1
|
Wiley MB, Bauer J, Mehrotra K, Zessner-Spitzenberg J, Kolics Z, Cheng W, Castellanos K, Nash MG, Gui X, Kone L, Maker AV, Qiao G, Reddi D, Church DN, Kerr RS, Kerr DJ, Grippo PJ, Jung B. Non-Canonical Activin A Signaling Stimulates Context-Dependent and Cellular-Specific Outcomes in CRC to Promote Tumor Cell Migration and Immune Tolerance. Cancers (Basel) 2023; 15:3003. [PMID: 37296966 PMCID: PMC10252122 DOI: 10.3390/cancers15113003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
We have shown that activin A (activin), a TGF-β superfamily member, has pro-metastatic effects in colorectal cancer (CRC). In lung cancer, activin activates pro-metastatic pathways to enhance tumor cell survival and migration while augmenting CD4+ to CD8+ communications to promote cytotoxicity. Here, we hypothesized that activin exerts cell-specific effects in the tumor microenvironment (TME) of CRC to promote anti-tumoral activity of immune cells and the pro-metastatic behavior of tumor cells in a cell-specific and context-dependent manner. We generated an Smad4 epithelial cell specific knockout (Smad4-/-) which was crossed with TS4-Cre mice to identify SMAD-specific changes in CRC. We also performed IHC and digital spatial profiling (DSP) of tissue microarrays (TMAs) obtained from 1055 stage II and III CRC patients in the QUASAR 2 clinical trial. We transfected the CRC cells to reduce their activin production and injected them into mice with intermittent tumor measurements to determine how cancer-derived activin alters tumor growth in vivo. In vivo, Smad4-/- mice displayed elevated colonic activin and pAKT expression and increased mortality. IHC analysis of the TMA samples revealed increased activin was required for TGF-β-associated improved outcomes in CRC. DSP analysis identified that activin co-localization in the stroma was coupled with increases in T-cell exhaustion markers, activation markers of antigen presenting cells (APCs), and effectors of the PI3K/AKT pathway. Activin-stimulated PI3K-dependent CRC transwell migration, and the in vivo loss of activin lead to smaller CRC tumors. Taken together, activin is a targetable, highly context-dependent molecule with effects on CRC growth, migration, and TME immune plasticity.
Collapse
Affiliation(s)
- Mark B. Wiley
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jessica Bauer
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jasmin Zessner-Spitzenberg
- Clinical Department for Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoe Kolics
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Karla Castellanos
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael G. Nash
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lyonell Kone
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ajay V. Maker
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Guilin Qiao
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David N. Church
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX1 4BH, UK
| | - Rachel S. Kerr
- Department of Oncology, University of Oxford, Oxford OX1 4BH, UK
| | - David J. Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| |
Collapse
|
2
|
El-Deek SEM, Abd-Elghaffar SKH, Hna RS, Mohamed HG, El-Deek HEM. Effect of Hesperidin against Induced Colon Cancer in Rats: Impact of Smad4 and Activin A Signaling Pathway. Nutr Cancer 2021; 74:697-714. [PMID: 33818196 DOI: 10.1080/01635581.2021.1907424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/01/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
Abstract
SCOPE To evaluate the chemopreventive efficacy of hesperidin (Hsd) in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer (CRC) and demonstrate its role in mothers against decapentaplegic homolog 4(Smad4) and activin A signaling pathways. METHODS AND RESULTS A CRC rat model was established by DMH exposure, and the animals were randomly divided into five groups: Control group, Hsd, DMH, DMH + Hsd, and DMH followed by Hsd. The resected colon was subjected to macroscopic, microscopic, molecular, histopathological, and immunohistochemical examination. Activin A, Smad4, malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), and superoxide dismutase (SOD) levels in tissues were also measured. The DMH group exhibited a significant increase in the gene and protein expression of activin A as well as MDA and NO levels in tissues. There was a significant reduction in the gene and protein expression of Smad4 as well as GSH and SOD levels in tissues. Administration of Hsd significantly upregulated Smad4 and activin A gene expressions in both the DMH + Hsd and DMH followed by Hsd groups. Moreover, Hsd improved the antioxidant status of the former two groups. CONCLUSION This study demonstrated the chemopreventive effect of Hsd against CRC by modulating Smad4 and activin A signaling in vivo. Further studies are needed to demonstrate its clinical value and explore its possible role in advanced malignancy.
Collapse
Affiliation(s)
- Sahar E M El-Deek
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sary K H Abd-Elghaffar
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Randa S Hna
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba G Mohamed
- Biochemistry Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Heba E M El-Deek
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology 2021; 78:485-497. [PMID: 33010064 DOI: 10.1111/his.14271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Microsatellite instability (MSI) as a distinct molecular phenotype in human neoplasms was first recognised in 1993. Since then there has been tremendous progress in our understanding of this phenotype, including its genomic drivers and functional consequences. Currently, the multiple lines of investigation on MSI seem to have converged upon one important facet: its diversity, both genotypically and phenotypically, and both within and across tumour types. This review article offers a pathologist's perspective on our current understanding of this diversity, and highlights its potentially significant impact on the effective use of our current MSI detection tools: PCR- or sequencing-based MSI testing and mismatch repair protein immunohistochemistry.
Collapse
Affiliation(s)
- Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Farmer SM, Andl CD. Computational modeling of transforming growth factor β and activin a receptor complex formation in the context of promiscuous signaling regulation. J Biomol Struct Dyn 2020; 39:5166-5181. [PMID: 32597324 DOI: 10.1080/07391102.2020.1785330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Transforming growth factor-beta (TGFβ) superfamily is a group of multipotent growth factors that control proliferation, quiescence and differentiation. Aberrant signal transduction and downstream target activation contribute to tumorigenesis and targeted therapy has therefore been considered a promising avenue. Using various modeling pipelines, we analyzed the structure-function relationship between ligand and receptor molecules of the TGFβ family. We further simulated the molecular docking of Galunisertib, a small molecule inhibitor targeting TGFβ signaling in cancer, which is currently undergoing FDA-approved clinical trials. We found that proprotein dimers of Activin isoforms differ at intrachain disulfide bonds, which support prior evidence of varying pro-domain stability and isoform preference. Further, mature proteins possess flexibility around conserved cystine knots to functionally interact with receptors or regulatory molecules in similar but distinct ways to TGFβ. We show that all Activin isoforms are capable of assuming a closed- or open-dimer state, revealing structural promiscuity of their open forms for receptor binding. We propose the first structural landscape for Activin receptor complexes containing a type I receptor (ACVR1B), which shares a pre-helix extension with TGFβ type I receptor (TGFβR1). Here, we artificially demonstrate that Activin can bind TGFβR1 in a TGFβ-like manner and that TGFβ1 can form signaling complexes with ACVR1B. Interestingly, Galunisertib was found to form stable inhibitory structures within the homologous kinase domains of both TGFβR1 and ACVR1B, thus halting receptor-promiscuous signaling. Overall, these observations highlight the challenges of specific TGFβ cascade targeting in the context of cancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Stephen M Farmer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D, Reid TR. TGF-beta: a master immune regulator. Expert Opin Ther Targets 2020; 24:427-438. [PMID: 32228232 DOI: 10.1080/14728222.2020.1744568] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Transforming Growth Factor-Beta (TGF-β) is a master regulator of numerous cellular functions including cellular immunity. In cancer, TGF-β can function as a tumor promoter via several mechanisms including immunosuppression. Since the immune checkpoint pathways are co-opted in cancer to induce T cell tolerance, this review posits that TGF-β is a master checkpoint in cancer, whose negative regulatory influence overrides and controls that of other immune checkpoints.Areas Covered: This review examines therapeutic agents that target TGF-β and its signaling pathways for the treatment of cancer which may be classifiable as checkpoint inhibitors in the broadest sense. This concept is supported by the observations that 1) only a subset of patients benefit from current checkpoint inhibitor therapies, 2) the presence of TGF-β in the tumor microenvironment is associated with excluded or cold tumors, and resistance to checkpoint inhibitors, and 3) existing biomarkers such as PD-1, PD-L1, microsatellite instability and tumor mutational burden are inadequate to reliably and adequately identify immuno-responsive patients. By contrast, TGF-β overexpression is a widespread and profoundly negative molecular hallmark in multiple tumor types.Expert Opinion: TGF-β status may serve as a biomarker to predict responsiveness and as a therapeutic target to increase the activity of immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Arnold Oronsky
- EpicentRx, San Diego, CA, USA.,InterWest Partners, Menlo Park, CA, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Sher
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tony R Reid
- Department of Medical Oncology, UC San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
6
|
Wodziński D, Wosiak A, Pietrzak J, Świechowski R, Jeleń A, Balcerczak E. Does the expression of the ACVR2A gene affect the development of colorectal cancer? Genet Mol Biol 2019; 42:32-39. [PMID: 30856244 PMCID: PMC6428132 DOI: 10.1590/1678-4685-gmb-2017-0332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/21/2018] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer has become a serious problem, especially in highly developed
countries. As reported by the World Health Organization, the number of colon
cancer cases in the world in 2012 amounted to 1.36 million. It is the second
most common cancer in females (614,000 cases, 9.2% of the total) and the third
in males (746,000 cases, 10.0% of the total) worldwide. It is believed that TGFβ
pathway elements are involved in the pathogenesis of colorectal cancer. This
study assessed one of these elements, the ACVR2A gene.
Qualitative and quantitative analyses of the ACVR2A gene in 84
patients with colorectal cancer was performed. There was no statistically
significant association between ACVR2A gene expression and age,
gender, histological type, grading of tumor, vascular invasion, and presence of
lymphocytes in tumor tissue. No association was observed between the
ACVR2A gene expression level and the presence of metastases
in regional lymph nodes and distant metastases. In this study, larger tumors (T3
and T4) were characterized by higher ACVR2A expression compared
to smaller tumors (T1 and T2). This may indicate an association between
ACVR2A expression and the severity of pathological changes
in the tumor growth process.
Collapse
Affiliation(s)
- Damian Wodziński
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wosiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Rafał Świechowski
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Jeleń
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Jung B, Staudacher JJ, Beauchamp D. Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer. Gastroenterology 2017; 152:36-52. [PMID: 27773809 PMCID: PMC5550896 DOI: 10.1053/j.gastro.2016.10.015] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β cytokines signal via a complex network of pathways to regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. A high percentage of colorectal tumors contain mutations that disrupt TGF-β family member signaling. We review how TGF-β family member signaling is altered during development of colorectal cancer, models of study, interaction of pathways, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Jung
- University of Illinois at Chicago, Chicago, Illinois.
| | | | | |
Collapse
|
8
|
Refaat B, El-Shemi AG, Mohamed AM, Kensara OA, Ahmad J, Idris S. Activins and their related proteins in colon carcinogenesis: insights from early and advanced azoxymethane rat models of colon cancer. BMC Cancer 2016; 16:879. [PMID: 27835986 PMCID: PMC5106801 DOI: 10.1186/s12885-016-2914-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Activin-A may exert pro- or anti-tumorigenic activities depending on cellular context. However, little is known about its role, or the other mature activin proteins, in colorectal carcinoma (CRC). This study measured the expression of activin βA- & βB-subunits, activin type IIA & IIB receptors, smads 2/3/4/6/7 and follistatin in CRC induced by azoxymethane (AOM) in rats. The results were compared with controls and disseminated according to the characteristics of histopathological lesions. METHODS Eighty male Wistar rats were allocated into 20 controls and the remaining were equally divided between short 'S-AOM' (15 weeks) and long 'L-AOM' (35 weeks) groups following injecting AOM for 2 weeks. Subsequent to gross and histopathological examinations and digital image analysis, the expression of all molecules was measured by immunohistochemistry and quantitative RT-PCR. Activin-A, activin-B, activin-AB and follistatin were measured by ELISA in serum and colon tissue homogenates. RESULTS Colonic pre-neoplastic and cancerous lesions were identified in both AOM groups and their numbers and sizes were significantly (P < 0.05) greater in the L-AOM group. All the molecules were expressed in normal colonic epithelial cells. There was a significantly (P < 0.05) greater expression of βA-subunit, IIB receptor and follistatin in both pre-neoplastic and cancerous tissues. Oppositely, a significant (P < 0.05) decrease in the remaining molecules was detected in both AOM groups. Metastatic lesions were only observed within the L-AOM group and were associated with the most significant alterations of all molecules. Significantly higher concentrations of activin-A and follistatin and lower activin-AB were also detected in both groups of AOM. Tissue and serum concentrations of activin-A and follistatin correlated positively, while tissue activin-AB inversely, and significantly with the numbers and sizes of colonic lesions. CONCLUSIONS Normal rat colon epithelial cells are capable of synthesising, controlling as well as responding to activins in a paracrine/autocrine manner. Colonic activin systems are pathologically altered during tumorigenesis and appear to be time and lesion-dependent. Activins could also be potential sensitive markers and/or molecular targets for the diagnosis and/or treatment of CRC. Further studies are required to illustrate the clinical value of activins and their related proteins in colon cancer.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr Mohamed Mohamed
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Osama Adnan Kensara
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Loomans HA, Arnold SA, Quast LL, Andl CD. Esophageal squamous cell carcinoma invasion is inhibited by Activin A in ACVRIB-positive cells. BMC Cancer 2016; 16:873. [PMID: 27829391 PMCID: PMC5101642 DOI: 10.1186/s12885-016-2920-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a global public health issue, as it is the eighth most common cancer worldwide. The mechanisms behind ESCC invasion and progression are still poorly understood, and warrant further investigation into these processes and their drivers. In recent years, the ligand Activin A has been implicated as a player in the progression of a number of cancers. The objective of this study was to investigate the role of Activin A signaling in ESCC. Methods To investigate the role Activin A plays in ESCC biology, tissue microarrays containing 200 cores from 120 ESCC patients were analyzed upon immunofluorescence staining. We utilized three-dimensional organotypic reconstruct cultures of dysplastic and esophageal squamous tumor cells lines, in the context of fibroblast-secreted Activin A, to identify the effects of Activin A on cell invasion and determine protein expression and localization in epithelial and stromal compartments by immunofluorescence. To identify the functional consequences of stromal-derived Activin A on angiogenesis, we performed endothelial tube formation assays. Results Analysis of ESCC patient samples indicated that patients with high stromal Activin A expression had low epithelial ACVRIB, the Activin type I receptor. We found that overexpression of stromal-derived Activin A inhibited invasion of esophageal dysplastic squamous cells, ECdnT, and TE-2 ESCC cells, both positive for ACVRIB. This inhibition was accompanied by a decrease in expression of the extracellular matrix (ECM) protein fibronectin and podoplanin, which is often expressed at the leading edge during invasion. Endothelial tube formation was disrupted in the presence of conditioned media from fibroblasts overexpressing Activin A. Interestingly, ACVRIB-negative TE-11 cells did not show the prior observed effects in the context of Activin A overexpression, indicating a dependence on the presence of ACVRIB. Conclusions We describe the first observation of an inhibitory role for Activin A in ESCC progression that is dependent on the expression of ACVRIB. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2920-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Shanna A Arnold
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura L Quast
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Building 20, BMS 223, Orlando, FL, 32816, USA.
| |
Collapse
|
10
|
Qiu W, Tang SM, Lee S, Turk AT, Sireci AN, Qiu A, Rose C, Xie C, Kitajewski J, Wen HJ, Crawford HC, Sims PA, Hruban RH, Remotti HE, Su GH. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Gastroenterology 2016; 150:218-228.e12. [PMID: 26408346 PMCID: PMC4860725 DOI: 10.1053/j.gastro.2015.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Activin, a member of the transforming growth factor-β (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis. METHODS We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry. RESULTS Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of p16 in human IPMNs of increasing grades. CONCLUSIONS Loss of ACVR1B accelerates growth of mutant KRAS-induced pancreatic IPMNs in mice; this process appears to involve NOTCH4 and loss of p16. ACVR1B suppresses early stages of pancreatic tumorigenesis; the activin signaling pathway therefore might be a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sophia M. Tang
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sohyae Lee
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Andrew T. Turk
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anthony N. Sireci
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anne Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | | | - Chuangao Xie
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Jan Kitajewski
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Hui-Ju Wen
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Howard C. Crawford
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Helen E. Remotti
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Gloria H. Su
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
11
|
Bi X, Xia X, Fan D, Mu T, Zhang Q, Iozzo RV, Yang W. Oncogenic activin C interacts with decorin in colorectal cancer in vivo and in vitro. Mol Carcinog 2015; 55:1786-1795. [DOI: 10.1002/mc.22427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xiuli Bi
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Xichun Xia
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Dongdong Fan
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Teng Mu
- School of Life Science; Liaoning University; Shenyang 110036 China
| | - Qiuhua Zhang
- Department of Pharmacology; Liaoning Traditional Chinese Medicine University; Liaoning 110036 China
| | - Renato V. Iozzo
- Department of Pathology; Anatomy and Cell Biology; Thomas Jefferson University; Philadelphia Pennsylvania 19107
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine; Jining Medical University; Jining Shandong 272067 China
- Department of Pathology; University of Illinois at Chicago; Chicago Illinois 60612
| |
Collapse
|
12
|
Bauer J, Ozden O, Akagi N, Carroll T, Principe DR, Staudacher JJ, Spehlmann ME, Eckmann L, Grippo PJ, Jung B. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer 2015; 14:182. [PMID: 26497569 PMCID: PMC4619565 DOI: 10.1186/s12943-015-0456-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer. Method Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/− or wild type mice. Colon cancer cell lines (+/− SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays. Results In primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling. Conclusion Although activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Ozkan Ozden
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Naomi Akagi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Martina E Spehlmann
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Abstract
Sporadic colorectal cancer (CRC) is a somatic genetic disease in which pathogenesis is influenced by the local colonic environment and the patient's genetic background. Consolidating the knowledge of genetic and epigenetic events that occur with initiation, progression, and metastasis of sporadic CRC has identified some biomarkers that might be utilized to predict behavior and prognosis beyond staging, and inform treatment approaches. Modern next-generation sequencing of sporadic CRCs has confirmed prior identified genetic alterations and has classified new alterations. Each patient's CRC is genetically unique, propelled by 2-8 driver gene alterations that have accumulated within the CRC since initiation. Commonly observed alterations across sporadic CRCs have allowed classification into a (1) hypermutated group that includes defective DNA mismatch repair with microsatellite instability and POLE mutations in ∼15%, containing multiple frameshifted genes and BRAF(V600E); (2) nonhypermutated group with multiple somatic copy number alterations and aneuploidy in ∼85%, containing oncogenic activation of KRAS and PIK3CA and mutation and loss of heterozygosity of tumor suppressor genes, such as APC and TP53; (3) CpG island methylator phenotype CRCs in ∼20% that overlap greatly with microsatellite instability CRCs and some nonhypermutated CRCs; and (4) elevated microsatellite alterations at selected tetranucleotide repeats in ∼60% that associates with metastatic behavior in both hypermutated and nonhypermutated groups. Components from these classifications are now used as diagnostic, prognostic, and treatment biomarkers. Additional common biomarkers may come from genome-wide association studies and microRNAs among other sources, as well as from the unique alteration profile of an individual CRC to apply a precision medicine approach to care.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Barbara H Jung
- Division of Gastroenterology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Cherukuri DP, Deignan JL, Das K, Grody WW, Herschman H. Instability of a dinucleotide repeat in the 3'-untranslated region (UTR) of the microsomal prostaglandin E synthase-1 (mPGES-1) gene in microsatellite instability-high (MSI-H) colorectal carcinoma. Mol Oncol 2015; 9:1252-8. [PMID: 25817443 DOI: 10.1016/j.molonc.2015.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/22/2022] Open
Abstract
DNA mismatch-repair gene mutations, with consequent loss of functional protein expression, result in microsatellite instability (MSI). Microsatellite sequences are found in coding regions and in regulatory regions of genes (i.e., 5'-UTRs and 3'-UTRs). In addition to being a surrogate marker of defective mismatch repair, deletion or insertion microsatellite sequences can dysregulate gene expression in MSI-H (microsatellite instability-high) tumors. The microsomal prostaglandin E synthase-1 (mPGES-1) gene product, mPGES-1, participates in prostaglandin E2 (PGE2) production. Moreover, mPGES-1 is often overexpressed in human colorectal tumors, and is thought to contribute to progression of these tumors. Here we identified a dinucleotide repeat, (GT)24, in the mPGES-1 gene 3' untranslated region (3'-UTR), and analyzed its mutation frequencies in MSI-H and microsatellite stable (MSS) tumors. The (GT)24 repeat exhibited instability in all MSI-H tumors examined (14), but not in any of the MSS tumors (13). In most cases, (GT)24 repeat instability resulted in insertion of additional GT units. We also determined mPGES-1 mRNA levels in MSI-H and MSS colorectal cancer cell lines. Three of four previously designated "MSI-H" cell lines showed higher mPGES-1 mRNA levels compared to MSS cell lines; correlations between elevated mPGES-1 mRNA levels and microsatellite (GT)24 repeat characteristics are present for all six cell lines. Our results demonstrate that mPGES-1 is a target gene of defective mismatch repair in human colorectal cancer, with functional consequence.
Collapse
Affiliation(s)
- Durga Prasad Cherukuri
- Department of Pharmacology and UCLA Intercampus Medical Genetics Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joshua L Deignan
- Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kingshuk Das
- Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Wayne W Grody
- Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Harvey Herschman
- Department of Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Ballikaya S, Lee J, Warnken U, Schnölzer M, Gebert J, Kopitz J. De Novo proteome analysis of genetically modified tumor cells by a metabolic labeling/azide-alkyne cycloaddition approach. Mol Cell Proteomics 2014; 13:3446-56. [PMID: 25225355 DOI: 10.1074/mcp.m113.036665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.
Collapse
Affiliation(s)
- Seda Ballikaya
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jennifer Lee
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Uwe Warnken
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- ‖Functional Proteome Analysis, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Johannes Gebert
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- From the ‡Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, INF 224, 69120 Heidelberg, Germany; §Cancer Early Detection, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany;
| |
Collapse
|
16
|
Vauléon E, Tony A, Hamlat A, Etcheverry A, Chiforeanu DC, Menei P, Mosser J, Quillien V, Aubry M. Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genomics 2012; 5:41. [PMID: 22980038 PMCID: PMC3507656 DOI: 10.1186/1755-8794-5-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS) or response to treatment. Methods In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis that grouped 791 immune-associated genes (IA genes) in large clusters using a combined dataset of 161 GBM specimens from published databases. We next studied IA genes associated with patient survival using 3 different statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation therapy. Results The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p < 0.001). Patients with significantly different OS could even be identified among those with known good prognosis (methylated MGMT promoter-bearing tumor) using Agilent (OS 25 versus 8.1 months; p < 0.01) and RT-PCR (OS 21.8 versus 13.9 months; p < 0.05) technologies. Interestingly, the 6-IA gene risk could also distinguish proneural GBM subtypes. Conclusions This study demonstrates the immune signatures found in previous GBM genomic analyses and suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.
Collapse
Affiliation(s)
- Elodie Vauléon
- Department of Medical Oncology, Eugène Marquis Cancer Institute, rue de la bataille Flandres Dunkerque, Rennes 35042, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ikehata M, Ueda K, Iwakawa S. Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull 2012; 35:301-7. [PMID: 22382314 DOI: 10.1248/bpb.35.301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study on the involvement of epigenetic control of the expression of solute carrier (SLC) transporters by DNA methylation and histone deacetylation in 4 colon cancer cells is to find the epigenetic control mechanisms of drug transporters in colon cancers. Human colon cancer cell lines (HCT116, HT29, SW48, SW480) were treated with 5-aza-2'-deoxycytidine (DAC), as a DNA methyltransferase inhibitor, followed by trichostatin A (TSA), as a histone deacetylase inhibitor. The mRNA expression and DNA methylation of several SLC transporters were analyzed by real-time polymerase chain reaction (PCR) and methylation-specific PCR, respectively. Among 12 SLC transporters possessing cytosine-phosphate-guanine (CpG) islands, thiamine transporter 2 (THTR2) (SLC19A3) gene showed a correlation between its mRNA expression level and DNA methylation status. TSA treatment increased histone H3 acetylation of THTR2 promoter region in all 4 colon cancer cell lines examined. HCT116 and SW48 cells showed a lack of THTR2 mRNA expression and methylation of its promoter, and DAC treatment induced its re-expression. In addition, the co-treatment with DAC and TSA increased THTR2 mRNA expression more markedly than DAC treatment in HCT116 and SW48 cells. In HT29 and SW480 cells that showed little methylation of THTR2 promoter, TSA treatment induced THTR2 mRNA expression markedly, but DAC treatment did not. In the 4 colon cancer cells examined, THTR2 mRNA expression is down-regulated by DNA methylation and/or histone deacetylation.
Collapse
Affiliation(s)
- Mika Ikehata
- Department of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Japan.
| | | | | |
Collapse
|
18
|
Lin M, Eng C, Hawk ET, Huang M, Greisinger AJ, Gu J, Ellis LM, Wu X, Lin J. Genetic variants within ultraconserved elements and susceptibility to right- and left-sided colorectal adenocarcinoma. Carcinogenesis 2012; 33:841-7. [PMID: 22318908 DOI: 10.1093/carcin/bgs096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated whether single nucleotide polymorphisms within ultraconserved elements (UCEs) are associated with susceptibility to overall colorectal cancer (CRC) and susceptibility to tumor site-specific CRC. The study included 787 CRC patients and 551 healthy controls. The study comprised of a training set (520 cases and 341 controls) and a replication set (267 cases and 210 controls). We observed associations in rs7849 and rs1399685 with CRC risk. For example, a dose-dependent trend (per-allele odds ratio (OR), 0.78; 95% confidence interval (CI), 0.63-1.00; P for trend = 0.05) associated with the variant allele of rs7849 in the training set. The significant trend toward a decrease in CRC risk was confirmed in the replication set (per-allele OR, 0.72; 95% CI, 0.52-0.99; P for trend = 0.044). When stratified by tumor location, for left-sided CRC (LCRC) risk, significant association was observed for the variant-containing genotypes of rs1399685 (OR, 1.77; 95% CI, 1.02-3.06) and the risk was replicated in the replication population (OR, 2.04; 95% CI, 1.02-4.07). The variant genotypes of rs9784100 and rs7849 conferred decreased risk but the associations were not replicated. Three right-sided CRC (RCRC) susceptibility loci were identified in rs6124509, rs4243289 and rs12218935 but none of the loci was replicated. Joint effects and potential higher order gene-gene interactions among significant variants further categorized patients into different risk groups. Our results strongly suggest that several genetic variants in the UCEs may contribute to CRC susceptibility, individually and jointly, and that different genetic etiology may be involved in RCRC and LCRC.
Collapse
Affiliation(s)
- Moubin Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Morlighem JÉ, Harbers M, Traeger-Synodinos J, Lezhava A. DNA amplification techniques in pharmacogenomics. Pharmacogenomics 2011; 12:845-60. [PMID: 21692615 DOI: 10.2217/pgs.11.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The variable predisposition of patients, both to disease susceptibility and drug response, is well established. It is largely attributed to genetic, as well as epigenetic variations between individuals, which may be inherited or acquired. The most common variation in the human genome is the SNP, which occurs throughout the genome, both within coding and noncoding regions. Characterization of SNPs in the context of both inherited and acquired conditions, such as cancer, are a main focus of many genotyping procedures. The demand for identifying (diagnosing) targeted SNPs or other variations, as well as the application of genome-wide screens, is continuously directing the development of new technologies. In general, most methods require a DNA amplification step to provide the amounts of DNA needed for the SNP detection step. In addition, DNA amplification is an important step when investigating other types of genomic information, for instance when addressing repeat, deletion, copy number variation or epigenetic regulation by DNA methylation. Besides the widely used PCR technique, there are several alternative approaches for genomic DNA amplification suitable for supporting the detection of genomic variation. In this article, we describe and evaluate a number of techniques, and discuss possible future prospects of DNA amplification in the fields of pharmacogenetics and pharmacogenomics.
Collapse
Affiliation(s)
- Jean-Étienne Morlighem
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
20
|
Ambrosio EP, Drigo SA, Bérgamo NA, Rosa FE, Bertonha FB, de Abreu FB, Kowalski LP, Rogatto SR. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology 2011; 59:81-9. [PMID: 21668474 DOI: 10.1111/j.1365-2559.2011.03885.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to evaluate the copy number alteration on 2q24, its association with ACVR1 transcript expression and the prognostic value of these data in head and neck squamous cell carcinomas. METHODS AND RESULTS Twenty-eight samples of squamous cell carcinoma were evaluated by fluorescence in situ hybridization (FISH) using the probes RP11-546J1 (2q24) and RP11-21P18 (internal control). Significant gains at 2q24 were detected in most cases at frequencies varying from 3 to 35%. ACVR1 gains and amplifications were associated with longer overall survival (P = 0.022). ACVR1 mRNA expression analysis in 78 cases revealed overexpression in 44% (34 of 78) of these tumours, suggesting that gene copy number alterations could be involved in gene overexpression. In laryngeal carcinomas, overexpression of ACVR1 mRNA levels was associated with longer overall survival (P = 0.013). Multivariate analysis revealed that ACVR1 is an independent prognostic marker in laryngeal carcinomas (P = 0.012, hazard ratio = 0.165, 95% confidence interval =0.041-0.668). CONCLUSIONS These findings suggest that copy number alterations at 2q24 can be involved in ACVR1 overexpression, which is associated with longer overall survival in laryngeal carcinomas. To our knowledge, this is the first report indicating the relevance of ACVR1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Eliane P Ambrosio
- Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. Dis Model Mech 2011; 4:484-95. [PMID: 21504908 PMCID: PMC3124053 DOI: 10.1242/dmm.006593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP) receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53) affected this phenotype. Acvr1 conditional knockout (Acvr1CKO) mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1CKO cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53CKO and Acvr1;Trp53DCKO (double conditional knockout), but not Acvr1CKO, lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53CKO lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53DCKO lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts.
Collapse
Affiliation(s)
- Luke A Wiley
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|