1
|
Takusagawa M, Misumi O, Nozaki H, Kato S, Maruyama S, Tsujimoto-Inui Y, Yagisawa F, Ohnuma M, Kuroiwa H, Kuroiwa T, Matsunaga S. Complete mitochondrial and chloroplast DNA sequences of the freshwater green microalga Medakamo hakoo. Genes Genet Syst 2024; 98:353-360. [PMID: 38267054 DOI: 10.1266/ggs.23-00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Mari Takusagawa
- Department of Botany, Graduate School of Science, Kyoto University
- Department of Biology, Faculty of Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Osami Misumi
- Department of Biology, Faculty of Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Shoichi Kato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Shinichiro Maruyama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Fumi Yagisawa
- Research Facility Center, University of the Ryukyus
- Graduate School of Engineering and Science, University of the Ryukyus
| | - Mio Ohnuma
- National Institute of Technology (KOSEN), Hiroshima College
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
2
|
Zumkeller S, Polsakiewicz M, Knoop V. Rickettsial DNA and a trans-splicing rRNA group I intron in the unorthodox mitogenome of the fern Haplopteris ensiformis. Commun Biol 2023; 6:296. [PMID: 36941328 PMCID: PMC10027690 DOI: 10.1038/s42003-023-04659-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Plant mitochondrial genomes can be complex owing to highly recombinant structures, lack of gene syntenies, heavy RNA editing and invasion of chloroplast, nuclear or even foreign DNA by horizontal gene transfer (HGT). Leptosporangiate ferns remained the last major plant clade without an assembled mitogenome, likely owing to a demanding combination of the above. We here present both organelle genomes now for Haplopteris ensiformis. More than 1,400 events of C-to-U RNA editing and over 500 events of reverse U-to-C edits affect its organelle transcriptomes. The Haplopteris mtDNA is gene-rich, lacking only the ccm gene suite present in ancestral land plant mitogenomes, but is highly unorthodox, indicating extraordinary recombinogenic activity. Although eleven group II introns known in disrupted trans-splicing states in seed plants exist in conventional cis-arrangements, a particularly complex structure is found for the mitochondrial rrnL gene, which is split into two parts needing reassembly on RNA level by a trans-splicing group I intron. Aside from ca. 80 chloroplast DNA inserts that complicated the mitogenome assembly, the Haplopteris mtDNA features as an idiosyncrasy 30 variably degenerated protein coding regions from Rickettiales bacteria indicative of heavy bacterial HGT on top of tRNA genes of chlamydial origin.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
4
|
Bakuła Z, Gromadka R, Gawor J, Siedlecki P, Pomorski JJ, Maciszewski K, Gromadka A, Karnkowska A, Jagielski T. Sequencing and Analysis of the Complete Organellar Genomes of Prototheca wickerhamii. FRONTIERS IN PLANT SCIENCE 2020; 11:1296. [PMID: 32983192 PMCID: PMC7492744 DOI: 10.3389/fpls.2020.01296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Of the Prototheca genus, Prototheca wickerhamii has the highest clinical significance in humans. However, neither nuclear nor organellar genomes of this species were sequenced until now. The hitherto determined and analyzed mitochondrial and plastid genomes of the alleged P. wickerhamii species belong in fact to another species, recently named Prototheca xanthoriae. This study provides a first insight into the organellar genomes of a true P. wickerhamii (type strain ATCC 16529). The P. wickerhamii mitochondrion had a 53.8-kb genome, which was considerably larger than that of Prototheca ciferrii (formerly Prototheca zopfii gen. 1) and Prototheca bovis (formerly Prototheca zopfii gen. 2), yet similarly functional, with the differences in size attributable to a higher number of introns and the presence of extra unique putative genes. The 48-kb plastid genome of P. wickerhamii, compared to autotrophic Trebouxiophyceae, was highly reduced due to the elimination of the photosynthesis-related genes. The gene content of the plastid genome of P. wickerhamii was, however, very similar to other colorless Prototheca species. Plastid genome-based phylogeny reinforced the polyphyly of the genus Prototheca, with Helicosporidium and Auxenochlorella branching within clades of Prototheca species. Phylogenetic reconstruction also confirmed the close relationship of P. wickerhamii and P. xanthoriae, which is reflected in the synteny of their organellar genomes. Interestingly, the entire set of atp genes was lost in P. wickerhamii plastid genome while being preserved in P. xanthoriae.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Jan J. Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Deng Y, Zhang X, Xie B, Lin L, Hsiang T, Lin X, Lin Y, Zhang X, Ma Y, Miao W, Ming R. Intra-specific comparison of mitochondrial genomes reveals host gene fragment exchange via intron mobility in Tremella fuciformis. BMC Genomics 2020; 21:426. [PMID: 32580700 PMCID: PMC7315562 DOI: 10.1186/s12864-020-06846-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background Mitochondrial genomic sequences are known to be variable. Comparative analyses of mitochondrial genomes can reveal the nature and extent of their variation. Results Draft mitochondrial genomes of 16 Tremella fuciformis isolates (TF01-TF16) were assembled from Illumina and PacBio sequencing data. Mitochondrial DNA contigs were extracted and assembled into complete circular molecules, ranging from 35,104 bp to 49,044 bp in size. All mtDNAs contained the same set of 41 conserved genes with identical gene order. Comparative analyses revealed that introns and intergenic regions were variable, whereas genic regions (including coding sequences, tRNA, and rRNA genes) were conserved. Among 24 introns detected, 11 were in protein-coding genes, 3 in tRNA genes, and the other 10 in rRNA genes. In addition, two mobile fragments were found in intergenic regions. Interestingly, six introns containing N-terminal duplication of the host genes were found in five conserved protein-coding gene sequences. Comparison of genes with and without these introns gave rise to the following proposed model: gene fragment exchange with other species can occur via gain or loss of introns with N-terminal duplication of the host genes. Conclusions Our findings suggest a novel mechanism of fungal mitochondrial gene evolution: partial foreign gene replacement though intron mobility.
Collapse
Affiliation(s)
- Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Xunxiao Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Longji Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangzhi Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiying Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjing Miao
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Metz S, Singer D, Domaizon I, Unrein F, Lara E. Global distribution of Trebouxiophyceae diversity explored by high-throughput sequencing and phylogenetic approaches. Environ Microbiol 2019; 21:3885-3895. [PMID: 31299138 DOI: 10.1111/1462-2920.14738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/22/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Trebouxiophyceae are a ubiquitous class of Chlorophyta encountered in aquatic and terrestrial environments. Most taxa are photosynthetic, and many acts as photobionts in symbiotic relationships, while others are free-living. Trebouxiophyceae have also been widely investigated for their use for biotechnological applications. In this work, we aimed at obtaining a comprehensive image of their diversity by compiling the information of 435 freshwater, soil and marine environmental DNA samples surveyed with Illumina sequencing technology in order to search for the most relevant environments for bioprospecting. Freshwater and soil were most diverse and shared more than half of all operational taxonomic units (OTUs), however, their communities were significantly distinct. Oceans hosted the highest genetic novelty, and did not share any OTUs with the other environments; also, marine samples host more diversity in warm waters. Symbiotic genera usually found in lichens such as Trebouxia, Myrmecia and Symbiochloris were also abundantly detected in the ocean, suggesting either free-living lifestyles or unknown symbiotic relationships with marine planktonic organisms. Altogether, our study opens the way to new prospection for trebouxiophycean strains, especially in understudied environments like the ocean.
Collapse
Affiliation(s)
- Sebastian Metz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Zoology, Institute of Biosciences, University of São Paulo, Butantã, São Paulo, Brazil
| | | | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, Spain
| |
Collapse
|
7
|
Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep 2019; 9:4850. [PMID: 30890720 PMCID: PMC6425028 DOI: 10.1038/s41598-019-41238-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial genomes exhibit diverse features among eukaryotes in the aspect of gene content, genome structure, and the mobile genetic elements such as introns and plasmids. Although the number of published mitochondrial genomes is increasing at tremendous speed, those of several lineages remain unexplored. Here, we sequenced the complete mitochondrial genome of a unicellular heterotrophic eukaryote, Marophrys sp. SRT127 belonging to the Centroheliozoa, as the first report on this lineage. The circular-mapped mitochondrial genome, which is 113,062 bp in length, encodes 69 genes typically found in mitochondrial genomes. In addition, the Marophrys mitochondrial genome contains 19 group I introns. Of these, 11 introns have genes for homing endonuclease (HE) and phylogenetic analyses of HEs have shown that at least five Marophrys HEs are related to those in green algal plastid genomes, suggesting intron transfer between the Marophrys mitochondrion and green algal plastids. We also discovered a putative mitochondrial plasmid in linear form. Two genes encoded in the circular-mapped mitochondrial genome were found to share significant similarities to those in the linear plasmid, suggesting that the plasmid was integrated into the mitochondrial genome. These findings expand our knowledge on the diversity and evolution of the mobile genetic elements in mitochondrial genomes.
Collapse
|
8
|
Severgnini M, Lazzari B, Capra E, Chessa S, Luini M, Bordoni R, Castiglioni B, Ricchi M, Cremonesi P. Genome sequencing of Prototheca zopfii genotypes 1 and 2 provides evidence of a severe reduction in organellar genomes. Sci Rep 2018; 8:14637. [PMID: 30279542 PMCID: PMC6168571 DOI: 10.1038/s41598-018-32992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Prototheca zopfii (P. zopfii, class Trebouxiophyceae, order Chlorellales, family Chlorellaceae), a non-photosynthetic predominantly free-living unicellular alga, is one of the few pathogens belonging to the plant kingdom. This alga can affect many vertebrate hosts, sustaining systemic infections and diseases such as mastitis in cows. The aim of our work was to sequence and assemble the P. zopfii genotype 1 and genotype 2 mitochondrial and plastid genomes. Remarkably, the P. zopfii mitochondrial (38 Kb) and plastid (28 Kb) genomes are models of compaction and the smallest known in the Trebouxiophyceae. As expected, the P. zopfii genotype 1 and 2 plastid genomes lack all the genes involved in photosynthesis, but, surprisingly, they also lack those coding for RNA polymerases. Our results showed that plastid genes are actively transcribed in P. zopfii, which suggests that the missing RNA polymerases are substituted by nuclear-encoded paralogs. The simplified architecture and highly-reduced gene complement of the P. zopfii mitochondrial and plastid genomes are closer to those of P. stagnora and the achlorophyllous obligate parasite Helicosporidium than to those of P. wickerhamii or P. cutis. This similarity is also supported by maximum likelihood phylogenetic analyses inferences. Overall, the P. zopfii sequences reported here, which include nuclear genome drafts for both genotypes, will help provide both a deeper understanding of the evolution of Prototheca spp. and insights into the corresponding host/pathogen interactions.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Barbara Lazzari
- PTP-Science Park, Lodi, Italy.,Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Stefania Chessa
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Mario Luini
- Lombardy and Emilia Romagna Experimental Zootechnic Institute (IZSLER), Lodi, Italy
| | - Roberta Bordoni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Matteo Ricchi
- Lombardy and Emilia Romagna Experimental Zootechnic Institute (IZSLER), Piacenza, Italy.
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| |
Collapse
|
9
|
Zheng F, Liu H, Jiang M, Xu Z, Wang Z, Wang C, Du F, Shen Z, Wang B. The complete mitochondrial genome of the Caulerpa lentillifera (Ulvophyceae, Chlorophyta): Sequence, genome content, organization structure and phylogenetic consideration. Gene 2018; 673:225-238. [PMID: 29933020 DOI: 10.1016/j.gene.2018.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
The complete mitochondrial genome is greatly important for studies on genetic structure and phylogenetic relationship at various taxonomic levels. To obtain information about the evolutionary trends of mtDNA in the Ulvophyceae and also to gain insights into the phylogenetic relationships between ulvophytes and other chlorophytes, we determined the mtDNA sequence of Caulerpa lentillifera (sea grape) using de novo mitochondrial genome sequencing. The complete genomic DNA of C. lentillifera was circular and 209,034 bp in length, and it was the largest green-algal mitochondrial genome sequenced to date, with a low gene density of 65.2%, which is reminiscent of the "expanded" pattern of evolution exhibited by embryophyte mtDNAs. The C. lentillifera mtDNA consisted of a typical set of 17 protein-coding genes (PCGs), 20 transfer RNA (tRNA) genes, three ribosomal RNA (rRNA) genes, 42 putative open reading frames (ORFs) and 29 introns, which had homologs in green-algal mtDNAs displaying an "ancestral" or a "reduced-derived" pattern of evolution. The overall base composition of its mitochondrial genome was 24.19% for A, 24.94% for T, 25.80% for G, 25.07% for C and 50.87% for GC. The mitochondrial genome of C. lentillifera was characterized by numerous small intergenic regions and introns, which was clearly different from other green algae. With the exception of the NADH dehydrogenase subunit 6 (ND6), ND1, ATP and three tRNA genes (tRNA-His, tRNA-Thr and tRNA-Ala), all other mitochondrial genes were encoded on the heavy strand. All of the PCGs had ATG as their start codon and employed TAA, TGA or TAG as their termination codon. To gain insights into the evolutionary trends of mtDNA in the Ulvophyceae, we inferred the complete mtDNA sequence of C. lentillifera, an ulvophyte belonging to a distinct, early-diverging lineage. Taken together, our data offered useful information for the studies on phylogenetic hypotheses and phylogenetic relationships of C. lentillifera within the Chlorophyta.
Collapse
Affiliation(s)
- Fengrong Zheng
- First Institute of Oceanography SOA, Qingdao 266061, China; Key laboratory of Marine Bioactive substance SOA, Qingdao 266061, China
| | - Hongzhan Liu
- Marine College of Shandong University, Weihai 264209, China.
| | - Meijing Jiang
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Zongjun Xu
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Zongxing Wang
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Claire Wang
- Qingdao Haiputao Organic Green Algae Research and Development Breed CO., LTD, Qingdao 266000, China
| | - Fei Du
- Qingdao Haiputao Organic Green Algae Research and Development Breed CO., LTD, Qingdao 266000, China
| | - Zhen Shen
- First Institute of Oceanography SOA, Qingdao 266061, China; Key laboratory of Marine Bioactive substance SOA, Qingdao 266061, China
| | - Bo Wang
- First Institute of Oceanography SOA, Qingdao 266061, China.
| |
Collapse
|
10
|
Liu F, Melton JT, Bi Y. Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae. JOURNAL OF PHYCOLOGY 2017; 53:1010-1019. [PMID: 28677163 DOI: 10.1111/jpy.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
To further understand the trends in the evolution of mitochondrial genomes (mitogenomes or mtDNAs) in the Ulvophyceae, the mitogenomes of two separate thalli of Ulva pertusa were sequenced. Two U. pertusa mitogenomes (Up1 and Up2) were 69,333 bp and 64,602 bp in length. These mitogenomes shared two ribosomal RNAs (rRNAs), 28 transfer RNAs (tRNAs), 29 protein-coding genes, and 12 open reading frames. The 4.7 kb difference in size was attributed to variation in intron content and tandem repeat regions. A total of six introns were present in the smaller U. pertusa mtDNA (Up2), while the larger mtDNA (Up1) had eight. The larger mtDNA had two additional group II introns in two genes (cox1 and cox2) and tandem duplication mutations in noncoding regions. Our results showed the first case of intraspecific variation in chlorophytan mitogenomes and provided further genomic data for the undersampled Ulvophyceae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - James T Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, 35487-0345, USA
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
11
|
Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes. Sci Rep 2017; 7:10101. [PMID: 28855622 PMCID: PMC5577192 DOI: 10.1038/s41598-017-10388-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022] Open
Abstract
Ancient endosymbiotic relationships have led to extreme genomic reduction in many bacterial and eukaryotic algal endosymbionts. Endosymbionts in more recent and/or facultative relationships can also experience genomic reduction to a lesser extent, but little is known about the effects of the endosymbiotic transition on the organellar genomes of eukaryotes. To understand how the endosymbiotic lifestyle has affected the organellar genomes of photosynthetic green algae, we generated the complete plastid genome (plastome) and mitochondrial genome (mitogenome) sequences from three green algal endosymbionts (Chlorella heliozoae, Chlorella variabilis and Micractinium conductrix). The mitogenomes and plastomes of the three newly sequenced endosymbionts have a standard set of genes compared with free-living trebouxiophytes, providing no evidence for functional genomic reduction. Instead, their organellar genomes are generally larger and more intron rich. Intron content is highly variable among the members of Chlorella, suggesting very high rates of gain and/or loss of introns during evolution. Phylogenetic analysis of plastid and mitochondrial genes demonstrated that the three endosymbionts do not form a monophyletic group, indicating that the endosymbiotic lifestyle has evolved multiple times in Chlorellaceae. In addition, M. conductrix is deeply nested within the Chlorella clade, suggesting that taxonomic revision is needed for one or both genera.
Collapse
|
12
|
Carvalho EL, Wallau GL, Rangel DL, Machado LC, Pereira AB, Victoria FDC, Boldo JT, Pinto PM. Phylogenetic positioning of the Antarctic alga Prasiola crispa (Trebouxiophyceae) using organellar genomes and their structural analysis. JOURNAL OF PHYCOLOGY 2017; 53:908-915. [PMID: 28394430 DOI: 10.1111/jpy.12541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/09/2017] [Indexed: 06/07/2023]
Abstract
Antarctica is one of the most difficult habitats for sustaining life on earth; organisms that live there have developed different strategies for survival. Among these organisms is the green alga Prasiola crispa, belonging to the class Trebouxiophyceae. The literature on P. crispa taxonomy is scarce, and many gaps in the evolutionary relationship with its closest relatives remain. The goal of this study was to analyze the evolutionary relationships between P. crispa and other green algae using plastid and mitochondrial genomes. In addition, we analyzed the synteny conservation of these genomes of P. crispa with those of closely related species. Based on the plastid genome, P. crispa grouped with Prasiolopsis sp. SAG 84.81, another Trebouxiophyceaen species from the Prasiola clade. Based on the mitochondrial genome analysis, P. crispa grouped with other Trebouxiophyceaen species but had a basal position. The structure of the P. crispa chloroplast genome had low synteny with Prasiolopsis sp. SAG 84.81, despite some conserved gene blocks. The same was observed in the mitochondrial genome compared with Coccomyxa subellipsoidea C-169. We were able to establish the phylogenetic position of P. crispa with other species of Trebouxiophyceae using its genomes. In addition, we described the plasticity of these genomes using a structural analysis. The plastid and mitochondrial genomes of P. crispa will be useful for further genetic studies, phylogenetic analysis and resource protection of P. crispa as well as for further phylogenetic analysis of Trebouxiophyceaen green algae.
Collapse
Affiliation(s)
- Evelise Leis Carvalho
- Applied Proteomics Laboratory, University of Pampa, São Gabriel, RS, 97300-000, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, 50740-465, Brazil
| | - Darlene Lopes Rangel
- Applied Proteomics Laboratory, University of Pampa, São Gabriel, RS, 97300-000, Brazil
| | - Laís Ceschini Machado
- Applied Proteomics Laboratory, University of Pampa, São Gabriel, RS, 97300-000, Brazil
| | | | | | | | - Paulo Marcos Pinto
- Applied Proteomics Laboratory, University of Pampa, São Gabriel, RS, 97300-000, Brazil
| |
Collapse
|
13
|
Satjarak A, Burns JA, Kim E, Graham LE. Complete mitochondrial genomes of prasinophyte algae Pyramimonas parkeae and Cymbomonas tetramitiformis. JOURNAL OF PHYCOLOGY 2017; 53:601-615. [PMID: 28191642 DOI: 10.1111/jpy.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Mitochondria are archetypal eukaryotic organelles that were acquired by endosymbiosis of an ancient species of alpha-proteobacteria by the last eukaryotic common ancestor. The genetic information contained within the mitochondrial genome has been an important source of information for resolving relationships among eukaryotic taxa. In this study, we utilized mitochondrial and chloroplast genomes to explore relationships among prasinophytes. Prasinophytes are represented by diverse early-diverging green algae whose physical structures and genomes have the potential to elucidate the traits of the last common ancestor of the Viridiplantae (or Chloroplastida). We constructed de novo mitochondrial genomes for two prasinophyte algal species, Pyramimonas parkeae and Cymbomonas tetramitiformis, representing the prasinophyte clade. Comparisons of genome structure and gene order between these species and to those of other prasinophytes revealed that the mitochondrial genomes of P. parkeae and C. tetramitiformis are more similar to each other than to other prasinophytes, consistent with other molecular inferences of the close relationship between these two species. Phylogenetic analyses using the inferred amino acid sequences of mitochondrial and chloroplast protein-coding genes resolved a clade consisting of P. parkeae and C. tetramitiformis; and this group (representing the prasinophyte clade I) branched with the clade II, consistent with previous studies based on the use of nuclear gene markers.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| | - John A Burns
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Nadimi M, Daubois L, Hijri M. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol Phylogenet Evol 2016; 98:74-83. [DOI: 10.1016/j.ympev.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
|
15
|
Kamikawa R, Shiratori T, Ishida KI, Miyashita H, Roger AJ. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans. Genome Biol Evol 2016; 8:458-66. [PMID: 26833505 PMCID: PMC4779616 DOI: 10.1093/gbe/evw011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Takashi Shiratori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Japan Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Tourasse NJ, Shtaida N, Khozin-Goldberg I, Boussiba S, Vallon O. The complete mitochondrial genome sequence of the green microalga Lobosphaera (Parietochloris) incisa reveals a new type of palindromic repetitive repeat. BMC Genomics 2015; 16:580. [PMID: 26238519 PMCID: PMC4524435 DOI: 10.1186/s12864-015-1792-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lobosphaera incisa, formerly known as Myrmecia incisa and then Parietochloris incisa, is an oleaginous unicellular green alga belonging to the class Trebouxiophyceae (Chlorophyta). It is the richest known plant source of arachidonic acid, an ω-6 poly-unsaturated fatty acid valued by the pharmaceutical and baby-food industries. It is therefore an organism of high biotechnological interest, and we recently reported the sequence of its chloroplast genome. Results We now report the complete sequence of the mitochondrial genome of L. incisa from high-throughput Illumina short-read sequencing. The circular chromosome of 69,997 bp is predicted to encode a total of 64 genes, some harboring specific self-splicing group I and group II introns. Overall, the gene content is highly similar to that of the mitochondrial genomes of other Trebouxiophyceae, with 34 protein-coding, 3 rRNA, and 27 tRNA genes. Genes are distributed in two clusters located on different DNA strands, a bipartite arrangement that suggests expression from two divergent promoters yielding polycistronic primary transcripts. The L. incisa mitochondrial genome contains families of intergenic dispersed DNA repeat sequences that are not shared with other known mitochondrial genomes of Trebouxiophyceae. The most peculiar feature of the genome is a repetitive palindromic repeat, the LIMP (L. Incisa Mitochondrial Palindrome), found 19 times in the genome. It is formed by repetitions of an AACCA pentanucleotide, followed by an invariant 7-nt loop and a complementary repeat of the TGGTT motif. Analysis of the genome sequencing reads indicates that the LIMP can be a substrate for large-scale genomic rearrangements. We speculate that LIMPs can act as origins of replication. Deep sequencing of the L. incisa transcriptome also suggests that the LIMPs with long stems are sites of transcript processing. The genome also contains five copies of a related palindromic repeat, the HyLIMP, with a 10-nt motif related to that of the LIMP. Conclusions The mitochondrial genome of L. incisa encodes a unique type of repetitive palindromic repeat sequence, the LIMP, which can mediate genome rearrangements and play a role in mitochondrial gene expression. Experimental studies are needed to confirm and further characterize the functional role(s) of the LIMP.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France. .,Institut de Biologie Physico-Chimique, FRC CNRS 550, Université Pierre et Marie Curie, Paris, France. .,ARNA Laboratory, INSERM UMR 869, Université Bordeaux 2, Bordeaux, France.
| | - Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
17
|
Melton JT, Leliaert F, Tronholm A, Lopez-Bautista JM. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta). PLoS One 2015; 10:e0121020. [PMID: 25849557 PMCID: PMC4388391 DOI: 10.1371/journal.pone.0121020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).
Collapse
Affiliation(s)
- James T. Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- * E-mail:
| | - Frederik Leliaert
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Ana Tronholm
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States of America
| | - Juan M. Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
| |
Collapse
|
18
|
FuÄÃková K, Leliaert F, Cooper ED, Å kaloud P, D'Hondt S, De Clerck O, Gurgel CFD, Lewis LA, Lewis PO, Lopez-Bautista JM, Delwiche CF, Verbruggen H. New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Orsini M, Costelli C, Malavasi V, Cusano R, Concas A, Angius A, Cao G. Complete genome sequence of mitochondrial DNA (mtDNA) ofChlorella sorokiniana. ACTA ACUST UNITED AC 2014; 27:1539-41. [DOI: 10.3109/19401736.2014.953128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 2014; 10:e1004355. [PMID: 24809511 PMCID: PMC4014436 DOI: 10.1371/journal.pgen.1004355] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free-living autotroph to parasitic heterotroph where host-independence has been unexpectedly preserved. Helicosporidium is a highly-adapted obligate parasite of animals. Its evolutionary origins were unclear for almost a century, but molecular analysis ultimately and surprisingly showed that it is a green alga, which means it has undergone an evolutionary transition from autotrophy to parasitism comparable to that of the malaria parasite Plasmodium and its relatives. Such transitions are often associated with the loss of biological functions that are no longer necessary in their novel environment and with the development of molecular mechanisms, sometimes quite sophisticated, to invade and take advantage of their hosts. Yet, very little is actually known about the early stages of the transition of a free-living organism to an obligate intracellular parasite. Here we sequenced the genome and transcriptome of Helicosporidium, and use it to show that the outcome of this transition is quite different from that of Plasmodium.
Collapse
Affiliation(s)
- Jean-François Pombert
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Achille Blouin
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Chris Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Drion Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Pombert JF, Otis C, Turmel M, Lemieux C. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene. PLoS One 2013; 8:e84325. [PMID: 24386369 PMCID: PMC3873408 DOI: 10.1371/journal.pone.0084325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/20/2013] [Indexed: 12/05/2022] Open
Abstract
Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns.
Collapse
Affiliation(s)
- Jean-François Pombert
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Christian Otis
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Québec, Canada
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
22
|
Nyati S, Bhattacharya D, Werth S, Honegger R. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes). JOURNAL OF PHYCOLOGY 2013; 49:10.1111/jpy.12126. [PMID: 24415800 PMCID: PMC3885279 DOI: 10.1111/jpy.12126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta.
Collapse
Affiliation(s)
- Shyam Nyati
- Author for correspondence: phone: +1 734 763 0921 fax: +1 734 763 5447
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901, USA
| | - Silke Werth
- Faculty of Life- and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland
| | - Rosmarie Honegger
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
23
|
Transcription regulation of plastid genes involved in sulfate transport in Viridiplantae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:413450. [PMID: 24073405 PMCID: PMC3773388 DOI: 10.1155/2013/413450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022]
Abstract
This study considers transcription regulation of plastid genes involved in sulfate transport in the parasites of invertebrate (Helicosporidium sp.) and other species of the Viridiplantae. A one-box conserved motif with the consensus TAAWATGATT is found near promoters upstream the cysT and cysA genes in many species. In certain cases, the motif is repeated two or three times.
Collapse
|
24
|
The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens. INSECTS 2013; 4:375-91. [PMID: 26462425 PMCID: PMC4553470 DOI: 10.3390/insects4030375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae), and represent the first described entomopathogenic algae. This review provides an overview of (i) the morphology of Helicosporidium cell types, (ii) the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii) the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv) the documented host range for this novel group of entomopathogens.
Collapse
|
25
|
Mancera N, Douma LG, James S, Liu S, Van A, Boucias DG, Tartar A. Detection of Helicosporidium spp. in metagenomic DNA. J Invertebr Pathol 2012; 111:13-9. [PMID: 22609409 DOI: 10.1016/j.jip.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
Distinct isolates of the invertebrate pathogenic alga Helicosporidium sp., collected from different insect hosts and different geographic locations, were processed to sequence the 18S rDNA and β-tubulin genes. The sequences were analyzed to assess genetic variation within the genus Helicosporidium and to design Helicosporidium-specific 18S rDNA primers. The specificity of these primers was demonstrated by testing not only on the Helicosporidium sp. isolates, but also on two trebouxiophyte algae known to be close Helicosporidium relatives, Prototheca wickerhamii and Prototheca zopfii. The genus-specific primers were used to develop a culture-independent assay aimed at detecting the presence of Helicosporidium spp. in environmental waters. The assay was based on the PCR amplification of 18SrDNA gene fragments from metagenomic DNA preparations, and it resulted in the amplification of detectable products for all sampled sites. Phylogenetic analyses that included the environmental sequences demonstrated that all amplification products clustered in a strongly supported, monophyletic Helicosporidium clade, thereby validating the metagenomic approach and the taxonomic origin of the produced environmental sequences. In addition, the phylogenetic analyses established that Helicosporidium spp. isolated from coleopteran hosts are more closely related to each other than they are to the isolate collected from a dipteran host. Finally, the phylogenetic trees depicted intergeneric relationships that supported a Helicosporidium-Prototheca cluster but did not support a Helicosporidium-Coccomyxa grouping, suggesting that pathogenicity to invertebrates evolved at least twice independently within the trebouxiophyte green algae.
Collapse
Affiliation(s)
- Norberto Mancera
- Division of Math, Science and Technology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N. The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. THE NEW PHYTOLOGIST 2012; 194:836-845. [PMID: 22320438 DOI: 10.1111/j.1469-8137.2012.04072.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. • The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. • This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms.
Collapse
Affiliation(s)
- Adrian Pelin
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Jean-François Pombert
- Department of Botany, University of British Columbia; Vancouver, V6T 1Z4, BC, Canada
| | - Alessandra Salvioli
- Dipartimento di Biologia Vegetale, Università di Torino, Torino, I-10125, Italy
| | - Linda Bonen
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Università di Torino, Torino, I-10125, Italy
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| |
Collapse
|
27
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol 2012; 29:2199-210. [PMID: 22411852 DOI: 10.1093/molbev/mss088] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea. A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I-mediated trans-splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.
Collapse
Affiliation(s)
- Maryam Nadimi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
29
|
Moreira S, Breton S, Burger G. Unscrambling genetic information at the RNA level. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:213-28. [PMID: 22275292 DOI: 10.1002/wrna.1106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genomics aims at unraveling the blueprint of life; however, DNA sequence alone does not always reveal the proteins and structural RNAs encoded by the genome. The reason is that genetic information is often encrypted. Recognizing the logic of encryption, and understanding how living cells decode hidden information--at the level of DNA, RNA or protein--is challenging. RNA-level decryption includes topical RNA editing and more 'macroscopic' transcript rearrangements. The latter events involve the four types of introns recognized to date, notably spliceosomal, group I, group II, and archaeal/tRNA splicing. Intricate variants, such as alternative splicing and trans-splicing, have been reported for each intron type, but the biological significance has not always been confirmed. Novel RNA-level unscrambling processes were recently discovered in mitochondria of dinoflagellates and diplonemids, and potentially euglenids. These processes seem not to rely on known introns, and the corresponding molecular mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Sandrine Moreira
- Robert-Cedergren Centre for Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Friedl T, Rybalka N. Systematics of the Green Algae: A Brief Introduction to the Current Status. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
|
33
|
|
34
|
Marin B. Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons. Protist 2011; 163:778-805. [PMID: 22192529 DOI: 10.1016/j.protis.2011.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 01/30/2023]
Abstract
The class Pedinophyceae was established for asymmetric uniflagellate green algae, and was originally considered as an ancestral lineage of viridiplants. However, analyses of 71 concatenated plastid proteins [Turmel et al. (2009): Mol. Biol. Evol. 26: 2317-2331] recovered Pedinomonas within the Chlorellales (Trebouxiophyceae), thereby questioning the Pedinophyceae as an independent class. For the present study, complete nuclear and plastid-encoded rRNA operon sequences have been determined for 37 taxa of green algae including 6 members of the Pedinophyceae, providing 9272 aligned nucleotide positions. Phylogenies using both rRNA operons consistently rejected any relationship between Pedinophyceae and the Chlorellales. Instead, the Pedinophyceae were significantly resolved as sister of all phycoplast-containing 'core' chlorophytes, i.e. Chlorodendrophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Reinvestigation of plastid proteins discovered biased phylogenetic signal among protein partitions, indicating the published Pedinomonas + Chlorellales association as likely artificial. Marine pedinophytes (Resultomonas and Marsupiomonas; Marsupiomonadales ord. nov.), formed a sister clade to the order Pedinomonadales, occurring in freshwater and soil habitats. Synapomorphies in rRNA secondary structures were integrated in taxonomic diagnoses of the Pedinophyceae and were also used for BLAST searches targeting environmental sequence databases. The latter approach revealed conserved habitat preferences for the Marsupiomonadales and Pedinomonadales, and identified several novel pedinophyte lineages.
Collapse
Affiliation(s)
- Birger Marin
- Biozentrum Köln, Botanisches Institut, Universität zu Köln, Zülpicher Str. 47b, 50674 Köln, Germany.
| |
Collapse
|
35
|
Smith DR, Burki F, Yamada T, Grimwood J, Grigoriev IV, Van Etten JL, Keeling PJ. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 2011; 6:e23624. [PMID: 21887287 PMCID: PMC3162594 DOI: 10.1371/journal.pone.0023624] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1775-801. [PMID: 21220783 DOI: 10.1093/jxb/erq411] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.
Collapse
Affiliation(s)
- Steven Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Bâtiment C9, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
37
|
Vlcek C, Marande W, Teijeiro S, Lukes J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 2010; 39:979-88. [PMID: 20935050 PMCID: PMC3035467 DOI: 10.1093/nar/gkq883] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
Collapse
Affiliation(s)
- Cestmir Vlcek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Department of Genomics and Bioinformatics, 142 20 Prague, Czech Republic
| | | | | | | | | |
Collapse
|