Wilde EA, Zielinski BA, Thompson PM, Hillary FG. ENIGMA's simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury. Neuroimage Clin 2024; 42:103585. [PMID: 38531165 PMCID: PMC10982609 DOI: 10.1016/j.nicl.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Martin M Monti
- Department of Psychology, UCLA, USA; Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Nicola L de Souza
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan F Dominguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Mary R Newsome
- Michael E. DeBakey VA Medical Center, Houston, TX, USA; H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA; Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Andrew Cwiek
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Hollie A C Mullin
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Nicholas J Kim
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation Department, VA Palo Alto, Palo Alto, CA, USA; Rehabilitation Service, VA Palo Alto, Palo Alto, CA, USA; Neurosurgery, Stanford School of Medicine, Stanford, CA, USA.
| | - Kevin Bickart
- UCLA Steve Tisch BrainSPORT Program, USA; Department of Neurology, David Geffen School of Medicine at UCLA, USA.
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Courtney Haswell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, OH, USA.
| | - Paula K Johnson
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, The Netherlands; Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| | - Lucia M Li
- C3NL, Imperial College London, United Kingdom; UK DRI Centre for Health Care and Technology, Imperial College London, United Kingdom.
| | - Spencer W Liebel
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA.
| | - Alexandra M Muir
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; NorHEAD - Norwegian Centre for Headache Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| | - Matthew Su
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Carmen Velez
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Brandon A Zielinski
- Departments of Pediatrics, Neurology, and Neuroscience, University of Florida, Gainesville, FL, USA; Departments of Pediatrics, Neurology, and Radiology, University of Utah, Salt Lake City, UT, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA; Department of Neurology, Hershey Medical Center, PA, USA.
| |
Collapse
|
12
|
Ikonnikova SA, Koltsova EA. [Connectome in stroke patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:46-50. [PMID: 39831362 DOI: 10.17116/jnevro202412412246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Stroke is the main cause of disability among neurological diseases. There are questions of the accuracy of topical diagnosis and rehabilitation prognosis in clinical practice. Answers to these questions may be given by an approach to the study of the nervous system as a dynamic network consisting of a set of brain regions with anatomical and functional connections between them. Active study of the connectome in neurological patients in recent years became possible due to the availability of noninvasive neuroimaging methods. This review covers types of connectome and most accessible methods of obtaining research data for their construction in a neurological hospital. The review also describes resting-state networks that reflect basic brain activity in the absence of tasks. Resting-state connectivity can be used for the diagnosis of patients with severe neurological deficits. Also, changes in resting-state connectivity may indicate recovery after a stroke. The connectome analysis uses graph theory, representing the nervous system as a set of nodes and connections between them, and providing a mathematical framework allowing to study it, and methods of algebraic topology that expand the possibilities of analyzing neuroimaging data beyond graph theory. Attention is paid to the concept of self-organized criticality, which describes the brain as a system located near the critical point, where the transmission of information is most optimized. Also presented are data from studies of self-organized criticality in relation to the dynamics of recovery of patients after stroke.
Collapse
Affiliation(s)
- S A Ikonnikova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| |
Collapse
|
13
|
Oujamaa L, Delon-Martin C, Jaroszynski C, Termenon M, Silva S, Payen JF, Achard S. Functional hub disruption emphasizes consciousness recovery in severe traumatic brain injury. Brain Commun 2023; 5:fcad319. [PMID: 38757093 PMCID: PMC11098044 DOI: 10.1093/braincomms/fcad319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 05/18/2024] Open
Abstract
Severe traumatic brain injury can lead to transient or even chronic disorder of consciousness. To increase diagnosis and prognosis accuracy of disorder of consciousness, functional neuroimaging is recommended 1 month post-injury. Here, we investigated brain networks remodelling on longitudinal data between 1 and 3 months post severe traumatic brain injury related to change of consciousness. Thirty-four severe traumatic brain-injured patients were included in a cross-sectional and longitudinal clinical study, and their MRI data were compared to those of 20 healthy subjects. Long duration resting-state functional MRI were acquired in minimally conscious and conscious patients at two time points after their brain injury. The first time corresponds to the exit from intensive care unit and the second one to the discharge from post-intensive care rehabilitation ward. Brain networks data were extracted using graph analysis and metrics at each node quantifying local (clustering) and global (degree) connectivity characteristics. Comparison with brain networks of healthy subjects revealed patterns of hyper- and hypo-connectivity that characterize brain networks reorganization through the hub disruption index, a value quantifying the functional disruption in each individual severe traumatic brain injury graph. At discharge from intensive care unit, 24 patients' graphs (9 minimally conscious and 15 conscious) were fully analysed and demonstrated significant network disruption. Clustering and degree nodal metrics, respectively, related to segregation and integration properties of the network, were relevant to distinguish minimally conscious and conscious groups. At discharge from post-intensive care rehabilitation unit, 15 patients' graphs (2 minimally conscious, 13 conscious) were fully analysed. The conscious group still presented a significant difference with healthy subjects. Using mixed effects models, we showed that consciousness state, rather than time, explained the hub disruption index differences between minimally conscious and conscious groups. While severe traumatic brain-injured patients recovered full consciousness, regional functional connectivity evolved towards a healthy pattern. More specifically, the restoration of a healthy brain functional segregation could be necessary for consciousness recovery after severe traumatic brain injury. For the first time, extracting the hub disruption index directly from each patient's graph, we were able to track the clinical alteration and subsequent recovery of consciousness during the first 3 months following a severe traumatic brain injury.
Collapse
Affiliation(s)
- Lydia Oujamaa
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Maite Termenon
- Faculty of Engineering, Biomedical Engineering Department, Mondragon Unibertsitatea (MU-ENG), 20500 Mondragon, Spain
| | - Stein Silva
- Toulouse NeuroImaging Center, Toulouse III Paul Sabatier University, Inserm, 31062 Toulouse, France
- Critical Care Unit, University Teaching Hospital of Purpan, 31059 Toulouse, France
| | - Jean-François Payen
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Sophie Achard
- University Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
| |
Collapse
|
14
|
Powell JR, Hopfinger JB, Giovanello KS, Walton SR, DeLellis SM, Kane SF, Means GE, Mihalik JP. Mild traumatic brain injury history is associated with lower brain network resilience in soldiers. Brain Commun 2023; 5:fcad201. [PMID: 37545546 PMCID: PMC10400114 DOI: 10.1093/braincomms/fcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Special Operations Forces combat soldiers sustain frequent blast and blunt neurotrauma, most often classified as mild traumatic brain injuries. Exposure to repetitive mild traumatic brain injuries is associated with persistent behavioural, cognitive, emotional and neurological symptoms later in life. Identifying neurophysiological changes associated with mild traumatic brain injury exposure, in the absence of present-day symptoms, is necessary for detecting future neurological risk. Advancements in graph theory and functional MRI have offered novel ways to analyse complex whole-brain network connectivity. Our purpose was to determine how mild traumatic brain injury history, lifetime incidence and recency affected whole-brain graph theoretical outcome measures. Healthy male Special Operations Forces combat soldiers (age = 33.2 ± 4.3 years) underwent multimodal neuroimaging at a biomedical research imaging centre using 3T Siemens Prisma or Biograph MRI scanners in this cross-sectional study. Anatomical and functional scans were preprocessed. The blood-oxygen-level-dependent signal was extracted from each functional MRI time series using the Big Brain 300 atlas. Correlations between atlas regions were calculated and Fisher z-transformed to generate subject-level correlation matrices. The Brain Connectivity Toolbox was used to obtain functional network measures for global efficiency (the average inverse shortest path length), local efficiency (the average global efficiency of each node and its neighbours), and assortativity coefficient (the correlation coefficient between the degrees of all nodes on two opposite ends of a link). General linear models were fit to compare mild traumatic brain injury lifetime incidence and recency. Nonparametric ANOVAs were used for tests on non-normally distributed data. Soldiers with a history of mild traumatic brain injury had significantly lower assortativity than those who did not self-report mild traumatic brain injury (t148 = 2.44, P = 0.016). The assortativity coefficient was significantly predicted by continuous mild traumatic brain injury lifetime incidence [F1,144 = 6.51, P = 0.012]. No differences were observed between recency groups, and no global or local efficiency differences were observed between mild traumatic brain injury history and lifetime incidence groups. Brain networks with greater assortativity have more resilient, interconnected hubs, while those with lower assortativity indicate widely distributed, vulnerable hubs. Greater lifetime mild traumatic brain injury incidence predicted lower assortativity in our study sample. Less resilient brain networks may represent a lack of physiological recovery in mild traumatic brain injury patients, who otherwise demonstrate clinical recovery, more vulnerability to future brain injury and increased risk for accelerated age-related neurodegenerative changes. Future longitudinal studies should investigate whether decreased brain network resilience may be a predictor for long-term neurological dysfunction.
Collapse
Affiliation(s)
- Jacob R Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph B Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel R Walton
- Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephen M DeLellis
- Fort Liberty Research Institute, The Geneva Foundation, Tacoma, WA 98402, USA
| | - Shawn F Kane
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC 28303, USA
| | - Jason P Mihalik
- Correspondence to: Jason P. Mihalik Matthew Gfeller Center, Department of Exercise and Sport Science The University of North Carolina at Chapel Hill, 2201 Stallings-Evans Sports Medicine Center Campus Box 8700, Chapel Hill, NC 27599, USA E-mail:
| |
Collapse
|
15
|
Ryan D, Mirbagheri S, Yahyavi-Firouz-Abadi N. The Current State of Functional MR Imaging for Trauma Prognostication. Neuroimaging Clin N Am 2023; 33:299-313. [PMID: 36965947 DOI: 10.1016/j.nic.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
In this review, we discuss the basics of functional MRI (fMRI) techniques including task-based and resting state fMRI, and overview the major findings in patients with traumatic brain injury. We summarize the studies that have longitudinally evaluated the changes in brain connectivity and task-related activation in trauma patients during different phases of trauma. We discuss how these data may potentially be used for prognostication, treatment planning, or monitoring and management of trauma patients.
Collapse
Affiliation(s)
- Daniel Ryan
- Southern Illinois University School of Medicine, 401 East Carpenter Street, Springfield, IL, USA
| | - Saeedeh Mirbagheri
- University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401, USA
| | | |
Collapse
|
16
|
Ghiles CW, Clark MD, Kuzminski SJ, Fraser MA, Petrella JR, Guskiewicz KM. Changes in resting state networks in high school football athletes across a single season. Br J Radiol 2023; 96:20220359. [PMID: 36607807 PMCID: PMC10078860 DOI: 10.1259/bjr.20220359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The aim of this pilot cohort study was to examine changes in the organization of resting-state brain networks in high school football athletes and its relationship to exposure to on-field head impacts over the course of a single season. METHODS Seventeen male high school football players underwent functional magnetic resonance imaging and computerized neurocognitive testing (CNS Vital Signs) before the start of contact practices and again after the conclusion of the season. The players were equipped with helmet accelerometer systems (Head Impact Telemetry System) to record head impacts in practices and games. Graph theory analysis was applied to study intranetwork local efficiency and strength of connectivity within six anatomically defined brain networks. RESULTS We observed a significant decrease in the local efficiency (-24.9 ± 51.4%, r = 0.7, p < 0.01) and strength (-14.5 ± 26.8%, r = 0.5, p < 0.01) of functional connectivity within the frontal lobe resting-state network and strength within the parietal lobe resting-state network (-7.5 ± 17.3%, r = 0.1, p < 0.01), as well as a concomitant increase in the local efficiency (+55.0 +/- 59.8%, r = 0.5, p < 0.01) and strength (+47.4 +/- 47.3%, r = 0.5, p < 0.01) within the mediotemporal networks. These alterations in network organization were associated with changes in performance on verbal memory (p < 0.05) and executive function (p < 0.05). We did not observe a significant relationship between the frequency or cumulative magnitude of impacts sustained during the season and neurocognitive or imaging outcomes (p > 0.05). CONCLUSION Our findings suggest the efficiency and strength of resting-state networks are altered across a season of high school football, but the association of exposure levels to subconcussive impacts is unclear. ADVANCES IN KNOWLEDGE The efficiency of resting-state networks is dynamic in high school football athletes; such changes may be related to impacts sustained during the season, though further study is needed.
Collapse
Affiliation(s)
- Connor W Ghiles
- Wake Forest University School of Medicine, Winston-Salem, United States
| | - Michael D Clark
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| | | | - Melissa A Fraser
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| | | | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
17
|
Bodart A, Invernizzi S, Lefebvre L, Rossignol M. Physiological reactivity at rest and in response to social or emotional stimuli after a traumatic brain injury: A systematic review. Front Psychol 2023; 14:930177. [PMID: 36844281 PMCID: PMC9950643 DOI: 10.3389/fpsyg.2023.930177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous studies have shown that alterations in physiological reactivity (PR) after traumatic brain injury (TBI) are possibly associated with emotional deficits. We conducted a systematic review of these studies that evaluated PR in adults with moderate-to-severe TBI, either at rest or in response to emotional, stressful, or social stimuli. We focused on the most common measures of physiological response, including heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), electrodermal activity (EDA), salivary cortisol, facial electromyography (EMG), and blink reflex. Methods A systematic literature search was conducted across six databases (PsycINFO, Psycarticles, SciencDirect, Cochrane Library, PubMed, and Scopus). The search returned 286 articles and 18 studies met the inclusion criteria. Results Discrepancies were observed according to the type of physiological measure. Reduced physiological responses in patients with TBI have been reported in most EDA studies, which were also overrepresented in the review. In terms of facial EMG, patients with TBI appear to exhibit reduced activity of the corrugator muscle and diminished blink reflex, while in most studies, zygomaticus contraction did not show significant differences between TBI and controls. Interestingly, most studies measuring cardiac activity did not find significant differences between TBI and controls. Finally, one study measured salivary cortisol levels and reported no difference between patients with TBI and controls. Conclusion Although disturbed EDA responses were frequently reported in patients with TBI, other measures did not consistently indicate an impairment in PR. These discrepancies could be due to the lesion pattern resulting from TBI, which could affect the PR to aversive stimuli. In addition, methodological differences concerning the measurements and their standardization as well as the characteristics of the patients may also be involved in these discrepancies. We propose methodological recommendations for the use of multiple and simultaneous PR measurements and standardization. Future research should converge toward a common methodology in terms of physiological data analysis to improve inter-study comparisons.
Collapse
Affiliation(s)
| | - Sandra Invernizzi
- Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
| | - Laurent Lefebvre
- Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
| | - Mandy Rossignol
- Cognitive Psychology and Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Mons, Mons, Belgium
| |
Collapse
|
18
|
Bai L, Yin B, Lei S, Li T, Wang S, Pan Y, Gan S, Jia X, Li X, Xiong F, Yan Z, Bai G. Reorganized Hubs of Brain Functional Networks after Acute Mild Traumatic Brain Injury. J Neurotrauma 2023; 40:63-73. [PMID: 35747994 DOI: 10.1089/neu.2021.0450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mild traumatic brain injury (mTBI)-associated damage to hub regions can lead to disrupted modular structures of functional brain networks and may result in widespread cognitive and behavioral deficits. The spatial layout of brain connections and modules is essential for understanding the reorganization of brain networks to trauma. We investigated the roles of hubs in inter-subnetwork information coordination and integration using participation coefficients (PCs) in 74 patients with acute mTBI and 51 matched healthy controls. In some brain networks, such as default mode network (DMN) and frontoparietal network (FPN), mild TBI patients had decreased PC levels, while this measure was saliently increased in patients in other networks, such as the visual network. The hub disruption index was defined as the gradient of a straight line fitted to scatterplots of individual mTBI in participation coefficient versus mean participation coefficient of healthy groups. There was a trend of radical reorganization of some efficient "hub" nodes in patients (κ = -0.15), compared with controls (κ close to 0). The PC of brain hubs can also differentiate mTBI patients from controls with an 88% accuracy, and decreased PC levels in FPN can predict patient' s worse cognitive information processing speed (r = 0.36, p < 0.002) and working memory performance (r = 0.35, p < 0.002). Reduced PC within the DMN was associated with patients' complaints of post-concussion symptoms (r = -0.35, p < 0.002). This evidence suggests a trend of spatial transition of hub profiles in acute mTBI, and graph metrics of PC measures can be used as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bo Yin
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuoyan Lei
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
| | - Tianhui Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Xiong
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhihan Yan
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
The pericontused cortex can support function early after TBI but it remains functionally isolated from normal afferent input. Exp Neurol 2023; 359:114260. [PMID: 36404463 DOI: 10.1016/j.expneurol.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
Traumatically injured brain functional connectivity (FC) is altered in a region-dependent manner with some regions functionally disconnected while others are hyperconnected after experimental TBI. Remote, homotopic cortical regions become hyperexcitable after injury, and we hypothesize that this results in increased trans-hemispheric cortical inhibition, preventing reorganization of the primary injured hemisphere. Previously we have shown that temporary silencing the contralesional cortex at 1wk normalizes affected forelimb behavioral use, but not at 4wks. To investigate the potential mechanism for this and to determine whether this occurs due to restoration of afferent pathway FC, and/or reorganization of brain circuits, we probed forelimb circuit function with sensorimotor task-evoked-fMRI, resting state fMRI seed-based analysis, and exploratory structural equation modelling (SEM) of directed causal connections due to forelimb task at 1 and 4wks post-injury after temporary, contralateral silencing with intraparenchymal injection of muscimol versus vehicle, as well as from sham rats. As predicted, silencing at 1wk and 4wks post-injury decimated the contralesional cortical forelimb map evoked by stimulation of the opposite, unaffected forelimb compared to vehicle-injected injured rats indicating the success of the intervention. Surprisingly however, this also resulted in activation of the pericontused cortex ipsilateral to the stimulated forelimb at 1wk, yet this same region could not be activated by directly stimulating the opposite, injury-affected forelimb. Underpinning this were significant increases in interhemispheric FC at the level of the cortex but decreases within subcortical regions. Causal SEM analysis confirmed increased corticothalamic connectivity and suggested changes from and to bilateral thalamus are important for the effect. At 4wks post-injury only cortical increases in FC were found in response to silencing indicating a less flexible brain, and ipsilesional cortex evoked activity was mostly absent. The absence of a reinstatement of ipsilesional evoked activity through normal pathways by temporary neuromodulation despite prior data showing behavioral improvements under the same conditions, indicates that while the pericontused cortex does retain function initially after injury, it is too functionally disconnected to be controlled by normal afferent input. More significant alterations in cross-brain FC during neuromodulation at 1wk compared to 4wk post-injury, suggest that more distributed brain activity accounts for prior behavior improvements in sensorimotor function, and that hemispheric imbalance in function is causally involved in early loss of sensorimotor function in this TBI model.
Collapse
|
20
|
Rajtmajer SM, Errington TM, Hillary FG. How failure to falsify in high-volume science contributes to the replication crisis. eLife 2022; 11:e78830. [PMID: 35939392 PMCID: PMC9398444 DOI: 10.7554/elife.78830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.
Collapse
Affiliation(s)
- Sarah M Rajtmajer
- College of Information Sciences and Technology, The Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Frank G Hillary
- Department of Psychology and the Social Life and Engineering Sciences Imaging Center, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
21
|
Frankowski JC, Tierno A, Pavani S, Cao Q, Lyon DC, Hunt RF. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nat Commun 2022; 13:3417. [PMID: 35701434 PMCID: PMC9197933 DOI: 10.1038/s41467-022-31072-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged. The loss of long-range input does not correlate with cell loss in distant brain regions. Interneurons transplanted into the injury site receive orthotopic local and long-range input, suggesting the machinery for establishing distant connections remains intact even after a severe injury. Our results uncover a potential strategy to sustain and optimize inhibition after traumatic brain injury that involves spatial reorganization of the direct inputs to inhibitory neurons across the brain.
Collapse
Affiliation(s)
- Jan C Frankowski
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Alexa Tierno
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA.
| | - Shreya Pavani
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Quincy Cao
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - David C Lyon
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA. .,Epilepsy Research Center, University of California, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA. .,Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
22
|
Botchway E, Kooper CC, Pouwels PJW, Bruining H, Engelen M, Oosterlaan J, Königs M. Resting-state network organisation in children with traumatic brain injury. Cortex 2022; 154:89-104. [PMID: 35763900 DOI: 10.1016/j.cortex.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Children with traumatic brain injury are at risk of neurocognitive and behavioural impairment. Although there is evidence for abnormal brain activity in resting-state networks after TBI, the role of resting-state network organisation in paediatric TBI outcome remains poorly understood. This study is the first to investigate the impact of paediatric TBI on resting-state network organisation using graph theory, and its relevance for functional outcome. Participants were 8-14 years and included children with (i) mild TBI and risk factors for complicated TBI (mildRF+, n = 20), (ii) moderate/severe TBI (n = 15), and (iii) trauma control injuries (n = 27). Children underwent resting-state functional magnetic resonance imaging (fMRI), neurocognitive testing, and behavioural assessment at 2.8 years post-injury. Graph theory was applied to fMRI timeseries to evaluate the impact of TBI on global and local organisation of the resting-state network, and relevance for neurocognitive and behavioural functioning. Children with TBI showed atypical global network organisation as compared to the trauma control group, reflected by lower modularity (mildRF + TBI and moderate/severe TBI), higher smallworldness (mildRF + TBI) and lower assortativity (moderate/severe TBI ps < .04, Cohen's ds: > .6). Regarding local network organisation, the relative importance of hub regions in the network did not differ between groups. Regression analyses showed relationships between global as well as local network parameters with neurocognitive functioning (i.e., working memory, memory encoding; R2 = 23.3 - 38.5%) and behavioural functioning (i.e., externalising problems, R2 = 36.1%). Findings indicate the impact of TBI on global functional network organisation, and the relevance of both global and local network organisation for long-term neurocognitive and behavioural outcome after paediatric TBI. The results suggest potential prognostic value of resting-state network organisation for outcome after paediatric TBI.
Collapse
Affiliation(s)
- Edith Botchway
- School of Psychology, Faculty of Health at the Deakin University, Burwood, Australia
| | - Cece C Kooper
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Neuroscience Group, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands.
| | - Petra J W Pouwels
- Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Hilgo Bruining
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam UMC location Vrije Universiteit Amsterdam, N=You Centre, Amsterdam, the Netherlands
| | - Marc Engelen
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatric Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Leukodystrophy Center, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me program & Emma Neuroscience Group, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marsh Königs
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me program & Emma Neuroscience Group, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Heled E, Tal K, Zeilig G. Does lack of brain injury mean lack of cognitive impairment in traumatic spinal cord injury? J Spinal Cord Med 2022; 45:373-380. [PMID: 33320804 PMCID: PMC9135427 DOI: 10.1080/10790268.2020.1847564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Traumatic spinal cord injury (tSCI) has implications in many areas, including cognitive functioning. Findings regarding cognitive problems in people with SCI are inconsistent, presumably due to multiple variables than can affect performance, among them emotional variables. The purpose of the current study was to elucidate cognitive sequalae in some individuals with tSCI with no medical record of brain injury, while taking emotional variables into consideration. DESIGN Cross-sectional, with two groups. SETTING A public rehabilitation center. PARTICIPANTS Twenty participants with tSCI at least ten months post injury and twenty non-SCI controls, matched for sex, age, and education. INTERVENTION None. OUTCOME MEASURES A battery of neuropsychological tests tapping executive functions, memory, attention, and naming abilities, in addition to questionnaires assessing depression and distress. RESULTS When emotional variables were statistically controlled, participants with tSCI showed higher levels of depression and distress and scored lower than non-SCI control participants on all cognitive tests except naming. Executive functions were found to have the highest effect size, though no specific ability was sensitive enough to differentiate between the groups in a binary logistic regression analysis. CONCLUSION In some individuals with chronic tSCI, lower cognitive ability that is unrelated to emotional distress might result from spinal cord damage and its implications in a population who's medical records show no indication of brain injury. This highlights the importance of conducting cognitive evaluation following SCI, so that deficits can be effectively addressed during rehabilitation.
Collapse
Affiliation(s)
- Eyal Heled
- Department of Psychology, Ariel University, Ariel, Israel,Department of Neurological Rehabilitation, Sheba Medical Center, Ramat-Gan, Israel,Correspondence to: Eyal Heled, Department of Psychology, Ariel University, Ariel, Israel; Ph: +972-502-310313; +972-3-9191437.
| | - Keren Tal
- Department of Psychology, Ariel University, Ariel, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat-Gan, Israel,Department of Physical Medicine and Rehabilitation, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Abdul Rahman MR, Abd Hamid AI, Noh NA, Omar H, Chai WJ, Idris Z, Ahmad AH, Fitzrol DN, Ab. Ghani ARIG, Wan Mohamad WNA, Mohamed Mustafar MF, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa P, Luisa-Bringas M, Biswal B, Songsiri J, Yaacob HS, Sumari P, Jamir Singh PS, Azman A, Abdullah JM. Alteration in the Functional Organization of the Default Mode Network Following Closed Non-severe Traumatic Brain Injury. Front Neurosci 2022; 16:833320. [PMID: 35418832 PMCID: PMC8995774 DOI: 10.3389/fnins.2022.833320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research.
Collapse
Affiliation(s)
- Muhammad Riddha Abdul Rahman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Aini Ismafairus Abd Hamid
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Hazim Omar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wen Jia Chai
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ab. Rahman Izaini Ghani Ab. Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faiz Mohamed Mustafar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hafidah Umar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azizah Othman
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zunaina Embong
- Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nur Asma Sapiai
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Haidi Ibrahim
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Mohd Zaid Abdullah
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, Havana, Cuba
| | - Maria Luisa-Bringas
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, Havana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Sakti Yaacob
- Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | | | - Azlinda Azman
- School of Social Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
25
|
Functional network connectivity imprint in febrile seizures. Sci Rep 2022; 12:3267. [PMID: 35228583 PMCID: PMC8885759 DOI: 10.1038/s41598-022-07173-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022] Open
Abstract
Complex febrile seizures (CFS), a subset of paediatric febrile seizures (FS), have been studied for their prognosis, epileptogenic potential and neurocognitive outcome. We evaluated their functional connectivity differences with simple febrile seizures (SFS) in children with recent-onset FS. Resting-state fMRI (rs-fMRI) datasets of 24 children with recently diagnosed FS (SFS-n = 11; CFS-n = 13) were analysed. Functional connectivity (FC) was estimated using time series correlation of seed region–to-whole-brain-voxels and network topology was assessed using graph theory measures. Regional connectivity differences were correlated with clinical characteristics (FDR corrected p < 0.05). CFS patients demonstrated increased FC of the bilateral middle temporal pole (MTP), and bilateral thalami when compared to SFS. Network topology study revealed increased clustering coefficient and decreased participation coefficient in basal ganglia and thalamus suggesting an inefficient-unbalanced network topology in patients with CFS. The number of seizure recurrences negatively correlated with the integration of Left Thalamus (r = − 0.58) and FC of Left MTP to 'Right Supplementary Motor and left Precentral' gyrus (r = − 0.53). The FC of Right MTP to Left Amygdala, Putamen, Parahippocampal, and Orbital Frontal Cortex (r = 0.61) and FC of Left Thalamus to left Putamen, Pallidum, Caudate, Thalamus Hippocampus and Insula (r 0.55) showed a positive correlation to the duration of the longest seizure. The findings of the current study report altered connectivity in children with CFS proportional to the seizure recurrence and duration. Regardless of the causal/consequential nature, such observations demonstrate the imprint of these disease-defining variables of febrile seizures on the developing brain.
Collapse
|
26
|
Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022; 249:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
27
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment exposes CA3 vulnerability in a hippocampal network model of mild traumatic brain injury. Hippocampus 2022; 32:231-250. [PMID: 34978378 DOI: 10.1002/hipo.23402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
Proper function of the hippocampus is critical for executing cognitive tasks such as learning and memory. Traumatic brain injury (TBI) and other neurological disorders are commonly associated with cognitive deficits and hippocampal dysfunction. Although there are many existing models of individual subregions of the hippocampus, few models attempt to integrate the primary areas into one system. In this work, we developed a computational model of the hippocampus, including the dentate gyrus, CA3, and CA1. The subregions are represented as an interconnected neuronal network, incorporating well-characterized ex vivo slice electrophysiology into the functional neuron models and well-documented anatomical connections into the network structure. In addition, since plasticity is foundational to the role of the hippocampus in learning and memory as well as necessary for studying adaptation to injury, we implemented spike-timing-dependent plasticity among the synaptic connections. Our model mimics key features of hippocampal activity, including signal frequencies in the theta and gamma bands and phase-amplitude coupling in area CA1. We also studied the effects of spike-timing-dependent plasticity impairment, a potential consequence of TBI, in our model and found that impairment decreases broadband power in CA3 and CA1 and reduces phase coherence between these two subregions, yet phase-amplitude coupling in CA1 remains intact. Altogether, our work demonstrates characteristic hippocampal activity with a scaled network model of spiking neurons and reveals the sensitive balance of plasticity mechanisms in the circuit through one manifestation of mild traumatic injury.
Collapse
Affiliation(s)
- Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Osman SM, Soliman HSM, Hamed FM, Marrez DA, El-Gazar AA, Alazzouni AS, Nasr T, Ibrahim HA. Neuroprotective Role of Microbial Biotransformed Metabolites of Sinapic Acid on Repetitive Traumatic Brain Injury in Rats. PHARMACOPHORE 2022. [DOI: 10.51847/1rj6v3egdu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Machine Learning Classification of Mild Traumatic Brain Injury Using Whole-Brain Functional Activity: A Radiomics Analysis. DISEASE MARKERS 2021; 2021:3015238. [PMID: 34840627 PMCID: PMC8616658 DOI: 10.1155/2021/3015238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
Objectives To investigate the classification performance of support vector machine in mild traumatic brain injury (mTBI) from normal controls. Methods Twenty-four mTBI patients (15 males and 9 females; mean age, 38.88 ± 13.33 years) and 24 age and sex-matched normal controls (13 males and 11 females; mean age, 40.46 ± 11.4 years) underwent resting-state functional MRI examination. Seven imaging parameters, including amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC), long-range functional connectivity density (FCD), and short-range FCD, were entered into the classification model to distinguish the mTBI from normal controls. Results The ability for any single imaging parameters to distinguish the two groups is lower than multiparameter combinations. The combination of ALFF, fALFF, DC, VMHC, and short-range FCD showed the best classification performance for distinguishing the two groups with optimal AUC value of 0.778, accuracy rate of 81.11%, sensitivity of 88%, and specificity of 75%. The brain regions with the highest contributions to this classification mainly include bilateral cerebellum, left orbitofrontal cortex, left cuneus, left temporal pole, right inferior occipital cortex, bilateral parietal lobe, and left supplementary motor area. Conclusions Multiparameter combinations could improve the classification performance of mTBI from normal controls by using the brain regions associated with emotion and cognition.
Collapse
|
30
|
Requirement to change of functional brain network across the lifespan. PLoS One 2021; 16:e0260091. [PMID: 34793536 PMCID: PMC8601519 DOI: 10.1371/journal.pone.0260091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Many studies have focused on neural changes and neuroplasticity, while the signaling demand for neural modification needs to be explored. In this study, we traced this issue in the organization of brain functional links where the conflictual arrangement of signed links makes a request to change. We introduced the number of frustrations (unsatisfied closed triadic interactions) as a measure for assessing "requirement to change" of functional brain network. We revealed that the requirement to change of the resting-state network has a u-shape functionality over the lifespan with a minimum in early adulthood, and it's correlated with the presence of negative links. Also, we discovered that brain negative subnetwork has a special topology with a log-normal degree distribution in all stages, however, its global measures are altered by adulthood. Our results highlight the study of collective behavior of functional negative links as the source of the brain's between-regions conflicts and we propose exploring the attribute of the requirement to change besides other neural change factors.
Collapse
|
31
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Averna A, Hayley P, Murphy MD, Barban F, Nguyen J, Buccelli S, Nudo RJ, Chiappalone M, Guggenmos DJ. Entrainment of Network Activity by Closed-Loop Microstimulation in Healthy Ambulatory Rats. Cereb Cortex 2021; 31:5042-5055. [PMID: 34165137 PMCID: PMC8491688 DOI: 10.1093/cercor/bhab140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
As our understanding of volitional motor function increases, it is clear that complex movements are the result of the interactions of multiple cortical regions rather than just the output properties of primary motor cortex. However, our understanding of the interactions among these regions is limited. In this study, we used the activity-dependent stimulation (ADS) technique to determine the short/long-term effects on network activity and neuroplasticity of intracortical connections. ADS uses the intrinsic neural activity of one region to trigger stimulations in a separate region of the brain and can manipulate neuronal connectivity in vivo. Our aim was to compare single-unit neuronal activity within premotor cortex (rostral forelimb area, [RFA] in rats) in response to ADS (triggered from RFA) and randomly-generated stimulation in the somatosensory area (S1) within single sessions and across 21 consecutive days of stimulation. We examined firing rate and correlation between spikes and stimuli in chronically-implanted healthy ambulatory rats during spontaneous and evoked activity. At the end of the treatment, we evaluated changes of synaptophysin expression. Our results demonstrated the ability of ADS to modulate RFA firing properties and to promote synaptogenesis in S1, strengthening the idea that this Hebbian-inspired protocol can be used to modulate cortical connectivity.
Collapse
Affiliation(s)
- Alberto Averna
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy.,CRC Aldo Ravelli, Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122, Milano, Italy
| | - Page Hayley
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City 66160, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Maxwell D Murphy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City 66160, USA.,Bioengineering Graduate Program, University of Kansas, Kansas 66045, USA
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Genova 16145, Italy
| | - Jimmy Nguyen
- University of Kansas School of Medicine, Kansas 66160, USA
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City 66160, USA.,Landon Center on Aging, University of Kansas Medical Center, Kansas 66160, USA
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Genova 16145, Italy
| | - David J Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City 66160, USA
| |
Collapse
|
33
|
Chen VCH, Kao CJ, Tsai YH, Cheok MT, McIntyre RS, Weng JC. Assessment of Disrupted Brain Structural Connectome in Depressive Patients With Suicidal Ideation Using Generalized Q-Sampling MRI. Front Hum Neurosci 2021; 15:711731. [PMID: 34512298 PMCID: PMC8430248 DOI: 10.3389/fnhum.2021.711731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Suicide is one of the leading causes of mortality worldwide. Various factors could lead to suicidal ideation (SI), while depression is the predominant cause among all mental disorders. Studies have shown that alterations in brain structures and networks may be highly associated with suicidality. This study investigated both neurological structural variations and network alterations in depressed patients with suicidal ideation by using generalized q-sampling imaging (GQI) and Graph Theoretical Analysis (GTA). This study recruited 155 participants and divided them into three groups: 44 depressed patients with suicidal ideation (SI+; 20 males and 24 females with mean age = 42, SD = 12), 56 depressed patients without suicidal ideation (Depressed; 24 males and 32 females with mean age = 45, SD = 11) and 55 healthy controls (HC; nine males and 46 females with mean age = 39, SD = 11). Both the generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA) values were evaluated in a voxel-based statistical analysis by GQI. We analyzed different topological parameters in the graph theoretical analysis and the subnetwork interconnections in the Network-based Statistical (NBS) analysis. In the voxel-based statistical analysis, both the GFA and NQA values in the SI+ group were generally lower than those in the Depressed and HC groups in the corpus callosum and cingulate gyrus. Furthermore, we found that the SI+ group demonstrated higher global integration and lower local segregation among the three groups of participants. In the network-based statistical analysis, we discovered that the SI+ group had stronger connections of subnetworks in the frontal lobe than the HC group. We found significant structural differences in depressed patients with suicidal ideation compared to depressed patients without suicidal ideation and healthy controls and we also found several network alterations among these groups of participants, which indicated that white matter integrity and network alterations are associated with patients with depression as well as suicidal ideation.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Ju Kao
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Man Teng Cheok
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
34
|
A Pilot Trial Examining the Merits of Combining Amantadine and Repetitive Transcranial Magnetic Stimulation as an Intervention for Persons With Disordered Consciousness After TBI. J Head Trauma Rehabil 2021; 35:371-387. [PMID: 33165151 DOI: 10.1097/htr.0000000000000634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Report pilot findings of neurobehavioral gains and network changes observed in persons with disordered consciousness (DoC) who received repetitive transcranial magnetic stimulation (rTMS) or amantadine (AMA), and then rTMS+AMA. PARTICIPANTS Four persons with DoC 1 to 15 years after traumatic brain injury (TBI). DESIGN Alternate treatment-order, within-subject, baseline-controlled trial. MAIN MEASURES For group and individual neurobehavioral analyses, predetermined thresholds, based on mixed linear-effects models and conditional minimally detectable change, were used to define meaningful neurobehavioral change for the Disorders of Consciousness Scale-25 (DOCS) total and Auditory-Language measures. Resting-state functional connectivity (rsFC) of the default mode and 6 other networks was examined. RESULTS Meaningful gains in DOCS total measures were observed for 75% of treatment segments and auditory-language gains were observed after rTMS, which doubled when rTMS preceded rTMS+AMA. Neurobehavioral changes were reflected in rsFC for language, salience, and sensorimotor networks. Between networks interactions were modulated, globally, after all treatments. CONCLUSIONS For persons with DoC 1 to 15 years after TBI, meaningful neurobehavioral gains were observed after provision of rTMS, AMA, and rTMS+AMA. Sequencing and combining of treatments to modulate broad-scale neural activity, via differing mechanisms, merits investigation in a future study powered to determine efficacy of this approach to enabling neurobehavioral recovery.
Collapse
|
35
|
Song J, Li J, Chen L, Lu X, Zheng S, Yang Y, Cao B, Weng Y, Chen Q, Ding J, Huang R. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging Behav 2021; 15:1840-1854. [PMID: 32880075 DOI: 10.1007/s11682-020-00378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.
Collapse
Affiliation(s)
- Jie Song
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Li
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixiang Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xingqi Lu
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Senning Zheng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Yang
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Bolin Cao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yihe Weng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Qinyuan Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Jianping Ding
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China. .,School of Medicine, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Ruiwang Huang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China. .,School of Psychology, South China Normal University, Guangzhou, 510631, China. .,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
36
|
Abstract
Early sensory deprivation, such as deafness, shapes brain development in multiple ways. Deprived auditory areas become engaged in the processing of stimuli from the remaining modalities and in high-level cognitive tasks. Yet, structural and functional changes were also observed in non-deprived brain areas, which may suggest the whole-brain network changes in deaf individuals. To explore this possibility, we compared the resting-state functional network organization of the brain in early deaf adults and hearing controls and examined global network segregation and integration. Relative to hearing controls, deaf adults exhibited decreased network segregation and an altered modular structure. In the deaf, regions of the salience network were coupled with the fronto-parietal network, while in the hearing controls, they were coupled with other large-scale networks. Deaf adults showed weaker connections between auditory and somatomotor regions, stronger coupling between the fronto-parietal network and several other large-scale networks (visual, memory, cingulo-opercular and somatomotor), and an enlargement of the default mode network. Our findings suggest that brain plasticity in deaf adults is not limited to changes in the auditory cortex but additionally alters the coupling between other large-scale networks and the development of functional brain modules. These widespread functional connectivity changes may provide a mechanism for the superior behavioral performance of the deaf in visual and attentional tasks.
Collapse
|
37
|
Yu T, Yu S, Zuo Z, Lin N, Wang J, Zhao Y, Lin S. Dexmedetomidine inhibits unstable motor network in patients with primary motor area gliomas. Aging (Albany NY) 2021; 13:15139-15150. [PMID: 34032606 PMCID: PMC8221338 DOI: 10.18632/aging.203077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/13/2021] [Indexed: 12/04/2022]
Abstract
Background: Sedative agents such as dexmedetomidine have been found to transiently exacerbate or unmask limb motor dysfunction in patients with eloquent area brain gliomas. The present study aims to investigate whether dexmedetomidine can inhibit motor plasticity in patients with glioma via fMRI. Methods: 21 patients with brain glioma were prospectively recruited between September 2017 and December 2018. Patients were classified into pre-M1 (primary motor cortex) group (n=9), post-M1 group (n=6), and non-eloquent group (control group) (n=6) according to the tumor position related to M1. The hand movement task-fMRI and resting state fMRI (rs-fMRI) were performed before and after sedation using dexmedetomidine. The lateralization index (LI) of activation voxels and magnitude and the functional connectivity (FC) of motor network were compared before and after sedation and among different groups. Results: Permanent postoperative motor deficit of the upper limb was found in 5 of 6 patients in the pre-M1 group, and none in other groups (P < .01). Task-fMRI showed the LI of activation volume and activation magnitude at M1 significantly increased only in the pre-M1 group after sedation (P < .05). Rs-fMRI showed 60.0% (27 of 45) FCs of motor network decreased in pre-M1 group after sedation (p[FDR] < .05); whereas there was no FC reduction in post-M1 and control groups (p[FDR] > .05). Conclusions: In patients with eloquent area gliomas, dexmedetomidine can inhibit the unstable compensative motor plasticity on both task- and rs-fMRI. fMRI may be a promising method for elucidating the effect of sedative agents on motor plasticity.
Collapse
Affiliation(s)
- Tao Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Songlin Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jing Wang
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Beijing 102206, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.,Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Beijing 102206, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| |
Collapse
|
38
|
Shi J, Teng J, Du X, Li N. Multi-Modal Analysis of Resting-State fMRI Data in mTBI Patients and Association With Neuropsychological Outcomes. Front Neurol 2021; 12:639760. [PMID: 34079510 PMCID: PMC8165539 DOI: 10.3389/fneur.2021.639760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Various cognitive disorders have been reported for mild traumatic brain injury (mTBI) patients during the acute stage. This acute stage provides an opportunity for clinicians to optimize treatment protocols, which are based on the evaluation of brain structural connectivity. So far, most brain functional magnetic resonance imaging studies are focused on moderate to severe traumatic brain injuries (TBIs). In this study, we prospectively collected resting state data on 50 mTBI within 3 days of injury and 50 healthy volunteers and analyzed them using Amplitude of low-frequency fluctuation (ALFF), Regional Homogeneity (ReHo), graph theory methods and behavior measure, to explore the dysfunctional brain regions in acute mTBI. In our study, a total of 50 patients suffering <3 days mTBI and 50 healthy subjects were tested in rs-fMRI, as well as under neuropsychological examinations including the Wechsler Intelligence Scale and Stroop Color and Word Test. The correlation analysis was conducted between graph theoretic parameters and neuropsychological results. For the mTBI group, the ReHo of the inferior temporal gyrus and the cerebellum superior are significantly lower than in the control group, and the ALFF of the left insula, the cerebellum inferior, and the middle occipital gyrus were significantly higher than in the control group, which implies the dysfunctionality usually observed in Parkinson's disease. Executive function disorder was significantly correlated with the global efficiencies of the dorsolateral superior frontal gyrus and the anterior cingulate cortex, which is consistent with the literature: the acute mTBI patients demonstrate abnormality in terms of motor speed, association, information processing speed, attention, and short-term memory function. Correlation analysis between the neuropsychological outcomes and the network efficiency for the mTBI group indicates that executive dysfunction might be caused by local brain changes. Our data support the idea that the cerebral internal network has compensatory reactions in response to sudden pathological and neurophysiological changes. In the future, multimode rs-fMRI analysis could be a valuable tool for evaluating dysfunctional brain regions after mTBI.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgury, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Xianping Du
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ, United States
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Boroda E, Armstrong M, Gilmore CS, Gentz C, Fenske A, Fiecas M, Hendrickson T, Roediger D, Mueller B, Kardon R, Lim K. Network topology changes in chronic mild traumatic brain injury (mTBI). Neuroimage Clin 2021; 31:102691. [PMID: 34023667 PMCID: PMC8163989 DOI: 10.1016/j.nicl.2021.102691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND In mild traumatic brain injury (mTBI), diffuse axonal injury results in disruption of functional networks in the brain and is thought to be a major contributor to cognitive dysfunction even years after trauma. OBJECTIVE Few studies have assessed longitudinal changes in network topology in chronic mTBI. We utilized a graph theoretical approach to investigate alterations in global network topology based on resting-state functional connectivity in veterans with chronic mTBI. METHODS 50 veterans with chronic mTBI (mean of 20.7 yrs. from trauma) and 40 age-matched controls underwent two functional magnetic resonance imaging scans 18 months apart. Graph theory analysis was used to quantify network topology measures (density, clustering coefficient, global efficiency, and modularity). Hierarchical linear mixed models were used to examine longitudinal change in network topology. RESULTS With all network measures, we found a significant group × time interaction. At baseline, brain networks of individuals with mTBI were less clustered (p = 0.03) and more modular (p = 0.02) than those of HC. Over time, the mTBI networks became more densely connected (p = 0.002), with increased clustering (p = 0.001) and reduced modularity (p < 0.001). Network topology did not change across time in HC. CONCLUSION These findings demonstrate that brain networks of individuals with mTBI remain plastic decades after injury and undergo significant changes in network topology even at the later phase of the disease.
Collapse
Affiliation(s)
- Elias Boroda
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | | | | | - Carrie Gentz
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Alicia Fenske
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mark Fiecas
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Tim Hendrickson
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Donovan Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Randy Kardon
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelvin Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN, USA; School of Public Health, Department of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
40
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
41
|
Mott RE, von Reyn CR, Firestein BL, Meaney DF. Regional Neurodegeneration in vitro: The Protective Role of Neural Activity. Front Comput Neurosci 2021; 15:580107. [PMID: 33854425 PMCID: PMC8039287 DOI: 10.3389/fncom.2021.580107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury is a devastating public health problem, the eighth leading cause of death across the world. To improve our understanding of how injury at the cellular scale affects neural circuit function, we developed a protocol to precisely injure individual neurons within an in vitro neural network. We used high speed calcium imaging to estimate alterations in neural activity and connectivity that occur followed targeted microtrauma. Our studies show that mechanically injured neurons inactivate following microtrauma and eventually re-integrate into the network. Single neuron re-integration is dependent on its activity prior to injury and initial connections in the network: more active and integrated neurons are more resistant to microtrauma and more likely to re-integrate into the network. Micromechanical injury leads to neuronal death 6 h post-injury in a subset of both injured and uninjured neurons. Interestingly, neural activity and network participation after injury were associated with survival in linear discriminate analysis (77.3% correct prediction, Wilks' Lambda = 0.838). Based on this observation, we modulated neuronal activity to rescue neurons after microtrauma. Inhibition of neuronal activity provided much greater survivability than did activation of neurons (ANOVA, p < 0.01 with post-hoc Tukey HSD, p < 0.01). Rescue of neurons by blocking activity in the post-acute period is partially mediated by mitochondrial energetics, as we observed silencing neurons after micromechanical injury led to a significant reduction in mitochondrial calcium accumulation. Overall, the present study provides deeper insight into the propagation of injury within networks, demonstrating that together the initial activity, network structure, and post-injury activity levels contribute to the progressive changes in a neural circuit after mechanical trauma.
Collapse
Affiliation(s)
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
DeSimone JC, Davenport EM, Urban J, Xi Y, Holcomb JM, Kelley ME, Whitlow CT, Powers AK, Stitzel JD, Maldjian JA. Mapping default mode connectivity alterations following a single season of subconcussive impact exposure in youth football. Hum Brain Mapp 2021; 42:2529-2545. [PMID: 33734521 PMCID: PMC8090779 DOI: 10.1002/hbm.25384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Repetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, “subconcussive” RHIs represent a more frequent and asymptomatic form of exposure. The neural network‐level signatures characterizing subconcussive RHIs in youth collision‐sport cohorts such as American Football are not known. Here, we used resting‐state functional MRI to examine default mode network (DMN) functional connectivity (FC) following a single football season in youth players (n = 50, ages 8–14) without concussion. Football players demonstrated reduced FC across widespread DMN regions compared with non‐collision sport controls at postseason but not preseason. In a subsample from the original cohort (n = 17), players revealed a negative change in FC between preseason and postseason and a positive and compensatory change in FC during the offseason across the majority of DMN regions. Lastly, significant FC changes, including between preseason and postseason and between in‐ and off‐season, were specific to players at the upper end of the head impact frequency distribution. These findings represent initial evidence of network‐level FC abnormalities following repetitive, non‐concussive RHIs in youth football. Furthermore, the number of subconcussive RHIs proved to be a key factor influencing DMN FC.
Collapse
Affiliation(s)
- Jesse C. DeSimone
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Elizabeth M. Davenport
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jillian Urban
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Yin Xi
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - James M. Holcomb
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mireille E. Kelley
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Department of Radiology – NeuroradiologyWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Alexander K. Powers
- Department of NeurosurgeryWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joel D. Stitzel
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Childress Institute for Pediatric TraumaWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joseph A. Maldjian
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
43
|
Chen VCH, Kao CJ, Tsai YH, McIntyre RS, Weng JC. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. J Pers Med 2021; 11:jpm11030174. [PMID: 33802354 PMCID: PMC7998726 DOI: 10.3390/jpm11030174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorder is one of the leading causes of disability worldwide, with a high prevalence and chronic course. Depressive disorder carries an increased risk of suicide. Alterations in brain structure and networks may play an important role in suicidality among depressed patients. Diffusion magnetic resonance imaging (MRI) is a noninvasive method to map white-matter fiber orientations and provide quantitative parameters. This study investigated the neurological structural differences and network alterations in depressed patients with suicide attempts by using generalized q-sampling imaging (GQI). Our study recruited 155 participants and assigned them into three groups: 44 depressed patients with a history of suicide attempts (SA), 56 depressed patients without a history of suicide attempts (D) and 55 healthy controls (HC). We used the GQI to analyze the generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA) values in voxel-based statistical analysis, topological parameters in graph theoretical analysis and subnetwork connectivity in network-based statistical analysis. GFA indicates the measurement of neural anisotropy and represents white-matter integrity; NQA indicates the amount of anisotropic spins that diffuse along fiber orientations and represents white-matter compactness. In the voxel-based statistical analysis, we found lower GFA and NQA values in the SA group than in the D and HC groups and lower GFA and NQA values in the D group than in the HC group. In the graph theoretical analysis, the SA group demonstrated higher local segregation and lower global integration among the three groups. In the network-based statistical analysis, the SA group showed stronger subnetwork connections in the frontal and parietal lobes, and the D group showed stronger subnetwork connections in the parietal lobe than the HC group. Alternations were found in the structural differences and network measurements in healthy controls and depressed patients with and without a history of suicide attempt.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (V.C.-H.C.); (Y.-H.T.)
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chun-Ju Kao
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan;
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (V.C.-H.C.); (Y.-H.T.)
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Roger S. McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry, University of Toronto, Toronto, ON M5S, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S, Canada
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON M5S, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan;
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5394)
| |
Collapse
|
44
|
Sadiq MU, Langella S, Giovanello KS, Mucha PJ, Dayan E. Accrual of functional redundancy along the lifespan and its effects on cognition. Neuroimage 2021; 229:117737. [PMID: 33486125 PMCID: PMC8022200 DOI: 10.1016/j.neuroimage.2021.117737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the necessity to understand how the brain endures the initial stages of age-associated cognitive decline, no brain mechanism has been quantitatively specified to date. The brain may withstand the effects of cognitive aging through redundancy, a design feature in engineered and biological systems, which entails the presence of substitute elements to protect it against failure. Here, we investigated the relationship between functional network redundancy and age over the human lifespan and their interaction with cognition, analyzing resting-state functional MRI images and cognitive measures from 579 subjects. Network-wide redundancy was significantly associated with age, showing a stronger link with age than other major topological measures, presenting a pattern of accumulation followed by old-age decline. Critically, redundancy significantly mediated the association between age and executive function, with lower anti-correlation between age and cognition in subjects with high redundancy. The results suggest that functional redundancy accrues throughout the lifespan, mitigating the effects of age on cognition.
Collapse
Affiliation(s)
- Muhammad Usman Sadiq
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Stephanie Langella
- Department of Psychology and Neuroscience, UNC-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kelly S Giovanello
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychology and Neuroscience, UNC-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Peter J Mucha
- Department of Mathematics, UNC-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Applied Physical Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eran Dayan
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Radiology, UNC-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
45
|
Zhang Y, Chen X, Liang X, Wang Z, Xie T, Wang X, Shi Y, Zeng W, Wang H. Altered Weibull Degree Distribution in Resting-State Functional Brain Networks Is Associated With Cognitive Decline in Mild Cognitive Impairment. Front Aging Neurosci 2021; 12:599112. [PMID: 33469428 PMCID: PMC7814317 DOI: 10.3389/fnagi.2020.599112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
The topological organization of human brain networks can be mathematically characterized by the connectivity degree distribution of network nodes. However, there is no clear consensus on whether the topological structure of brain networks follows a power law or other probability distributions, and whether it is altered in Alzheimer's disease (AD). Here we employed resting-state functional MRI and graph theory approaches to investigate the fitting of degree distributions of the whole-brain functional networks and seven subnetworks in healthy subjects and individuals with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD, and whether they are altered and correlated with cognitive performance in patients. Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We constructed functional connectivity matrices among brain voxels and examined nodal degree distributions that were fitted by maximum likelihood estimation. In the whole-brain networks and all functional subnetworks, the connectivity degree distributions were fitted better by the Weibull distribution [f(x)~x(β−1)e(−λxβ)] than power law or power law with exponential cutoff. Compared with the healthy control group, the aMCI group showed lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven subnetworks (false-discovery rate-corrected, p < 0.05). These decreases of the Weibull β parameters in the whole-brain networks and all subnetworks except for ventral attention were associated with reduced cognitive performance in individuals with aMCI. Thus, we provided a short-tailed model to capture intrinsic connectivity structure of the human brain functional networks in health and disease.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zhijiang Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Teng Xie
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
46
|
Gabrieli D, Schumm SN, Vigilante NF, Meaney DF. NMDA Receptor Alterations After Mild Traumatic Brain Injury Induce Deficits in Memory Acquisition and Recall. Neural Comput 2020; 33:67-95. [PMID: 33253030 DOI: 10.1162/neco_a_01343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mild traumatic brain injury (mTBI) presents a significant health concern with potential persisting deficits that can last decades. Although a growing body of literature improves our understanding of the brain network response and corresponding underlying cellular alterations after injury, the effects of cellular disruptions on local circuitry after mTBI are poorly understood. Our group recently reported how mTBI in neuronal networks affects the functional wiring of neural circuits and how neuronal inactivation influences the synchrony of coupled microcircuits. Here, we utilized a computational neural network model to investigate the circuit-level effects of N-methyl D-aspartate receptor dysfunction. The initial increase in activity in injured neurons spreads to downstream neurons, but this increase was partially reduced by restructuring the network with spike-timing-dependent plasticity. As a model of network-based learning, we also investigated how injury alters pattern acquisition, recall, and maintenance of a conditioned response to stimulus. Although pattern acquisition and maintenance were impaired in injured networks, the greatest deficits arose in recall of previously trained patterns. These results demonstrate how one specific mechanism of cellular-level damage in mTBI affects the overall function of a neural network and point to the importance of reversing cellular-level changes to recover important properties of learning and memory in a microcircuit.
Collapse
Affiliation(s)
- David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - Nicholas F Vigilante
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| |
Collapse
|
47
|
Bender Pape TL, Livengood SL, Kletzel SL, Blabas B, Guernon A, Bhaumik DK, Bhaumik R, Mallinson T, Weaver JA, Higgins JP, Wang X, Herrold AA, Rosenow JM, Parrish T. Neural Connectivity Changes Facilitated by Familiar Auditory Sensory Training in Disordered Consciousness: A TBI Pilot Study. Front Neurol 2020; 11:1027. [PMID: 33132997 PMCID: PMC7578344 DOI: 10.3389/fneur.2020.01027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
For people with disordered consciousness (DoC) after traumatic brain injury (TBI), relationships between treatment-induced changes in neural connectivity and neurobehavioral recovery have not been explored. To begin building a body of evidence regarding the unique contributions of treatments to changes in neural network connectivity relative to neurobehavioral recovery, we conducted a pilot study to identify relationships meriting additional examination in future research. To address this objective, we examined previously unpublished neural connectivity data derived from a randomized clinical trial (RCT). We leveraged these data because treatment efficacy, in the RCT, was based on a comparison of a placebo control with a specific intervention, the familiar auditory sensory training (FAST) intervention, consisting of autobiographical auditory-linguistic stimuli. We selected a subgroup of RCT participants with high-quality imaging data (FAST n = 4 and placebo n = 4) to examine treatment-related changes in brain network connectivity and how and if these changes relate to neurobehavioral recovery. To discover promising relationships among the FAST intervention, changes in neural connectivity, and neurobehavioral recovery, we examined 26 brain regions and 19 white matter tracts associated with default mode, salience, attention, and language networks, as well as three neurobehavioral measures. Of the relationships discovered, the systematic filtering process yielded evidence supporting further investigation of the relationship among the FAST intervention, connectivity of the left inferior longitudinal fasciculus, and auditory-language skills. Evidence also suggests that future mechanistic research should focus on examining the possibility that the FAST supports connectivity changes by facilitating redistribution of brain resources. For a patient population with limited treatment options, the reported findings suggest that a simple, yet targeted, passive sensory stimulation treatment may have altered functional and structural connectivity. If replicated in future research, then these findings provide the foundation for characterizing the unique contributions of the FAST intervention and could inform development of new treatment strategies. For persons with severely damaged brain networks, this report represents a first step toward advancing understanding of the unique contributions of treatments to changing brain network connectivity and how these changes relate to neurobehavioral recovery for persons with DoC after TBI. Clinical Trial Registry: NCT00557076, The Efficacy of Familiar Voice Stimulation During Coma Recovery (http://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Theresa L Bender Pape
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sherri L Livengood
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sandra L Kletzel
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Brett Blabas
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ann Guernon
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States.,Marianjoy Rehabilitation Hospital Part of Northwestern Medicine, Wheaton, IL, United States
| | - Dulal K Bhaumik
- Division of Epidemiology and Biostatistics, Department of Psychiatry, Biostatistical Research Center, University of Illinois at Chicago, Chicago, IL, United States.,Research Service, Cooperative Studies Program Coordinating Center, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Runa Bhaumik
- Division of Epidemiology and Biostatistics, Department of Psychiatry, Biostatistical Research Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Trudy Mallinson
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jennifer A Weaver
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - James P Higgins
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xue Wang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy A Herrold
- The Department of Veterans Affairs (VA), Center for Innovation in Complex Chronic Healthcare & Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Northwestern Memorial Hospital, Chicago, IL, United States
| | - Todd Parrish
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
48
|
Sheth C, Rogowska J, Legarreta M, McGlade E, Yurgelun-Todd D. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury. Behav Brain Res 2020; 396:112882. [PMID: 32853657 DOI: 10.1016/j.bbr.2020.112882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the most prevalent injuries in the military with mild traumatic brain injury (mTBI) accounting for approximately 70-80 % of all TBI. TBI has been associated with diffuse and focal brain changes to structures and networks underlying cognitive-emotional processing. Although the anterior cingulate cortex (ACC) plays a critical role in emotion regulation and executive function and is susceptible to mTBI, studies focusing on ACC resting state functional connectivity (rs-fc) in Veterans are limited. METHODS Veterans with mTBI (n = 49) and with no history of TBI (n = 25), ages 20-54 completed clinical assessments and an 8-minute resting state functional magnetic resonance imaging (rs-fMRI) on a 3 T Siemens scanner. Imaging results were analyzed with left and right ACC as seed regions using SPM8. Regression analyses were performed with time since injury. RESULTS Seed-based analysis showed increased connectivity of the left and right ACC with brain regions including middle and posterior cingulate regions, preceneus, and occipital regions in the mTBI compared to the non-TBI group. CONCLUSIONS The rs-fMRI results indicate hyperconnectivity in Veterans with mTBI. These results are consistent with previous studies of recently concussed athletes showing ACC hyperconnectivity. Enhanced top-down control of attention networks necessary to compensate for the microstructural damage following mTBI may explain ACC hyperconnectivity post-mTBI.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.
| | - Jadwiga Rogowska
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [PMID: 32228145 DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Dudley J, Yuan W, Diekfuss J, Barber Foss KD, DiCesare CA, Altaye M, Logan K, Leach JL, Myer GD. Altered Functional and Structural Connectomes in Female High School Soccer Athletes After a Season of Head Impact Exposure and the Effect of a Novel Collar. Brain Connect 2020; 10:292-301. [DOI: 10.1089/brain.2019.0729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jed Diekfuss
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kim D. Barber Foss
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher A. DiCesare
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kelsey Logan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James L. Leach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati Ohio, USA
| | - Gregory D. Myer
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|