1
|
Elashry MI, Schneider VC, Heimann M, Wenisch S, Arnhold S. CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice. J Dev Biol 2025; 13:5. [PMID: 39982358 PMCID: PMC11843916 DOI: 10.3390/jdb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Victoria C. Schneider
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| |
Collapse
|
2
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
3
|
Peng B, Yang Y, Wu Z, Tan R, Pham TT, Yeo EYM, Pirisinu M, Jayasinghe MK, Pham TC, Liang K, Shyh-Chang N, Le MTN. Red blood cell extracellular vesicles deliver therapeutic siRNAs to skeletal muscles for treatment of cancer cachexia. Mol Ther 2023; 31:1418-1436. [PMID: 37016578 PMCID: PMC10188904 DOI: 10.1016/j.ymthe.2023.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a significant loss of skeletal muscle, which negatively affects the quality of life. Inhibition of myostatin (Mstn), a negative regulator of skeletal muscle growth and differentiation, has been proven to preserve muscle mass in muscle atrophy diseases, including cachexia. However, myostatin inhibitors have repeatedly failed clinical trials because of modest therapeutic effects and side effects due to the poor efficiency and toxicity of existing delivery methods. Here, we describe a novel method for delivering Mstn siRNA to skeletal muscles using red blood cell-derived extracellular vesicles (RBCEVs) in a cancer cachectic mouse model. Our data show that RBCEVs are taken up by myofibers via intramuscular administration. Repeated intramuscular administrations with RBCEVs allowed the delivery of siRNAs, thereby inhibiting Mstn, increasing muscle growth, and preventing cachexia in cancer-bearing mice. We observed the same therapeutic effects when delivering siRNAs against malonyl-CoA decarboxylase, an enzyme driving dysfunctional fatty acid metabolism in skeletal muscles during cancer cachexia. We demonstrate that intramuscular siRNA delivery by RBCEVs is safe and non-inflammatory. Hence, this method is useful to reduce the therapeutic dose of siRNAs, to avoid toxicity and off-target effects caused by systemic administration of naked siRNAs at high doses.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yuqi Yang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Zhiyuan Wu
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Rachel Tan
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Eric Yew Meng Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Tin Chanh Pham
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
4
|
Omosule CL, Joseph D, Weiler B, Gremminger VL, Silvey S, Jeong Y, Rafique A, Krueger P, Kleiner S, Phillips CL. Combinatorial Inhibition of Myostatin and Activin A Improves Femoral Bone Properties in the G610C Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:938-953. [PMID: 35195284 PMCID: PMC10041862 DOI: 10.1002/jbmr.4529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 01/28/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related bone disorder characterized by fragile osteopenic bone and muscle weakness. We have previously shown that the soluble activin receptor type IIB decoy (sActRIIB) molecule increases muscle mass and improves bone strength in the mild to moderate G610C mouse model of OI. The sActRIIB molecule binds multiple transforming growth factor-β (TGF-β) ligands, including myostatin and activin A. Here, we investigate the musculoskeletal effects of inhibiting activin A alone, myostatin alone, or both myostatin and activin A in wild-type (Wt) and heterozygous G610C (+/G610C) mice using specific monoclonal antibodies. Male and female Wt and +/G610C mice were treated twice weekly with intraperitoneal injections of monoclonal control antibody (Ctrl-Ab, Regn1945), anti-activin A antibody (ActA-Ab, Regn2476), anti-myostatin antibody (Mstn-Ab, Regn647), or both ActA-Ab and Mstn-Ab (Combo, Regn2476, and Regn647) from 5 to 16 weeks of age. Prior to euthanasia, whole body composition, metabolism and muscle force generation assessments were performed. Post euthanasia, hindlimb muscles were evaluated for mass, and femurs were evaluated for changes in microarchitecture and biomechanical strength using micro-computed tomography (μCT) and three-point bend analyses. ActA-Ab treatment minimally impacted the +/G610C musculoskeleton, and was detrimental to bone strength in male +/G610C mice. Mstn-Ab treatment, as previously reported, resulted in substantial increases in hindlimb muscle weights and overall body weights in Wt and male +/G610C mice, but had minimal skeletal impact in +/G610C mice. Conversely, the Combo treatment outperformed ActA-Ab alone or Mstn-Ab alone, consistently increasing hindlimb muscle and body weights regardless of sex or genotype and improving bone microarchitecture and strength in both male and female +/G610C and Wt mice. Combinatorial inhibition of activin A and myostatin more potently increased muscle mass and bone microarchitecture and strength than either antibody alone, recapturing most of the observed benefits of sActRIIB treatment in +/G610C mice. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Dominique Joseph
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Brooke Weiler
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Spencer Silvey
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Skrzypczak D, Skrzypczak-Zielińska M, Ratajczak AE, Szymczak-Tomczak A, Eder P, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines 2021; 9:biomedicines9101301. [PMID: 34680417 PMCID: PMC8533148 DOI: 10.3390/biomedicines9101301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, which is a decrease in muscle strength and quality of muscle tissue, is a common disorder among patients suffering from inflammatory bowel disease. This particular group of patients often presents with malnutrition and shows low physical activity, which increases the risk of sarcopenia. Another important factor in the development of sarcopenia is an imbalanced ratio of myostatin and follistatin, which may stem from inflammation as well as genetic factors. Currently, research in this area continues, and is aimed at identifying an effective medication for the treatment of this condition. Additionally, we still have no sarcopenia markers that can be used for diagnosis. In this paper, we address the role of myostatin and follistatin as potential markers in the diagnosis of sarcopenia in patients with Crohn’s disease and ulcerative colitis, particularly in view of the genetic and biological aspects. We also present data on new perspectives in the pharmacotherapy of sarcopenia (i.e., myostatin inhibitors and gene therapy). Nevertheless, knowledge is still scarce about the roles of follistatin and myostatin in sarcopenia development among patients suffering from inflammatory bowel disease, which warrants further study.
Collapse
Affiliation(s)
- Dorota Skrzypczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
- Correspondence: (D.S.); (I.K.-K.); Tel.: +48-618691343 (D.S.); +48-601-256-715 (I.K.-K.); Fax: +48-8691-314 (I.K.-K.)
| | - Marzena Skrzypczak-Zielińska
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Strzeszynska Street 32, 60-479 Poznan, Poland; (M.S.-Z.); (R.S.)
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Strzeszynska Street 32, 60-479 Poznan, Poland; (M.S.-Z.); (R.S.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-355 Poznan, Poland; (A.E.R.); (A.S.-T.); (P.E.); (A.D.)
- Correspondence: (D.S.); (I.K.-K.); Tel.: +48-618691343 (D.S.); +48-601-256-715 (I.K.-K.); Fax: +48-8691-314 (I.K.-K.)
| |
Collapse
|
6
|
Dubinin MV, Starinets VS, Talanov EY, Mikheeva IB, Belosludtseva NV, Belosludtsev KN. Alisporivir Improves Mitochondrial Function in Skeletal Muscle of mdx Mice but Suppresses Mitochondrial Dynamics and Biogenesis. Int J Mol Sci 2021; 22:9780. [PMID: 34575944 PMCID: PMC8464657 DOI: 10.3390/ijms22189780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Mitigation of calcium-dependent destruction of skeletal muscle mitochondria is considered as a promising adjunctive therapy in Duchenne muscular dystrophy (DMD). In this work, we study the effect of intraperitoneal administration of a non-immunosuppressive inhibitor of calcium-dependent mitochondrial permeability transition (MPT) pore alisporivir on the state of skeletal muscles and the functioning of mitochondria in dystrophin-deficient mdx mice. We show that treatment with alisporivir reduces inflammation and improves muscle function in mdx mice. These effects of alisporivir were associated with an improvement in the ultrastructure of mitochondria, normalization of respiration and oxidative phosphorylation, and a decrease in lipid peroxidation, due to suppression of MPT pore opening and an improvement in calcium homeostasis. The action of alisporivir was associated with suppression of the activity of cyclophilin D and a decrease in its expression in skeletal muscles. This was observed in both mdx mice and wild-type animals. At the same time, alisporivir suppressed mitochondrial biogenesis, assessed by the expression of Ppargc1a, and altered the dynamics of organelles, inhibiting both DRP1-mediated fission and MFN2-associated fusion of mitochondria. The article discusses the effects of alisporivir administration and cyclophilin D inhibition on mitochondrial reprogramming and networking in DMD and the consequences of this therapy on skeletal muscle health.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| |
Collapse
|
7
|
Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22137063. [PMID: 34209117 PMCID: PMC8268105 DOI: 10.3390/ijms22137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(−)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form’s effect. No effect was observed for (−)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (−)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (−)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.
Collapse
|
8
|
Characterization of tolloid-mediated cleavage of the GDF8 procomplex. Biochem J 2021; 478:1733-1747. [PMID: 33876824 DOI: 10.1042/bcj20210054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Growth differentiation factor 8 (GDF8), a.k.a. myostatin, is a member of the larger TGFβ superfamily of signaling ligands. GDF8 has been well characterized as a negative regulator of muscle mass. After synthesis, GDF8 is held latent by a noncovalent complex between the N-terminal prodomain and the signaling ligand. Activation of latent GDF8 requires proteolytic cleavage of the prodomain at residue D99 by a member of the tolloid family of metalloproteases. While tolloid proteases cleave multiple substrates, they lack a conserved consensus sequence. Here, we investigate the tolloid cleavage site of the GDF8 prodomain to determine what residues contribute to tolloid recognition and subsequent proteolysis. Using sequential alanine mutations, we identified several residues adjacent to the scissile bond, including Y94, that when mutated, abolish tolloid-mediated activation of latent GDF8. Using the astacin domain of Tll1 (Tolloid Like 1) we determined that prodomain mutants were more resistant to proteolysis. Purified latent complexes harboring the prodomain mutations, D92A and Y94A, impeded activation by tolloid but could be fully activated under acidic conditions. Finally, we show that co-expression of GDF8 WT with prodomain mutants that were tolloid resistant, suppressed GDF8 activity. Taken together our data demonstrate that residues towards the N-terminus of the scissile bond are important for tolloid-mediated activation of GDF8 and that the tolloid-resistant version of the GDF8 prodomain can function dominant negative to WT GDF8.
Collapse
|
9
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
10
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Belosludtseva NV, Belosludtsev KN. The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:8763. [PMID: 33228255 PMCID: PMC7699511 DOI: 10.3390/ijms21228763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/metabolism
- Adenosine Triphosphate/biosynthesis
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Peptidyl-Prolyl Isomerase F/genetics
- Peptidyl-Prolyl Isomerase F/metabolism
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Pregnenediones/pharmacology
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia
| |
Collapse
|
11
|
Xuan MF, Luo ZB, Wang JX, Guo Q, Han SZ, Jin SS, Kang JD, Yin XJ. Shift from slow- to fast-twitch muscle fibres in skeletal muscle of newborn heterozygous and homozygous myostatin-knockout piglets. Reprod Fertil Dev 2020; 31:1628-1636. [PMID: 31104696 DOI: 10.1071/rd19103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily that negatively regulates skeletal muscle development. A lack of MSTN induces muscle hypertrophy and increases formation of fast-twitch (Type II) muscle fibres. This study investigated muscle development in newborn heterozygous (MSTN+/-) and homozygous (MSTN-/-) MSTN-knockout piglets. Detailed morphological and gene and protein expression analyses were performed of the biceps femoris, semitendinosus and diaphragm of MSTN+/-, MSTN-/- and wild-type (WT) piglets. Haematoxylin-eosin staining revealed that the cross-sectional area of muscle fibres was significantly larger in MSTN-knockout than WT piglets. ATPase staining demonstrated that the percentage of Type IIb and IIa muscle fibres was significantly higher in MSTN-/- and MSTN+/- piglets respectively than in WT piglets. Western blotting showed that protein expression of myosin heavy chain-I was reduced in muscles of MSTN-knockout piglets. Quantitative reverse transcription-polymerase chain reaction revealed that, compared with WT piglets, myogenic differentiation factor (MyoD) mRNA expression in muscles was 1.3- to 2-fold higher in MSTN+/- piglets and 1.8- to 3.5-fold higher MSTN-/- piglets (P<0.05 and P<0.01 respectively). However, expression of myocyte enhancer factor 2C (MEF2C) mRNA in muscles was significantly lower in MSTN+/- than WT piglets (P<0.05). MSTN plays an important role in skeletal muscle development and regulates muscle fibre type by modulating the gene expression of MyoD and MEF2C in newborn piglets.
Collapse
Affiliation(s)
- Mei-Fu Xuan
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Zhao-Bo Luo
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Qing Guo
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Song-Shan Jin
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China; and Corresponding authors. Emails: ;
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, Jilin 133002, China; and Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin 133002, China; and Corresponding authors. Emails: ;
| |
Collapse
|
12
|
Hammers DW, Hart CC, Patsalos A, Matheny MK, Wright LA, Nagy L, Sweeney HL. Glucocorticoids counteract hypertrophic effects of myostatin inhibition in dystrophic muscle. JCI Insight 2020; 5:133276. [PMID: 31830002 PMCID: PMC7030817 DOI: 10.1172/jci.insight.133276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic muscle disease resulting in progressive muscle degeneration and wasting. Glucocorticoids, specifically prednisone/prednisolone and deflazacort, are commonly used by DMD patients. Emerging DMD therapeutics include those targeting the muscle-wasting factor, myostatin (Mstn). The aim of this study was to investigate how chronic glucocorticoid treatment impacts the efficacy of Mstn inhibition in the D2.mdx mouse model of DMD. We report that chronic treatment of dystrophic mice with prednisolone (Pred) causes significant muscle wasting, entailing both activation of the ubiquitin-proteasome degradation pathway and inhibition of muscle protein synthesis. Combining Pred with Mstn inhibition, using a modified Mstn propeptide (dnMstn), completely abrogates the muscle hypertrophic effects of Mstn inhibition independently of Mstn expression or SMAD3 activation. Transcriptomic analysis identified that combining Pred with dnMstn treatment affects gene expression profiles associated with inflammation, metabolism, and fibrosis. Additionally, we demonstrate that Pred-induced muscle atrophy is not prevented by Mstn ablation. Therefore, glucocorticoids interfere with potential muscle mass benefits associated with targeting Mstn, and the ramifications of glucocorticoid use should be a consideration during clinical trial design for DMD therapeutics. These results have significant implications for past and future Mstn inhibition trials in DMD.
Collapse
Affiliation(s)
- David W. Hammers
- Department of Pharmacology and Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Andreas Patsalos
- Department of Medicine and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Michael K. Matheny
- Department of Pharmacology and Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lillian A. Wright
- Department of Pharmacology and Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Laszlo Nagy
- Department of Medicine and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
13
|
Anti-ageing gene therapy: Not so far away? Ageing Res Rev 2019; 56:100977. [PMID: 31669577 DOI: 10.1016/j.arr.2019.100977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/31/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Improving healthspan is the main objective of anti-ageing research. Currently, innovative gene therapy-based approaches seem to be among the most promising for preventing and treating chronic polygenic pathologies, including age-related ones. The gene-based therapy allows to modulate the genome architecture using both direct (e.g., by gene editing) and indirect (e.g., by viral or non-viral vectors) approaches. Nevertheless, considering the extraordinary complexity of processes involved in ageing and ageing-related diseases, the effectiveness of these therapeutic options is often unsatisfactory and limited by their side-effects. Thus, clinical implementation of such applications is certainly a long-time process that will require many translation phases for addressing challenges. However, after overcoming these issues, their implementation in clinical practice may obviously provide new possibilities in anti-ageing medicine. Here, we review and discuss recent advances in this rapidly developing research field.
Collapse
|
14
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
15
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
16
|
Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 2017; 9:531-544. [PMID: 28270449 PMCID: PMC5376753 DOI: 10.15252/emmm.201607231] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth and differentiation factor (GDF) 11 is a member of the transforming growth factor β superfamily recently identified as a potential therapeutic for age‐related cardiac and skeletal muscle decrements, despite high homology to myostatin (Mstn), a potent negative regulator of muscle mass. Though several reports have refuted these data, the in vivo effects of GDF11 on skeletal muscle mass have not been addressed. Using in vitro myoblast culture assays, we first demonstrate that GDF11 and Mstn have similar activities/potencies on activating p‐SMAD2/3 and induce comparable levels of differentiated myotube atrophy. We further demonstrate that adeno‐associated virus‐mediated systemic overexpression of GDF11 in C57BL/6 mice results in substantial atrophy of skeletal and cardiac muscle, inducing a cachexic phenotype not seen in mice expressing similar levels of Mstn. Greater cardiac expression of Tgfbr1 may explain this GDF11‐specific cardiac phenotype. These data indicate that bioactive GDF11 at supraphysiological levels cause wasting of both skeletal and cardiac muscle. Rather than a therapeutic agent, GDF11 should be viewed as a potential deleterious biomarker in muscle wasting diseases.
Collapse
Affiliation(s)
- David W Hammers
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Melissa Merscham-Banda
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA .,Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
18
|
Reduced serum myostatin concentrations associated with genetic muscle disease progression. J Neurol 2017; 264:541-553. [DOI: 10.1007/s00415-016-8379-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
|
19
|
Hammers DW, Sleeper MM, Forbes SC, Coker CC, Jirousek MR, Zimmer M, Walter GA, Sweeney HL. Disease-modifying effects of orally bioavailable NF- κB inhibitors in dystrophin-deficient muscle. JCI Insight 2016; 1:e90341. [PMID: 28018975 DOI: 10.1172/jci.insight.90341] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disease characterized by progressive muscle deterioration and replacement with an aberrant fatty, fibrous matrix. Chronic upregulation of nuclear factor κB (NF-κB) is implicated as a driver of the dystrophic pathogenesis. Herein, 2 members of a novel class of NF-κB inhibitors, edasalonexent (formerly CAT-1004) and CAT-1041, were evaluated in both mdx mouse and golden retriever muscular dystrophy (GRMD) dog models of DMD. These orally bioavailable compounds consist of a polyunsaturated fatty acid conjugated to salicylic acid and potently suppress the pathogenic NF-κB subunit p65/RelA in vitro. In vivo, CAT-1041 effectively improved the phenotype of mdx mice undergoing voluntary wheel running, in terms of activity, muscle mass and function, damage, inflammation, fibrosis, and cardiac pathology. We identified significant increases in dysferlin as a possible contributor to the protective effect of CAT-1041 to sarcolemmal damage. Furthermore, CAT-1041 improved the more severe GRMD phenotype in a canine case study, where muscle mass and diaphragm function were maintained in a treated GRMD dog. These results demonstrate that NF-κB modulation by edasalonexent and CAT-1041 is effective in ameliorating the dystrophic process and these compounds are candidates for new treatments for DMD patients.
Collapse
Affiliation(s)
- David W Hammers
- Department of Physiology and.,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pharmacology and Therapeutics.,Myology Institute and
| | - Margaret M Sleeper
- Myology Institute and.,Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA.,Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine
| | - Sean C Forbes
- Myology Institute and.,Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Cora C Coker
- Department of Pharmacology and Therapeutics.,Myology Institute and
| | | | - Michael Zimmer
- Catabasis Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Glenn A Walter
- Myology Institute and.,Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - H Lee Sweeney
- Department of Physiology and.,Department of Pharmacology and Therapeutics.,Myology Institute and
| |
Collapse
|
20
|
Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy. PLoS One 2016; 11:e0166803. [PMID: 27870893 PMCID: PMC5117715 DOI: 10.1371/journal.pone.0166803] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disorder that causes progressive muscle atrophy and weakness. Using adeno-associated virus-mediated gene transfer, we evaluated the potential to improve skeletal muscle weakness via systemic, postnatal inhibition of either myostatin or all signaling via the activin receptor type IIB (ActRIIB). After demonstrating elevated p-SMAD3 content and differential content of ActRIIB ligands, 4-week-old male C/C SMA model mice were treated intraperitoneally with 1x1012 genome copies of pseudotype 2/8 virus encoding a soluble form of the ActRIIB extracellular domain (sActRIIB) or protease-resistant myostatin propeptide (dnMstn) driven by a liver specific promoter. At 12 weeks of age, muscle mass and function were improved in treated C/C mice by both treatments, compared to controls. The fast fiber type muscles had a greater response to treatment than did slow muscles, and the greatest therapeutic effects were found with sActRIIB treatment. Myostatin/activin inhibition, however, did not rescue C/C mice from the reduction in motor unit numbers of the tibialis anterior muscle. Collectively, this study indicates that myostatin/activin inhibition represents a potential therapeutic strategy to increase muscle mass and strength, but not neuromuscular junction defects, in less severe forms of SMA.
Collapse
|
21
|
Tsai SW, Tung YT, Chen HL, Yang SH, Liu CY, Lu M, Pai HJ, Lin CC, Chen CM. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation. Life Sci 2016; 146:15-23. [DOI: 10.1016/j.lfs.2015.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 12/31/2015] [Indexed: 12/16/2022]
|
22
|
Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2015; 3:948-57. [PMID: 26516121 DOI: 10.1016/s2213-8587(15)00298-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Myostatin inhibits skeletal muscle growth. The humanised monoclonal antibody LY2495655 (LY) binds and neutralises myostatin. We aimed to test whether LY increases appendicular lean body mass (aLBM) and improves physical performance in older individuals who have had recent falls and low muscle strength and power. METHODS In this proof-of-concept, randomised, placebo-controlled, double-blind, parallel, multicentre, phase 2 study, we recruited patients aged 75 years or older who had fallen in the past year from 21 investigator sites across Argentina, Australia, France, Germany, Sweden, and the USA. Eligible patients had low performance on hand grip strength and chair rise tests, tested with the procedure described by Guralnik and colleagues. Participants were stratified by country, age, hand grip strength, and performance on the chair rise test, and were randomly assigned (1:1) by a computer-generated random sequence to receive subcutaneous injections of placebo or 315 mg LY at weeks 0 (randomisation visit), 4, 8, 12, 16, and 20, followed by 16 weeks observation. The primary outcome was change in aLBM from baseline to 24 weeks. We measured physical performance as secondary outcomes (four-step stair climbing time, usual gait speed, and time to rise five times from a chair without arms, or with arms for participants unable to do it without arms) and exploratory outcomes (12-step stair climbing test, 6-min walking distance, fast gait speed, hand grip strength, and isometric leg extension strength). Efficacy analyses included all randomly assigned patients who received at least one dose and had a baseline and at least one subsequent measure. The primary analysis and all other tests of treatment effect (except physical performance tests) were done at a two-sided alpha level of 0·05. Tests of treatment effect on physical performance tests were done at a pre-specified two-sided alpha level of 0·1. This trial is registered with ClinicalTrials.gov, number NCT01604408. FINDINGS Between June 19, 2012, and Dec 12, 2013, we screened 365 patients. 99 were randomly assigned to receive placebo and 102 to receive LY. Treatment was completed in 85 (86%) of patients given placebo and in 82 (80%) given LY. At 24 weeks, the least-squares mean change in aLBM was -0·123 kg (95% CI -0·287 to 0·040) in the placebo group and 0·303 kg (0·135 to 0·470) in the LY group, a difference of 0·43 kg (95% CI 0·192 to 0·660; p<0·0001). Stair climbing time (four-step and 12-step tests), chair rise with arms, and fast gait speed improved significantly from baseline to week 24 with differences between LY and placebo of respectively -0·46 s (p=0·093), -1·28 s (p=0·011), -4·15 s (p=0·054), and 0·05 m/s (p=0·088). No effect was detected for other performance-based measures. Injection site reactions were recorded in nine (9%) patients given placebo and in 31 (30%) patients given LY (p<0·0001), and were generally mild, and led to treatment discontinuation in two patients given LY. INTERPRETATION Our findings show LY treatment increases lean mass and might improve functional measures of muscle power. Although additional studies are needed to confirm these results, our data suggest LY should be tested for its potential ability to reduce the risk of falls or physical dependency in older weak fallers. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
| | | | | | - Stuart J Warden
- School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, USA
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Marc C Hochberg
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Hubert Blain
- Department of Internal Medicine and Geriatrics, Montpellier University Hospital, M2H, MACVIA-LR, Montpellier University, Montpellier, France
| | - Ellen F Binder
- Washington University School of Medicine, St Louis, MO, USA
| | - Yves Rolland
- Gérontopôle de Toulouse, Centre Hospitalo‑Universitaire de Toulouse, and INSERM 1027, Toulouse, France
| | - Serge Poiraudeau
- Department of Physical Rehabilitation for Musculoskeletal and Spinal Disorders, Cochin Hospital, Paris, France; Paris Descartes University, Paris, France; INSERM U1153, Paris, France
| | | | | | - Leijun Hu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Abstract
Serum biomarkers in Duchenne muscular dystrophy (DMD) may provide deeper insights into disease pathogenesis, suggest new therapeutic approaches, serve as acute read-outs of drug effects, and be useful as surrogate outcome measures to predict later clinical benefit. In this study a large-scale biomarker discovery was performed on serum samples from patients with DMD and age-matched healthy volunteers using a modified aptamer-based proteomics technology. Levels of 1,125 proteins were quantified in serum samples from two independent DMD cohorts: cohort 1 (The Parent Project Muscular Dystrophy-Cincinnati Children's Hospital Medical Center), 42 patients with DMD and 28 age-matched normal volunteers; and cohort 2 (The Cooperative International Neuromuscular Research Group, Duchenne Natural History Study), 51 patients with DMD and 17 age-matched normal volunteers. Forty-four proteins showed significant differences that were consistent in both cohorts when comparing DMD patients and healthy volunteers at a 1% false-discovery rate, a large number of significant protein changes for such a small study. These biomarkers can be classified by known cellular processes and by age-dependent changes in protein concentration. Our findings demonstrate both the utility of this unbiased biomarker discovery approach and suggest potential new diagnostic and therapeutic avenues for ameliorating the burden of DMD and, we hope, other rare and devastating diseases.
Collapse
|
25
|
Meriggioli MN, Roubenoff R. Prospect for pharmacological therapies to treat skeletal muscle dysfunction. Calcif Tissue Int 2015; 96:234-42. [PMID: 25363509 DOI: 10.1007/s00223-014-9926-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022]
Abstract
Skeletal muscle weakness is a leading cause of mobility disability in the elderly (sarcopenia), as a complication of acute or chronic illness (cachexia), and due to inherited or acquired muscle diseases (muscular dystrophies, myositides, etc.). As of now, there are no approved drugs that can reliably increase muscle strength and function. However, with our understanding of the regulation of myocyte signaling and homeostasis evolving rapidly, experimental treatments are now entering the clinic. We review the current status of clinical research in pharmacological therapies for muscle disorders.
Collapse
Affiliation(s)
- Matthew N Meriggioli
- Department of Musculoskeletal Translational Medicine, Novartis Institutes for Biomedical Research, 220 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | |
Collapse
|
26
|
Walker RG, Thompson TB. Fibronectin-based scaffold domain proteins that bind myostatin: a patent evaluation of WO2014043344. Expert Opin Ther Pat 2015; 25:619-24. [PMID: 25632990 DOI: 10.1517/13543776.2015.1007954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Muscular dystrophies (MD) are commonly characterized by progressive loss of muscle mass and function. It is hypothesized that therapeutic blockade of the TGF-β ligand myostatin, a negative regulator of muscle mass, will stimulate muscle growth and restore muscle function. Although many anti-myostatin targets are currently being pursued in the clinical setting, the efficacies of the tested molecules have shown mixed results. The patent WO2014043344 describes a novel approach for myostatin inhibition using a modified fibronectin type III domain that could potentially be used to treat MD and other muscle-related pathologies.
Collapse
Affiliation(s)
- Ryan G Walker
- University of Cincinnati, College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology , Cincinnati, OH, 45267 , USA
| | | |
Collapse
|
27
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
28
|
Berardi E, Annibali D, Cassano M, Crippa S, Sampaolesi M. Molecular and cell-based therapies for muscle degenerations: a road under construction. Front Physiol 2014; 5:119. [PMID: 24782779 PMCID: PMC3986550 DOI: 10.3389/fphys.2014.00119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 12/25/2022] Open
Abstract
Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in animal models of muscular degeneration are reported. Since non coding RNAs, including microRNAs (miRNAs), are emerging as prominent players in the regulation of stem cell fates we also provides an outline of the role of microRNAs in the control of myogenic commitment. Finally, based on our current knowledge and the rapid advance in stem cell biology, a prediction of clinical translation for cell therapy protocols combined with molecular treatments is discussed.
Collapse
Affiliation(s)
- Emanuele Berardi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy
| | - Daniela Annibali
- Laboratory of Cell Metabolism and Proliferation, Vesalius Research Center, Vlaamse Institute voor Biotechnologie Leuven, Belgium
| | - Marco Cassano
- Interuniversity Institute of Myology Italy ; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Stefania Crippa
- Interuniversity Institute of Myology Italy ; Department of Medicine, University of Lausanne Medical School Lausanne, Switzerland
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy ; Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| |
Collapse
|
29
|
Smith RC, Lin BK. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care 2013; 7:352-60. [PMID: 24157714 PMCID: PMC3819341 DOI: 10.1097/spc.0000000000000013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. RECENT FINDINGS There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. SUMMARY Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.
Collapse
Affiliation(s)
- Rosamund C Smith
- aBiotechnology Discovery Research bOncology Business Unit, Eli Lilly and Company
| | | |
Collapse
|
30
|
Guo W, Wong S, Bhasin S. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS One 2013; 8:e71017. [PMID: 23936482 PMCID: PMC3731267 DOI: 10.1371/journal.pone.0071017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. CONCLUSIONS AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes.
Collapse
Affiliation(s)
- Wen Guo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
31
|
MacKenzie MG, Hamilton DL, Pepin M, Patton A, Baar K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One 2013; 8:e68743. [PMID: 23844238 PMCID: PMC3699505 DOI: 10.1371/journal.pone.0068743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023] Open
Abstract
Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.
Collapse
Affiliation(s)
- Matthew G. MacKenzie
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Lee Hamilton
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, United Kingdom
| | - Mark Pepin
- Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Amy Patton
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
- Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW There are a variety of pathophysiologic conditions that are known to induce skeletal muscle atrophy. However, muscle wasting can occur through multiple distinct signaling pathways with differential sensitivity between selective skeletal muscle fiber subtypes. This review summarizes some of the underlying molecular mechanisms responsible for fiber-specific muscle mass regulation. RECENT FINDINGS Peroxisome proliferator-activated receptor gamma coactivator 1-alpha protects slow-twitch oxidative fibers from denervation/immobilization (disuse)-induced muscle atrophies. Nutrient-related muscle atrophies, such as those induced by cancer cachexia, sepsis, chronic heart failure, or diabetes, are largely restricted to fast-twitch glycolytic fibers, of which the underlying mechanism is usually related to abnormality of protein degradation, including proteasomal and lysosomal pathways. In contrast, nuclear factor kappaB activation apparently serves a dual function by inducing both fast-twitch fiber atrophy and slow-twitch fiber degeneration. SUMMARY Fast-twitch glycolytic fibers are more vulnerable than slow-twitch oxidative fibers under a variety of atrophic conditions related to signaling transduction of Forkhead box O family, autophagy inhibition, transforming growth factor beta family, and nuclear factor-kappaB. The resistance of oxidative fibers may result from the protection of peroxisome proliferator-activated receptor gamma coactivator 1-alpha.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
| |
Collapse
|
33
|
Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G, Bruhn KW, Gonzalez-Cadavid NF. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle. Stem Cell Res Ther 2013; 4:4. [PMID: 23295128 PMCID: PMC3706886 DOI: 10.1186/scrt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs.
Collapse
|
34
|
Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 2013; 79:225-33. [DOI: 10.1016/j.theriogenology.2012.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
|
35
|
Monestier O, Brun C, Heu K, Passet B, Malhouroux M, Magnol L, Vilotte JL, Blanquet V. Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype. BMC Genomics 2012; 13:541. [PMID: 23046573 PMCID: PMC3575399 DOI: 10.1186/1471-2164-13-541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Myostatin, a member of the TGFβ superfamily, is well known as a potent and specific negative regulator of muscle growth. Targeting the myostatin signalling pathway may offer promising therapeutic strategies for the treatment of muscle-wasting disorders. In the last decade, various myostatin-binding proteins have been identified to be able to inhibit myostatin activity. One of these is GASP1 (Growth and Differentiation Factor-Associated Serum Protein-1), a protein containing a follistatin domain as well as multiple domains associated with protease inhibitors. Despite in vitro data, remarkably little is known about in vivo functions of Gasp1. To further address the role of GASP1 during mouse development and in adulthood, we generated a gain-of-function transgenic mouse model that overexpresses Gasp1 under transcriptional control of the human cytomegalovirus immediate-early promoter/enhancer. Results Overexpression of Gasp1 led to an increase in muscle mass observed not before day 15 of postnatal life. The surGasp1 transgenic mice did not display any other gross abnormality. Histological and morphometric analysis of surGasp1 rectus femoris muscles revealed an increase in myofiber size without a corresponding increase in myofiber number. Fiber-type distribution was unaltered. Interestingly, we do not detect a change in total fat mass and lean mass. These results differ from those for myostatin knockout mice, transgenic mice overexpressing the myostatin propeptide or follistatin which exhibit both muscle hypertrophy and hyperplasia, and show minimal fat deposition. Conclusions Altogether, our data give new insight into the in vivo functions of Gasp1. As an extracellular regulatory factor in the myostatin signalling pathway, additional studies on GASP1 and its homolog GASP2 are required to elucidate the crosstalk between the different intrinsic inhibitors of the myostatin.
Collapse
Affiliation(s)
- Olivier Monestier
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, Limoges, 87060, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamada AK, Verlengia R, Bueno Junior CR. Myostatin: genetic variants, therapy and gene doping. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000300003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since its discovery, myostatin (MSTN) has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.
Collapse
|
37
|
Myostatin: more than just a regulator of muscle mass. Drug Discov Today 2012; 17:702-9. [PMID: 22342983 DOI: 10.1016/j.drudis.2012.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/19/2011] [Accepted: 02/02/2012] [Indexed: 12/07/2022]
Abstract
The presence of sufficient skeletal muscle mass is of paramount importance for body function and the myostatin cascade is known to inhibit muscle growth in mammals. In addition, myostatin seems to have an important role in the cross-talk between skeletal muscle and adipose tissue and is involved in insulin sensitivity. In this article we highlight the latest developments related to the myostatin system, emphasizing therapeutic implications for wasting diseases and also the involvement of the system in other organs, in addition to skeletal muscle, such as heart or adipose tissue. Moreover, we highlight the possible role of the myostatin system in the cross-talk between skeletal muscle and adipose tissue, an important aspect that deserves consideration in wasting diseases.
Collapse
|
38
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
39
|
Qaisar R, Renaud G, Morine K, Barton ER, Sweeney HL, Larsson L. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level? FASEB J 2011; 26:1077-85. [PMID: 22125316 DOI: 10.1096/fj.11-192195] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscle force is typically proportional to muscle size, resulting in constant force normalized to muscle fiber cross-sectional area (specific force). Mice overexpressing insulin-like growth factor-1 (IGF-1) exhibit a proportional gain in muscle force and size, but not the myostatin-deficient mice. In an attempt to explore the role of the cytoplasmic volume supported by individual myonuclei [myonuclear domain (MND) size] on functional capacity of skeletal muscle, we have investigated specific force in relation to MND and the content of the molecular motor protein, myosin, at the single muscle fiber level from myostatin-knockout (Mstn(-/-)) and IGF-1-overexpressing (mIgf1(+/+)) mice. We hypothesize that the addition of extra myonuclei is a prerequisite for maintenance of specific force during muscle hypertrophy. A novel algorithm was used to measure individual MNDs in 3 dimensions along the length of single muscle fibers from the fast-twitch extensor digitorum longus and the slow-twitch soleus muscle. A significant effect of the size of individual MNDs in hypertrophic muscle fibers on both specific force and myosin content was observed. This effect was muscle cell type specific and suggested there is a critical volume individual myonuclei can support efficiently. The large MNDs found in fast muscles of Mstn(-/-) mice were correlated with the decrement in specific force and myosin content in Mstn(-/-) muscles. Thus, myostatin inhibition may not be able to maintain the appropriate MND for optimal function.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Neuroscience, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Bish LT, George I, Maybaum S, Yang J, Chen JM, Sweeney HL. Myostatin is elevated in congenital heart disease and after mechanical unloading. PLoS One 2011; 6:e23818. [PMID: 21931616 PMCID: PMC3172210 DOI: 10.1371/journal.pone.0023818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/26/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myostatin is a negative regulator of skeletal muscle mass whose activity is upregulated in adult heart failure (HF); however, its role in congenital heart disease (CHD) is unknown. METHODS We studied myostatin and IGF-1 expression via Western blot in cardiac tissue at varying degrees of myocardial dysfunction and after biventricular support in CHD by collecting myocardial biopsies from four patient cohorts: A) adult subjects with no known cardiopulmonary disease (left ventricle, LV), (Adult Normal), (n = 5); B) pediatric subjects undergoing congenital cardiac surgery with normal RV size and function (right ventricular outflow tract, RVOT), (n = 3); C) pediatric subjects with worsening but hemodynamically stable LV failure [LV and right ventricle (LV, RV,)] with biopsy collected at the time of orthotopic heart transplant (OHT), (n = 7); and D) pediatric subjects with decompensated bi-ventricular failure on BiVAD support with biopsy collected at OHT (LV, RV, BiVAD), (n = 3). RESULTS The duration of HF was longest in OHT patients compared to BIVAD. The duration of BiVAD support was 4.3±1.9 days. Myostatin expression was significantly increased in LV-OHT compared to RV-OHT and RVOT, and was increased more than double in decompensated biventricular HF (BiVAD) compared to both OHT and RVOT. An increased myostatin/IGF-1 ratio was associated with ventricular dysfunction. CONCLUSIONS Myostatin expression in increased in CHD, and the myostatin/IGF-1 ratio increases as ventricular function deteriorates. Future investigation is necessary to determine if restoration of the physiologic myostatin/IGF-1 ratio has therapeutic potential in HF.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
41
|
Bish LT, Sleeper MM, Forbes SC, Morine KJ, Reynolds C, Singletary GE, Trafny D, Pham J, Bogan J, Kornegay JN, Vandenborne K, Walter GA, Sweeney HL. Long-term systemic myostatin inhibition via liver-targeted gene transfer in golden retriever muscular dystrophy. Hum Gene Ther 2011; 22:1499-509. [PMID: 21787232 DOI: 10.1089/hum.2011.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked recessive disease affecting 1 in 3,500 newborn boys for which there is no effective treatment or cure. One novel strategy that has therapeutic potential for DMD is inhibition of myostatin, a negative regulator of skeletal muscle mass that may also promote fibrosis. Therefore, our goal in this study was to evaluate systemic myostatin inhibition in the golden retriever model of DMD (GRMD). GRMD canines underwent liver-directed gene transfer of a self-complementary adeno-associated virus type 8 vector designed to express a secreted dominant-negative myostatin peptide (n = 4) and were compared with age-matched, untreated GRMD controls (n = 3). Dogs were followed with serial magnetic resonance imaging (MRI) for 13 months to assess cross-sectional area and volume of skeletal muscle, then euthanized so that tissue could be harvested for morphological and histological analysis. We found that systemic myostatin inhibition resulted in increased muscle mass in GRMD dogs as assessed by MRI and confirmed at tissue harvest. We also found that hypertrophy of type IIA fibers was largely responsible for the increased muscle mass and that reductions in serum creatine kinase and muscle fibrosis were associated with long-term myostatin inhibition in GRMD. This is the first report describing the effects of long-term, systemic myostatin inhibition in a large-animal model of DMD, and we believe that the simple and effective nature of our liver-directed gene-transfer strategy makes it an ideal candidate for evaluation as a novel therapeutic approach for DMD patients.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Morine KJ, Sleeper MM, Barton ER, Sweeney HL. Overexpression of SERCA1a in the mdx diaphragm reduces susceptibility to contraction-induced damage. Hum Gene Ther 2011; 21:1735-9. [PMID: 20540606 DOI: 10.1089/hum.2010.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the precise pathophysiological mechanism of muscle damage in dystrophin-deficient muscle remains disputed, calcium appears to be a critical mediator of the dystrophic process. Duchenne muscular dystrophy patients and mouse models of dystrophin deficiency exhibit extensive abnormalities of calcium homeostasis, which we hypothesized would be mitigated by increased expression of the sarcoplasmic reticulum calcium pump. Neonatal adeno-associated virus gene transfer of sarcoplasmic reticulum ATPase 1a to the mdx diaphragm decreased centrally located nuclei and resulted in reduced susceptibility to eccentric contraction-induced damage at 6 months of age. As the diaphragm is the mouse muscle most representative of human disease, these results provide impetus for further investigation of therapeutic strategies aimed at enhanced cytosolic calcium removal.
Collapse
Affiliation(s)
- Kevin J Morine
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
43
|
Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle 2011; 1:19. [PMID: 21798096 PMCID: PMC3156642 DOI: 10.1186/2044-5040-1-19] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/04/2011] [Indexed: 01/25/2023] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs), and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.
Collapse
Affiliation(s)
- Tyesha N Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
44
|
Rüegg MA, Glass DJ. Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 2011; 51:373-95. [PMID: 20936944 DOI: 10.1146/annurev-pharmtox-010510-100537] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of muscle mass can be the consequence of pathological changes, as observed in muscular dystrophies; or it can be secondary to cachexia-inducing diseases that cause muscle atrophy, such as cancer, heart disease, or chronic obstructive pulmonary disease; or it can be a consequence of aging or simple disuse. Although muscular dystrophies are rare, muscle loss affects millions of people worldwide. We discuss the molecular mechanisms involved in muscular dystrophy and in muscle atrophy and present current strategies aimed at ameliorating these diseases. Finally, we discuss whether lessons learned from studying muscular dystrophies will also be helpful for halting muscle loss secondary to nondystrophic diseases and whether strategies to halt muscle atrophy have potential for the treatment of muscular dystrophies.
Collapse
|
45
|
Fakhfakh R, Michaud A, Tremblay JP. Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in dystrophic mice. Mol Ther 2011; 19:204-210. [PMID: 20700111 PMCID: PMC3017433 DOI: 10.1038/mt.2010.171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
46
|
Abstract
Myostatin is a member of the transforming growth factor β superfamily of secreted growth factors that negatively regulates skeletal muscle size. Mice null for the myostatin gene have a dramatically increased mass of individual muscles, reduced adiposity, increased insulin sensitivity, and resistance to obesity. Myostatin inhibition in adult mice also increases muscle mass which raises the possibility that anti-myostatin therapy could be a useful approach for treating diseases such as obesity or diabetes in addition to muscle wasting diseases. In this review I will describe the present state of our understanding of the role of myostatin and the closely related growth factor growth/differentiation factor 11 on metabolism.
Collapse
Affiliation(s)
- Alexandra C McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
47
|
Morine KJ, Bish LT, Selsby JT, Gazzara JA, Pendrak K, Sleeper MM, Barton ER, Lee SJ, Sweeney HL. Activin IIB receptor blockade attenuates dystrophic pathology in a mouse model of Duchenne muscular dystrophy. Muscle Nerve 2010; 42:722-30. [PMID: 20730876 DOI: 10.1002/mus.21743] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modulation of transforming growth factor-β (TGF-β) signaling to promote muscle growth holds tremendous promise for the muscular dystrophies and other disorders involving the loss of functional muscle mass. Previous studies have focused on the TGF-β family member myostatin and demonstrated that inhibition of myostatin leads to muscle growth in normal and dystrophic mice. We describe a unique method of systemic inhibition of activin IIB receptor signaling via adeno-associated virus (AAV)-mediated gene transfer of a soluble form of the extracellular domain of the activin IIB receptor to the liver. Treatment of mdx mice with activin IIB receptor blockade led to increased skeletal muscle mass, increased force production in the extensor digitorum longus (EDL), and reduced serum creatine kinase. No effect on heart mass or function was observed. Our results indicate that activin IIB receptor blockade represents a novel and effective therapeutic strategy for the muscular dystrophies.
Collapse
Affiliation(s)
- Kevin J Morine
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER. Regulation of muscle mass by follistatin and activins. Mol Endocrinol 2010; 24:1998-2008. [PMID: 20810712 DOI: 10.1210/me.2010-0127] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myostatin is a TGF-β family member that normally acts to limit skeletal muscle mass. Follistatin is a myostatin-binding protein that can inhibit myostatin activity in vitro and promote muscle growth in vivo. Mice homozygous for a mutation in the Fst gene have been shown to die immediately after birth but have a reduced amount of muscle tissue, consistent with a role for follistatin in regulating myogenesis. Here, we show that Fst mutant mice exhibit haploinsufficiency, with muscles of Fst heterozygotes having significantly reduced size, a shift toward more oxidative fiber types, an impairment of muscle remodeling in response to cardiotoxin-induced injury, and a reduction in tetanic force production yet a maintenance of specific force. We show that the effect of heterozygous loss of Fst is at least partially retained in a Mstn-null background, implying that follistatin normally acts to inhibit other TGF-β family members in addition to myostatin to regulate muscle size. Finally, we present genetic evidence suggesting that activin A may be one of the ligands that is regulated by follistatin and that functions with myostatin to limit muscle mass. These findings potentially have important implications with respect to the development of therapeutics targeting this signaling pathway to preserve muscle mass and prevent muscle atrophy in a variety of inherited and acquired forms of muscle degeneration.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bish LT, Morine KJ, Sleeper MM, Sweeney HL. Myostatin is upregulated following stress in an Erk-dependent manner and negatively regulates cardiomyocyte growth in culture and in a mouse model. PLoS One 2010; 5:e10230. [PMID: 20419100 PMCID: PMC2856679 DOI: 10.1371/journal.pone.0010230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
Myostatin is well established as a negative regulator of skeletal muscle growth, but its role in the heart is controversial. Our goal in this study was to characterize myostatin regulation following cardiomyocyte stress and to examine the role of myostatin in the regulation of cardiomyocyte size. Neonatal cardiomyocytes were cultured and stressed with phenylephrine. Adenovirus was used to overexpress myostatin or dominant negative myostatin in culture. Adeno-associated virus was used to overexpress myostatin or dominant negative myostatin in mice. Myostatin is upregulated following cardiomyocyte stress in an Erk-dependent manner that is associated with increased nuclear translocation and DNA binding activity of MEF-2. Myostatin overexpression leads to decreased and myostatin inhibition to increased cardiac growth both in vitro and in vivo due to modulation of Akt and NFAT3 pathways. Myostatin is a negative regulator of cardiac growth, and further studies are warranted to investigate the role of myostatin in the healthy and failing heart.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|