1
|
Edwards T, Bouyoucos IA, Hasler CT, Fry M, Anderson WG. Effect of L-alanine exposure during early life stage on olfactory development, growth and survival in age-0 lake sturgeon Acipenser fulvescens. CONSERVATION PHYSIOLOGY 2024; 12:coae084. [PMID: 39697421 PMCID: PMC11653895 DOI: 10.1093/conphys/coae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Environmental factors play an important role in phenotypic development of fishes, which has implications for hatchery-reared fishes that are released into the wild where natural cues are present. There is interest in examining how early exposure to dietary odourants can affect development of olfaction. The aim of our study was to use behavioural, molecular and electro-physiological techniques to evaluate how introduction of the amino acid L-alanine to the rearing environment might influence the development of olfactory perception of dietary cues, growth and survival in lake sturgeon (Acipenser fulvescens), a species of conservation concern. We hypothesized that exposure to amino acids would influence the onset of feeding during dietary transitions from endogenous to exogenous feeding and predicted that the introduction of L-alanine during early development would promote growth and survival of age-0 lake sturgeon. Additionally, we hypothesized that olfaction in lake sturgeon is a developmentally plastic trait, predicting that the addition of L-alanine prior to exogenous feeding would influence mRNA transcript abundance of genes associated with detection of dietary cues. Our approach was to add L-alanine daily from 17 to 20 days post-fertilization (DPF) before the onset of exogenous feeding. We sampled individuals at 17, 21, 26, 31, 50, 65 and 80 DPF. Additionally, olfactory sensitivity to L-alanine was tested at ~1 year via electro-olfactogram (EOG). We observed no significant differences in mortality or EOG response between L-alanine and control treatments; however, significant differences were observed in morphometrics, behaviour and mRNA transcript abundance of all genes throughout development. Our results indicated the olfactory system exhibited developmental plasticity in response to L-alanine treatment until 50-65 DPF, suggesting that environmental odourants may influence early development of key olfactory processes. Our data could inform practises at conservation hatcheries that are used as part of enhancement programmes for lake sturgeon.
Collapse
Affiliation(s)
- Tyler Edwards
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, 515 Portage Ave, R3B 2E9, Winnipeg Manitoba, Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd, R3T 2M5 Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
3
|
Ward RH, Quinn TP, Dittman AH, Yopak KE. The Effects of Rearing Environment on Organization of the Olfactory System and Brain of Juvenile Sockeye Salmon, Oncorhynchus nerka. Integr Comp Biol 2024; 64:92-106. [PMID: 38373826 DOI: 10.1093/icb/icae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream that they learned as juveniles. Like some other fish, salmon growth is asymptotic; they grow continuously throughout life toward a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and wild-origin sockeye salmon fry (Oncorhynchus nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends, existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in olfactory nerve diameter (dmin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution methods. Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.
Collapse
Affiliation(s)
- Russell H Ward
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA
| | - Kara E Yopak
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
4
|
Fuentes‐Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel ( Trachurus trachurus). Evol Appl 2023; 16:1201-1219. [PMID: 37360028 PMCID: PMC10286234 DOI: 10.1111/eva.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding how populations adapt to their environment is increasingly important to prevent biodiversity loss due to overexploitation and climate change. Here we studied the population structure and genetic basis of local adaptation of Atlantic horse mackerel, a commercially and ecologically important marine fish that has one of the widest distributions in the eastern Atlantic. We analyzed whole-genome sequencing and environmental data of samples collected from the North Sea to North Africa and the western Mediterranean Sea. Our genomic approach indicated low population structure with a major split between the Mediterranean Sea and the Atlantic Ocean and between locations north and south of mid-Portugal. Populations from the North Sea are the most genetically distinct in the Atlantic. We discovered that most population structure patterns are driven by a few highly differentiated putatively adaptive loci. Seven loci discriminate the North Sea, two the Mediterranean Sea, and a large putative inversion (9.9 Mb) on chromosome 21 underlines the north-south divide and distinguishes North Africa. A genome-environment association analysis indicates that mean seawater temperature and temperature range, or factors correlated to them, are likely the main environmental drivers of local adaptation. Our genomic data broadly support the current stock divisions, but highlight areas of potential mixing, which require further investigation. Moreover, we demonstrate that as few as 17 highly informative SNPs can genetically discriminate the North Sea and North African samples from neighboring populations. Our study highlights the importance of both, life history and climate-related selective pressures in shaping population structure patterns in marine fish. It also supports that chromosomal rearrangements play a key role in local adaptation with gene flow. This study provides the basis for more accurate delineation of the horse mackerel stocks and paves the way for improving stock assessments.
Collapse
Affiliation(s)
| | - Edward D. Farrell
- EDF Scientific LimitedCorkIreland
- Killybegs Fishermen's OrganisationDonegalIreland
| | - Mats E. Pettersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - C. Grace Sprehn
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
5
|
Pappas F, Kurta K, Vanhala T, Jeuthe H, Hagen Ø, Beirão J, Palaiokostas C. Whole-genome re-sequencing provides key genomic insights in farmed Arctic charr ( Salvelinus alpinus) populations of anadromous and landlocked origin from Scandinavia. Evol Appl 2023; 16:797-813. [PMID: 37124091 PMCID: PMC10130564 DOI: 10.1111/eva.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 02/12/2023] [Indexed: 03/03/2023] Open
Abstract
Arctic charr (Salvelinus alpinus) is a niche-market high-value species for Nordic aquaculture. Similar to other salmonids, both anadromous and landlocked populations are encountered. Whole-genome re-sequencing (22X coverage) was performed on two farmed populations of anadromous (Sigerfjord; n = 24) and landlocked (Arctic Superior; n = 24) origin from Norway and Sweden respectively. More than 5 million SNPs were used to study their genetic diversity and to scan for selection signatures. The two populations were clearly distinguished through principal component analysis, with the mean fixation index being ~0.12. Furthermore, the levels of genomic inbreeding estimated from runs of homozygosity were 6.23% and 8.66% for the Norwegian and the Swedish population respectively. Biological processes that could be linked to selection pressure associated primarily with the anadromous background and/or secondarily with domestication were suggested. Overall, our study provided insights regarding the genetic composition of two main strains of farmed Arctic charr from Scandinavia. At the same time, ample genomic resources were produced in the magnitude of millions of SNPs that could assist the transition of Nordic Arctic charr farming in the genomics era.
Collapse
Affiliation(s)
- Fotis Pappas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Khrystyna Kurta
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Tytti Vanhala
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Henrik Jeuthe
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Aquaculture Center NorthKälarneSweden
| | - Ørjan Hagen
- Faculty of Bioscience and AquacultureNord UniversityBodøNorway
| | - José Beirão
- Faculty of Bioscience and AquacultureNord UniversityBodøNorway
| | - Christos Palaiokostas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
6
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Huang L, Zhang W, Han Y, Tang Y, Zhou W, Liu G, Shi W. Anti-Depressant Fluoxetine Hampers Olfaction of Goldfish by Interfering with the Initiation, Transmission, and Processing of Olfactory Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15848-15859. [PMID: 36260920 DOI: 10.1021/acs.est.2c02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
8
|
Gao J, Xu G, Xu P. Whole-genome resequencing of three Coilia nasus population reveals genetic variations in genes related to immune, vision, migration, and osmoregulation. BMC Genomics 2021; 22:878. [PMID: 34872488 PMCID: PMC8647404 DOI: 10.1186/s12864-021-08182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Coilia nasus is an important anadromous fish, widely distributed in China, Japan, and Korea. Based on morphological and ecological researches of C. nasus, two ecotypes were identified. One is the anadromous population (AP). The sexually mature fish run thousands of kilometers from marine to river for spawning. Another one is the resident population which cannot migrate. Based on their different habitats, they were classified into landlocked population (LP) and sea population (SP) which were resident in the freshwater lake and marine during the entire lifetime, respectively. However, they have never been systematically studied. Moreover, C. nasus is declining sharply due to overfishing and pollution recently. Therefore, further understandings of C. nasus populations are needed for germplasm protection. Results Whole-genome resequencing of AP, LP, and SP were performed to enrich the understanding of different populations of C. nasus. At the genome level, 3,176,204, 3,307,069, and 3,207,906 single nucleotide polymorphisms (SNPs) and 1,892,068, 2,002,912, and 1,922,168 insertion/deletion polymorphisms (InDels) were generated in AP, LP, and SP, respectively. Selective sweeping analysis showed that 1022 genes were selected in AP vs LP; 983 genes were selected in LP vs SP; 116 genes were selected in AP vs SP. Among them, selected genes related to immune, vision, migration, and osmoregulation were identified. Furthermore, their expression profiles were detected by quantitative real-time PCR. Expression levels of selected genes related to immune, and vision in LP were significantly lower than AP and SP. Selected genes related to migration in AP were expressed significantly more highly than LP. Expression levels of selected genes related to osmoregulation were also detected. The expression of NKAα and NKCC1 in LP were significantly lower than SP, while expression of NCC, SLC4A4, NHE3, and V-ATPase in LP was significantly higher than SP. Conclusions Combined to life history of C. nasus populations, our results revealed that the molecular mechanisms of their differences of immune, vision, migration, and osmoregulation. Our findings will provide a further understanding of different populations of C. nasus and will be beneficial for wild C. nasus protection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08182-0.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| |
Collapse
|
9
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
10
|
Madsen SS, Winther SST, Bollinger RJ, Steiner U, Larsen MH. Differential expression of olfactory genes in Atlantic salmon ( Salmo salar) during the parr-smolt transformation. Ecol Evol 2019; 9:14085-14100. [PMID: 31938505 PMCID: PMC6953650 DOI: 10.1002/ece3.5845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr-smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery-reared upper growth modal juvenile Atlantic salmon at 3-week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor-specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory-specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.
Collapse
Affiliation(s)
| | | | | | - Ulrich Steiner
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | | |
Collapse
|
11
|
Olivares J, Schmachtenberg O. An update on anatomy and function of the teleost olfactory system. PeerJ 2019; 7:e7808. [PMID: 31579633 PMCID: PMC6768218 DOI: 10.7717/peerj.7808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022] Open
Abstract
About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.
Collapse
Affiliation(s)
- Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Universidad de Valparaíso, PhD Program in Neuroscience, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Gerlach G, Tietje K, Biechl D, Namekawa I, Schalm G, Sulmann A. Behavioural and neuronal basis of olfactory imprinting and kin recognition in larval fish. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb189746. [PMID: 30728237 DOI: 10.1242/jeb.189746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Imprinting is a specific form of long-term memory of a cue acquired during a sensitive phase of development. To ensure that organisms memorize the right cue, the learning process must happen during a specific short time period, mostly soon after hatching, which should end before irrelevant or misleading signals are encountered. A well-known case of olfactory imprinting in the aquatic environment is that of the anadromous Atlantic and Pacific salmon, which prefer the olfactory cues of natal rivers to which they return after migrating several years in the open ocean. Recent research has shown that olfactory imprinting and olfactory guided navigation in the marine realm are far more common than previously assumed. Here, we present evidence for the involvement of olfactory imprinting in the navigation behaviour of coral reef fish, which prefer their home reef odour over that of other reefs. Two main olfactory imprinting processes can be differentiated: (1) imprinting on environmental cues and (2) imprinting on chemical compounds released by kin, which is based on genetic relatedness among conspecifics. While the first process allows for plasticity, so that organisms can imprint on a variety of chemical signals, the latter seems to be restricted to specific genetically determined kin signals. We focus on the second, elucidating the behavioural and neuronal basis of the imprinting process on kin cues using larval zebrafish (Danio rerio) as a model. Our data suggest that the process of imprinting is not confined to the central nervous system but also triggers some changes in the olfactory epithelium.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129 Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD 4811, Australia
| | - Kristin Tietje
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Biechl
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Iori Namekawa
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Astrid Sulmann
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Molecular characterization and gene expression of syntaxin-1 and VAMP2 in the olfactory organ and brain during both seaward and homeward migrations of chum salmon, Oncorhynchus keta. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:39-50. [DOI: 10.1016/j.cbpa.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
14
|
Mizuno S, Urawa S, Miyamoto M, Hatakeyama M, Sasaki Y, Koide N, Tada S, Ueda H. Effects of dietary supplementation with oregano essential oil on prevention of the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae in juvenile chum salmon Oncorhynchus keta. JOURNAL OF FISH BIOLOGY 2018; 93:528-539. [PMID: 29938795 DOI: 10.1111/jfb.13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The present study performed three experiments to establish a practical prevention strategy for the ectoparasitic flagellate Ichthyobodo salmonis and ciliate Trichodina truttae in hatchery-reared juvenile chum salmon Oncorhynchus keta using dietary supplementation with oregano essential oil. Experiment 1 showed that a diet supplemented for 3 weeks with 0.02% oregano essential oil significantly prevented infection with I. salmonis and T. truttae in juveniles reared in small tanks. Experiment 2, in outdoor hatchery ponds, demonstrated that the oregano treatment completely prevented I. salmonis infection for 52 days and T. truttae infection for 38 days. Oregano-treated juvenile mortality attributable to infection with these protozoans also decreased to 7.6% of control juvenile mortality, confirming the utility of this treatment in cultured O. keta. Physiological analyses of the oregano-treated juveniles elucidated the treatment's safety in relation to their metabolism, osmoregulation, natural immunity and olfactory responses and also detected carvacrol (a major component of oregano essential oil which shows antimicrobial activity) on the skin. In experiment 3, exposure of the two protozoans to oregano essential oil revealed a weak antiparasitic action on the body surface of the juvenile O. keta. The overall results demonstrate that dietary oregano supplementation is a practical prevention strategy for I. salmonis and T. truttae in hatchery-reared juvenile O. keta and suggest the possibility that its anti-parasitic action is attributable to a component of the oil that emerges onto the skin of the body of the fish.
Collapse
Affiliation(s)
- Shinya Mizuno
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | - Shigehiko Urawa
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Sapporo, Japan
| | - Mahito Miyamoto
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | - Makoto Hatakeyama
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | - Yoshitaka Sasaki
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | - Nobuhisa Koide
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | | | - Hiroshi Ueda
- Hokkaido Aquaculture Promotion Corporation, Sapporo, Japan
| |
Collapse
|
15
|
Bett NN, Hinch SG, Kaukinen KH, Li S, Miller KM. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka. JOURNAL OF FISH BIOLOGY 2018; 92:2029-2038. [PMID: 29660137 DOI: 10.1111/jfb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing.
Collapse
Affiliation(s)
- N N Bett
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| | - S G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| | - K H Kaukinen
- Molecular Genetics Laboratory, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, B.C., V9T 6N7, Canada
| | - S Li
- Molecular Genetics Laboratory, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, B.C., V9T 6N7, Canada
| | - K M Miller
- Molecular Genetics Laboratory, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, B.C., V9T 6N7, Canada
| |
Collapse
|
16
|
Sato K, Sorensen PW. The Chemical Sensitivity and Electrical Activity of Individual Olfactory Sensory Neurons to a Range of Sex Pheromones and Food Odors in the Goldfish. Chem Senses 2018; 43:249-260. [PMID: 29514213 PMCID: PMC5913646 DOI: 10.1093/chemse/bjy016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is well established that the olfactory epithelium of teleost fish detects at least 6 classes of biologically relevant odorants using 5 types of olfactory sensory neurons (OSNs), little is understood about the specificity of individual OSNs and thus how they encode identity of natural odors. In this study, we used in vivo extracellular single-unit recording to examine the odor responsiveness and physiological characteristics of 109 individual OSNs in mature male goldfish to a broad range of biological odorants including feeding stimuli (amino acids, polyamines, nucleotides), sex pheromones (sex steroids, prostaglandins [PGs]), and a putative social cue (bile acids). Sixty-one OSNs were chemosensitive, with over half of these (36) responding to amino acids, 7 to polyamines, 7 to nucleotides, 5 to bile acids, 9 to PGs, and 7 to sex steroids. Approximately a quarter of the amino acid-sensitive units also responded to polyamines or nucleotides. Three of 6 amino acid-sensitive units responded to more than 1 amino acid compound, and 5 sex pheromone-sensitive units detected just 1 sex pheromone. While pheromone-sensitive OSNs also responded to the adenylyl cyclase activator, forskolin, amino acid-sensitive OSNs responded to either forskolin or a phospholipase C activator, imipramine. Most OSNs responded to odorants and activators with excitation. Our results suggest that pheromone information is encoded by OSNs specifically tuned to single sex pheromones and employ adenylyl cyclase, suggestive of a labeled-line organization, while food information is encoded by a combination of OSNs that use both adenylyl cyclase and phospholipase C and are often less specifically tuned.
Collapse
Affiliation(s)
- Koji Sato
- Okazaki Institute for Integrative Bioscience, Biosensing Research, Higashiyama Myodaijicho, Okazaki, Aichi, Japan
| | - Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
17
|
Abe T, Minowa Y, Kudo H. Molecular characterization and gene expression of synaptosome-associated protein-25 (SNAP-25) in the brain during both seaward and homeward migrations of chum salmon Oncorhynchus keta. Comp Biochem Physiol A Mol Integr Physiol 2018; 217:17-25. [DOI: 10.1016/j.cbpa.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/12/2023]
|
18
|
Hauser WJ, Westley PAH, Kerkvliet C, Dudiak N. Homing of Pacific Salmon to a Marine Release Site: A Case Study of the Homer Spit Fishing Hole, Alaska. NORTHWEST SCIENCE 2017. [DOI: 10.3955/046.091.0310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- William J. Hauser
- Alaska Department of Fish and Game (retired), 3621 Hazen Circle, Anchorage, Alaska 99515
| | - Peter A. H. Westley
- Alaska Department of Fish and Game (retired), 3621 Hazen Circle, Anchorage, Alaska 99515
- College of Fisheries and Ocean Sciences, PO Box 757220, University of Alaska Fairbanks, Fairbanks, Alaska 99775
| | - Carol Kerkvliet
- Alaska Department of Fish and Game Division of Sport Fish, 3298 Douglas Place Homer Alaska 99603
| | - Nick Dudiak
- Alaska Department of Fish and Game (retired), 8137 Fernwood Street, Augusta, Michigan 49012
| |
Collapse
|
19
|
Chen EY, Leonard JBK, Ueda H. The behavioural homing response of adult chum salmon Oncorhynchus keta to amino-acid profiles. JOURNAL OF FISH BIOLOGY 2017; 90:1257-1264. [PMID: 27873320 DOI: 10.1111/jfb.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Adult chum salmon Oncorhynchus keta homing behaviour in a two-choice test tank (Y-maze) was monitored using a passive integrated transponder (PIT)-tag system in response to river-specific dissolved free amino-acid (DFAA) profiles and revealed that the majority of O. keta showed a preference for artificial natal-stream water and tended to stay in this maze arm for a longer period; natal-stream water was chosen over a nearby tributary's water, but not when the O. keta were presented with a non-tributary water. The results demonstrate the ability of O. keta to discriminate artificial stream waters containing natural levels of DFAA.
Collapse
Affiliation(s)
- E Y Chen
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - J B K Leonard
- Biology Department, Northern Michigan University, Marquette, MI, 49855, U.S.A
| | - H Ueda
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
- Laboratory of Aquatic Bioresources and Ecosystems, Field Science Center for the Northern Biosphere, Hokkaido University, Sapporo, 060-0809, Japan
| |
Collapse
|
20
|
Zhu G, Wang L, Tang W, Wang X, Wang C. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus. Genes Genomics 2017; 39:521-532. [PMID: 28458780 PMCID: PMC5387026 DOI: 10.1007/s13258-017-0517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus.
Collapse
Affiliation(s)
- Guoli Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC USA
| | - Wenqiao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaomei Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Cong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
21
|
Green WW, Boyes K, McFadden C, Daghfous G, Auclair F, Zhang H, Li W, Dubuc R, Zielinski BS. Odorant organization in the olfactory bulb of the sea lamprey. ACTA ACUST UNITED AC 2017; 220:1350-1359. [PMID: 28183864 DOI: 10.1242/jeb.150466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species.
Collapse
Affiliation(s)
- Warren W Green
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Karl Boyes
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Charrie McFadden
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - François Auclair
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Barbara S Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4 .,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B3P4
| |
Collapse
|
22
|
Bett NN, Hinch SG, Dittman AH, Yun SS. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha). Sci Rep 2016; 6:36393. [PMID: 27827382 PMCID: PMC5101574 DOI: 10.1038/srep36393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022] Open
Abstract
Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.
Collapse
Affiliation(s)
- Nolan N Bett
- University of British Columbia, Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Scott G Hinch
- University of British Columbia, Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Sang-Seon Yun
- University of British Columbia, Faculty of Land and Food Systems, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
23
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
24
|
Involvement of hormones in olfactory imprinting and homing in chum salmon. Sci Rep 2016; 6:21102. [PMID: 26879952 PMCID: PMC4754751 DOI: 10.1038/srep21102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.
Collapse
|
25
|
Haraguchi S, Yamamoto Y, Suzuki Y, Hyung Chang J, Koyama T, Sato M, Mita M, Ueda H, Tsutsui K. 7α-Hydroxypregnenolone, a key neuronal modulator of locomotion, stimulates upstream migration by means of the dopaminergic system in salmon. Sci Rep 2015. [PMID: 26220247 PMCID: PMC4518220 DOI: 10.1038/srep12546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmon migrate upstream against an opposing current in their natal river. However, the molecular mechanisms that stimulate upstream migratory behavior are poorly understood. Here, we show that 7α-hydroxypregnenolone (7α-OH PREG), a newly identified neuronal modulator of locomotion, acts as a key factor for upstream migration in salmon. We first identified 7α-OH PREG and cytochrome P450 7α-hydroxylase (P4507α), a steroidogenic enzyme producing 7α-OH PREG, in the salmon brain and then found that 7α-OH PREG synthesis in the brain increases during upstream migration. Subsequently, we demonstrated that 7α-OH PREG increases upstream migratory behavior of salmon. We further found that 7α-OH PREG acts on dopamine neurons in the magnocellular preoptic nucleus during upstream migration. Thus, 7α-OH PREG stimulates upstream migratory behavior through the dopaminergic system in salmon. These findings provide new insights into the molecular mechanisms of fish upstream migration.
Collapse
Affiliation(s)
- Shogo Haraguchi
- 1] Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan [2] Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Yuzo Yamamoto
- 1] Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan [2] Current address: Demonstration Laboratory, Marine Ecology Research Institute, Niigata, Japan
| | - Yuko Suzuki
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Joon Hyung Chang
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Teppei Koyama
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Miku Sato
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Masatoshi Mita
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Hiroshi Ueda
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
26
|
Bett NN, Hinch SG. Attraction of migrating adult sockeye salmon to conspecifics in the absence of natal chemical cues. Behav Ecol 2015. [DOI: 10.1093/beheco/arv062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Bett NN, Hinch SG. Olfactory navigation during spawning migrations: a review and introduction of the Hierarchical Navigation Hypothesis. Biol Rev Camb Philos Soc 2015; 91:728-59. [PMID: 25923999 DOI: 10.1111/brv.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well-studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non-olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.
Collapse
Affiliation(s)
- Nolan N Bett
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Scott G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
28
|
Ahuja G, Korsching S. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone. Commun Integr Biol 2014; 7:970501. [PMID: 26842458 PMCID: PMC4594460 DOI: 10.4161/19420889.2014.970501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/03/2023] Open
Abstract
Teleost v1r-related ora genes constitute a small and
highly conserved olfactory receptor gene family, and their direct orthologs are present in
lineages as distant as cartilaginous fishes. Recently, the first member of the
ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic
acid with high sensitivity and specificity. This compound elicits olfactory-mediated
oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a
reproductive pheromone for pHPAA itself or a related substance. This association of an
odor and its cognate receptor with an oviposition response may provide a molecular basis
for studying neural circuits involved in fish reproduction.
Collapse
Affiliation(s)
- Gaurav Ahuja
- Institute for Genetics; University at Cologne ; Cologne, Germany
| | - Sigrun Korsching
- Institute for Genetics; University at Cologne ; Cologne, Germany
| |
Collapse
|
29
|
Shrimpton JM, Warren KD, Todd NL, McRae CJ, Glova GJ, Telmer KH, Clarke AD. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you'll go! JOURNAL OF FISH BIOLOGY 2014; 85:987-1004. [PMID: 25053226 DOI: 10.1111/jfb.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Juvenile movement patterns for coho salmon Oncorhynchus kisutch and Chinook salmon Oncorhynchus tshawytscha from two large interior rivers of British Columbia, Canada, were examined. Otoliths from post-spawned fishes were collected on spawning grounds and elemental signatures were determined through transects from sectioned otoliths using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Large variations in otolith elemental signatures were found during the freshwater life stage indicative of movement downstream to rivers and tributaries that differed in elemental signature. This study highlights that downstream movements occur before migration to the ocean during the parr-smolt transformation. Extensive downstream movements of parr appear to be a successful life-history strategy based on variations observed in the otolith elemental signatures of spawners. Movements downstream in parr and the remarkable homing ability of adults also suggest that imprinting to natal streams must occur prior to the parr-smolt transformation.
Collapse
Affiliation(s)
- J M Shrimpton
- Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9 Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu G, Wang L, Tang W, Liu D, Yang J. De novo transcriptomes of olfactory epithelium reveal the genes and pathways for spawning migration in japanese grenadier anchovy (Coilia nasus). PLoS One 2014; 9:e103832. [PMID: 25084282 PMCID: PMC4118956 DOI: 10.1371/journal.pone.0103832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Coilia nasus (Japanese grenadier anchovy) undergoes spawning migration from the ocean to fresh water inland. Previous studies have suggested that anadromous fish use olfactory cues to perform successful migration to spawn. However, limited genomic information is available for C. nasus. To understand the molecular mechanisms of spawning migration, it is essential to identify the genes and pathways involved in the migratory behavior of C. nasus. RESULTS Using de novo transcriptome sequencing and assembly, we constructed two transcriptomes of the olfactory epithelium from wild anadromous and non-anadromous C. nasus. Over 178 million high-quality clean reads were generated using Illumina sequencing technology and assembled into 176,510 unigenes (mean length: 843 bp). About 51% (89,456) of the unigenes were functionally annotated using protein databases. Gene ontology analysis of the transcriptomes indicated gene enrichment not only in signal detection and transduction, but also in regulation and enzymatic activity. The potential genes and pathways involved in the migratory behavior were identified. In addition, simple sequence repeats and single nucleotide polymorphisms were analyzed to identify potential molecular markers. CONCLUSION We, for the first time, obtained high-quality de novo transcriptomes of C. nasus using a high-throughput sequencing approach. Our study lays the foundation for further investigation of C. nasus spawning migration and genome evolution.
Collapse
Affiliation(s)
- Guoli Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Wenqiao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- * E-mail:
| | - Dong Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jinquan Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
31
|
Behrens M, Frank O, Rawel H, Ahuja G, Potting C, Hofmann T, Meyerhof W, Korsching S. ORA1, a zebrafish olfactory receptor ancestral to all mammalian V1R genes, recognizes 4-hydroxyphenylacetic acid, a putative reproductive pheromone. J Biol Chem 2014; 289:19778-88. [PMID: 24831010 DOI: 10.1074/jbc.m114.573162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors.
Collapse
Affiliation(s)
- Maik Behrens
- From the Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal
| | - Oliver Frank
- the Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising
| | - Harshadrai Rawel
- the Institute of Nutrition Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, and
| | - Gaurav Ahuja
- the Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Christoph Potting
- the Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Thomas Hofmann
- the Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising
| | - Wolfgang Meyerhof
- From the Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal
| | - Sigrun Korsching
- the Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| |
Collapse
|
32
|
Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar). G3-GENES GENOMES GENETICS 2014; 4:1135-41. [PMID: 24760389 PMCID: PMC4065256 DOI: 10.1534/g3.114.010660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is strong evidence that olfaction plays a key role in the homing of salmonids to their natal spawning grounds, particularly in the freshwater phase. However, the physiological and genetic mechanisms behind this biological phenomenon are largely unknown. It has been shown that Pacific salmon respond to dissolved free amino acids from their natal streams. This indicates that amino acids comprise part of the olfcatory cues for imprinting and homing in salmonids. As trace amine-associated receptors (TAARs), a class of olfactory receptors that are close relatives of the G protein-coupled aminergic neurotransmitter receptors, recognize amino acid metabolites, we hypothesize that TAARs play an important role in salmon homing by recognizing olfactory cues. Therefore, to better understand homing in Atlantic salmon, we set out to characterize the TAAR genes in this species. We searched the first assembly of the Atlantic salmon genome for sequences resembling TAARs previously characterized in other teleosts. We identified 27 putatively functional TAAR genes and 25 putative TAAR pseudogenes, which cluster primarily on chromosome 21 (Ssa21). Phylogenetic analysis of TAAR amino acid sequences from 15 vertebrate species revealed the TAAR gene family arose after the divergence of jawed and jawless vertebrates. The TAARs group into three classes with salmon possessing class I and class III TAARs. Within each class, evolution is characterized by species-specific gene expansions, which is in contrast to what is observed in other olfactory receptor families (e.g., OlfCs and oras).
Collapse
|
33
|
Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, Kaushik SJ, Panserat S, Médale F. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS One 2013; 8:e83162. [PMID: 24386155 PMCID: PMC3873907 DOI: 10.1371/journal.pone.0083162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/30/2013] [Indexed: 01/02/2023] Open
Abstract
Sustainable aquaculture, which entails proportional replacement of fish-based feed sources by plant-based ingredients, is impeded by the poor growth response frequently seen in fish fed high levels of plant ingredients. This study explores the potential to improve, by means of early nutritional exposure, the growth of fish fed plant-based feed. Rainbow trout swim-up fry were fed for 3 weeks either a plant-based diet (diet V, V-fish) or a diet containing fishmeal and fish oil as protein and fat source (diet M, M-fish). After this 3-wk nutritional history period, all V- or M-fish received diet M for a 7-month intermediate growth phase. Both groups were then challenged by feeding diet V for 25 days during which voluntary feed intake, growth, and nutrient utilisation were monitored (V-challenge). Three isogenic rainbow trout lines were used for evaluating possible family effects. The results of the V-challenge showed a 42% higher growth rate (P = 0.002) and 30% higher feed intake (P = 0.005) in fish of nutritional history V compared to M (averaged over the three families). Besides the effects on feed intake, V-fish utilized diet V more efficiently than M-fish, as reflected by the on average 18% higher feed efficiency (P = 0.003). We noted a significant family effect for the above parameters (P<0.001), but the nutritional history effect was consistent for all three families (no interaction effect, P>0.05). In summary, our study shows that an early short-term exposure of rainbow trout fry to a plant-based diet improves acceptance and utilization of the same diet when given at later life stages. This positive response is encouraging as a potential strategy to improve the use of plant-based feed in fish, of interest in the field of fish farming and animal nutrition in general. Future work needs to determine the persistency of this positive early feeding effect and the underlying mechanisms.
Collapse
Affiliation(s)
- Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- * E-mail:
| | - Peter Borchert
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, Wageningen, The Netherlands
| | | | - Johan W. Schrama
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | | | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sadasivam J. Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| |
Collapse
|
34
|
Yamamoto Y, Shibata H, Ueda H. Olfactory homing of chum salmon to stable compositions of amino acids in natal stream water. Zoolog Sci 2013; 30:607-12. [PMID: 23915152 DOI: 10.2108/zsj.30.607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many attempts have been made to identify natal stream odors for salmon olfactory homing. It has recently been hypothesized that odors are dissolved free amino acids; however, it is unknown whether these odors change on a seasonal or annual basis. We analyzed dissolved free amino acid (DFAA) concentration and composition of water from the Teshio River in Hokkaido, Japan, where chum salmon (Oncorhynchus keta) returned for spawning, during juvenile downstream migration in spring and adult upstream migration in autumn with a 4-year difference. Among the 19 amino acids found in the Teshio River water, DFAA concentrations fluctuated largely, but 5-7 stable DFAA compositions (mole %) were found between the spring and autumn samples over a 4-year span. Two kinds of artificial stream water (ASW) were prepared using the same DFAA concentration in the Teshio River during the time of juvenile imprinting in spring (jASW) and adult homing in autumn (aASW), after a 4-year period. In behavioral experiments of upstream selective movement in a 2choice test tank, 4-year-old mature male chum salmon captured in the Teshio River showed significant preference for either jASW or aASW when compared to control water, but did not show any preference with respect to jASW or aASW. In electro-olfactogram experiments, adults were able to discriminate between jASW and aASW. Our findings demonstrate that the long-term stability of the DFAA compositions in natal streams may be crucial for olfactory homing in chum salmon.
Collapse
|
35
|
Dixson DL, Jones GP, Munday PL, Planes S, Pratchett MS, Thorrold SR. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 2013; 174:99-107. [PMID: 23996231 DOI: 10.1007/s00442-013-2755-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50% of their time in the cue) or increased their attraction to (increased preference but did not spend >50% of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.
Collapse
Affiliation(s)
- Danielle L Dixson
- School of Marine and Tropical Biology, James Cook University, 4811, Townsville, QLD, Australia,
| | | | | | | | | | | |
Collapse
|
36
|
Gudmundsson LA, Gudjónsson S, Marteinsdóttir G, Scarnecchia DL, Daníelsdóttir AK, Pampoulie C. Spatio-temporal effects of stray hatchery-reared Atlantic salmon Salmo salar on population genetic structure within a 21 km-long Icelandic river system. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0510-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Grassie C, Braithwaite VA, Nilsson J, Nilsen TO, Teien HC, Handeland SO, Stefansson SO, Tronci V, Gorissen M, Flik G, Ebbesson LOE. Aluminum exposure impacts brain plasticity and behavior in Atlantic salmon (Salmo salar). J Exp Biol 2013; 216:3148-55. [DOI: 10.1242/jeb.083550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Aluminum (Al) toxicity occurs frequently in natural aquatic ecosystems as a result of acid deposition and natural weathering processes. Detrimental effects of Al toxicity on aquatic organisms are well known and can have consequences for survival. Fish exposed to Al in low pH waters will experience physiological and neuroendocrine changes that disrupt homeostasis and alter behavior. To investigate the effects of Al exposure to both brain and behavior, Atlantic salmon (Salmo salar) kept in water treated with Al (pH 5.7, 0.37±0.04 µmol 1-1 of Al) for 2 weeks were compared to fish kept in a control condition (pH 6.7, <0.04 µmol 1-1 of Al). Fish exposed to Al and acidic conditions had increased Al accumulation in the gills and decreased gill Na+, K+-ATPase activity, which impaired osmoreguatory capacity and caused physiological stress, indicated by elevated plasma cortisol and glucose levels. Here we show for the first time that exposure to Al in acidic conditions also impaired learning performance in a maze task. Al toxicity reduced the expression of NeuroD1 transcript levels in the forebrain of exposed fish. As in mammals, these data show that exposure to chronic stress, such as acidified Al, can reduce neural plasticity during behavioral challenges in salmon, and may impair coping ability to new environments.
Collapse
|
38
|
Ueda H. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2012; 81:543-558. [PMID: 22803723 DOI: 10.1111/j.1095-8649.2012.03354.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids.
Collapse
Affiliation(s)
- H Ueda
- Field Science Center for Northern Biosphere, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
39
|
|
40
|
Daghfous G, Green WW, Zielinski BS, Dubuc R. Chemosensory-induced motor behaviors in fish. Curr Opin Neurobiol 2011; 22:223-30. [PMID: 22054925 DOI: 10.1016/j.conb.2011.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
Abstract
Chemical sensory signals play a crucial role in eliciting motor behaviors. We now review the different motor behaviors induced by chemosensory stimuli in fish as well as their neural substrate. A great deal of research has focused on migratory, reproductive, foraging, and escape behaviors but it is only recently that the molecules mediating these chemotactic responses have become well-characterized. Chemotactic responses are mediated by three sensory systems: olfactory, gustatory, and diffuse chemosensory. The olfactory sensory neuron responses to chemicals are now better understood. In addition, the olfactory projections to the central nervous system were recently shown to display an odotopic organization in the forebrain. Moreover, a specific downward projection underlying motor responses to olfactory inputs was recently described.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
41
|
JOHNSTONE KA, LUBIENIECKI KP, KOOP BF, DAVIDSON WS. Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar). Mol Ecol 2011; 20:4059-69. [DOI: 10.1111/j.1365-294x.2011.05251.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Hubbard PC, Barata EN, Ozório ROA, Valente LMP, Canário AVM. Olfactory sensitivity to amino acids in the blackspot sea bream (Pagellus bogaraveo): a comparison between olfactory receptor recording techniques in seawater. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:839-49. [PMID: 21544618 DOI: 10.1007/s00359-011-0646-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 11/30/2022]
Abstract
The current study investigated the olfactory sensitivity of the blackspot sea bream to amino acids, odorants associated with food detection in fish, and compared the efficacy of two different experimental methods: multi-unit recording from the olfactory nerve and the electro-olfactogram (EOG). Twenty essential amino acids plus L-DOPA evoked clear, concentration-dependent olfactory responses using both methods, with estimated thresholds of 10(-8.5)-10(-6.2) M (nerve recording) and 10(-7.5)-10(-4.8) M (EOG). The most potent amino acids were L-cysteine, L-methionine (both sulphur-containing), L-alanine, L-leucine (both neutral), L-glutamine (amide-containing) and L-serine (hydroxyl-containing). The least potent were L-proline (secondary α-amino group), the aromatic amino acids and glycine (simplest). Although the rank order of olfactory potency was similar for the two methods used, and the calculated thresholds given by the two methods were positively correlated, the sensitivity of the EOG was consistently lower than multi-unit recording by approximately one order of magnitude, presumably due to the electrical shunting effect of seawater. As in freshwater, the EOG could be a valid method for comparing olfactory potency of different odorants in stenohaline marine fish; however, for absolute 'biological' thresholds, a more invasive recording technique, such as multi-unit recording from the olfactory nerve, should be used.
Collapse
Affiliation(s)
- Peter C Hubbard
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | | | | | | | | |
Collapse
|
43
|
Bandoh H, Kida I, Ueda H. Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI. PLoS One 2011; 6:e16051. [PMID: 21264223 PMCID: PMC3022028 DOI: 10.1371/journal.pone.0016051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka). The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl), which are homologous to the medial pallium (hippocampus) in terrestrial vertebrates. Although the concentration of L-serine (1 mM) in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM), the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.
Collapse
Affiliation(s)
- Hiroshi Bandoh
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Ikuhiro Kida
- Integrated Neuroscience Research Team, Tokyo Institute of Psychiatry, Tokyo, Japan
| | - Hiroshi Ueda
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Laboratory of Aquatic Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| |
Collapse
|