1
|
Wang H, Wu Y, Yang Y, Pang Y, Hu H, Gou Y. Circ_DLG1 facilitates cell proliferation and metastasis of esophageal squamous cell carcinoma via upregulating MAP3K9. Esophagus 2025; 22:250-263. [PMID: 40042790 DOI: 10.1007/s10388-025-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Circ_DLG1 is found to be aberrantly expressed in esophageal squamous cell carcinoma (ESCC) tissues, but its role in the progression of ESCC remains to be elucidated. METHODS The expression of circ_DLG1, miR-338-3p and mitogen-activated protein kinase kinase kinase 9 (MAP3K9) was measured by qRT-PCR. Cell cycle, viability, migration and invasion were investigated using flow cytometry, MTT assay and transwell assay, respectively. The protein levels of MAP3K9, p38, phosphor p38 (p-p38), ERK1/2 (ERKs), phosphor ERKs (p-ERKs) were detected by western blot. Dual-luciferase reporter assay and RIP assay were performed to verify the putative relationship between miR-338-3p and circ_DLG1 or MAP3K9. Animal experiments were performed to ascertain the role of circ_DLG1 in vivo. RESULTS Circ_DLG1 expression was elevated in ESCC tissues, plasma and cells. Circ_DLG1 knockdown inhibited cell proliferation, migration and invasion. MAP3K9 was highly expressed in ESCC, and its overexpression rescued the effects of circ_DLG1 knockdown on cell proliferation and metastasis. Besides, circ_DLG1 positively regulated MAP3K9 expression by competitively targeting miR-338-3p. Also, miR-338-3p inhibition or MAP3K9 overexpression recovered the inhibiting effect of circ_DLG1 knockdown on the phosphorylated levels of p38 and ERKs. In addition, circ_DLG1 knockdown blocked the tumor growth in vivo by regulating the miR-338-3p/MAP3K9 axis. CONCLUSION Circ_DLG1 promoted malignant progression of ESCC by mediating the miR-338-3p/MAP3K9/p38/ERK pathway, indicating that targeted inhibition of the circ_DLG1/miR-338-3p/MAP3K9/p38/ERK axis might be an effective strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Thoracic Surgery 2, Gansu Provincial Hospital, No.204 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Yafan Wu
- School of Basic Medicine, Gansu Health Vocational College, Lanzhou, Gansu, China
| | - Yi Yang
- Department of Thoracic Surgery 2, Gansu Provincial Hospital, No.204 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Yao Pang
- Department of Thoracic Surgery 2, Gansu Provincial Hospital, No.204 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hongxia Hu
- Department of Thoracic Surgery 2, Gansu Provincial Hospital, No.204 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Yunjiu Gou
- Department of Thoracic Surgery 2, Gansu Provincial Hospital, No.204 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Kontos CK, Hadjichambi D, Papatsirou M, Karousi P, Christodoulou S, Sideris DC, Scorilas A. Discovery and Comprehensive Characterization of Novel Circular RNAs of the Apoptosis-Related BOK Gene in Human Ovarian and Prostate Cancer Cells, Using Nanopore Sequencing. Noncoding RNA 2023; 9:57. [PMID: 37888203 PMCID: PMC10609399 DOI: 10.3390/ncrna9050057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
CircRNAs have become a novel scientific research hotspot, and an increasing number of studies have shed light on their involvement in malignant progression. Prompted by the apparent scientific gap in circRNAs from apoptosis-related genes, such as BOK, we focused on the identification of novel BOK circRNAs in human ovarian and prostate cancer cells. Total RNA was extracted from ovarian and prostate cancer cell lines and reversely transcribed using random hexamer primers. A series of PCR assays utilizing gene-specific divergent primers were carried out. Next, third-generation sequencing based on nanopore technology followed by extensive bioinformatics analysis led to the discovery of 23 novel circRNAs. These novel circRNAs consist of both exonic and intronic regions of the BOK gene. Interestingly, the exons that form the back-splice junction were truncated in most circRNAs, and multiple back-splice sites were found for each BOK exon. Moreover, several BOK circRNAs are predicted to sponge microRNAs with a key role in reproductive cancers, while the presence of putative open reading frames indicates their translational potential. Overall, this study suggests that distinct alternative splicing events lead to the production of novel BOK circRNAs, which could come into play in the molecular landscape and clinical investigation of ovarian and prostate cancer.
Collapse
Affiliation(s)
- Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Despina Hadjichambi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| |
Collapse
|
3
|
Liu Y, Gao L. Preterm Labor, a Syndrome Attributed to the Combination of External and Internal Factors. MATERNAL-FETAL MEDICINE 2022; 4:61-71. [PMID: 40406574 PMCID: PMC12094360 DOI: 10.1097/fm9.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Preterm labor (before 37 weeks' gestation) is the leading cause of neonatal mortality and morbidity, which can be divided into iatrogenic preterm labor, infectious preterm labor, and spontaneous preterm labor (sPTL). Up to now, there continue to be great difficulties in prediction and prevention of sPTL, owing to multiple risk factors, pathogenesis, and pathologic processes contributing to the event, which have not been fully clarified. Pregnancy maintenance and parturition is a complicated process with continuous maternal-fetal dialogue, in which both maternal and fetal factors participate and affect the outcome of pregnancy, including sPTL. Besides, external factors can also participate in sPTL, individually or through the interaction with internal factors. In this article, we summarize recent studies regarding sPTL from our and other groups, and discuss the risk factors and pathogenesis of preterm birth from both external and internal (maternal and fetal) aspects, so as to provide theoretical evidences for the diagnosis, prevention, and treatment of sPTL in the future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200000, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China
| |
Collapse
|
4
|
Chen P, Li T, Guo Y, Jia L, Wang Y, Fang C. Construction of Circulating MicroRNAs-Based Non-invasive Prediction Models of Recurrent Implantation Failure by Network Analysis. Front Genet 2021; 12:712150. [PMID: 34367263 PMCID: PMC8344057 DOI: 10.3389/fgene.2021.712150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Background Recurrent implantation failure (RIF) is an obstacle in the process of assisted reproductive technology (ART). At present, there is limited research on its pathogenesis, diagnosis, and treatment methods. Methods and Results In this study, a series of analytical tools were used to analyze differences in miRNAs, mRNAs, and lncRNAs in the endometrium of patients in a RIF group and a control group. Then the competing endogenous RNA (ceRNA) network was built to describe the relationship between gene regulation in the endometrium of the RIF group. Based on the results of the logistic regression of co-expression miRNAs between serum and endometrial samples, we built a predictive model based on circulating miRNAs. Conclusion The stability and non-invasiveness of the circular miRNA prediction model provided a new method for diagnosis in RIF patients.
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingchun Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfang Wang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, Gunel T. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med 2020; 35:815-825. [PMID: 33249960 DOI: 10.1080/14767058.2020.1849095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE It has been identified that endometrium specific microRNAs have different expression levels in endometrial tissues and maternal serum during endometrial cycle. The aim of this study was to analyze microRNA expression levels in recurrent implantation failure patients and healthy controls endometrial samples for enlightening the aetiopathogenesis of the disease. The second aim was to search for a potential noninvasive molecular biomarker in early diagnosis and treatment of Recurrent Implantation Failure (RIF) patients. METHODS Endometrium and serum samples in two different phases (PP; proliferative phase and SP; secretory phase) from the same cases (RIF; n = 12 and Control; n = 8) were obtained. The expression levels of the microRNA by RT-qPCR method were measured. The expression levels of the healthy controls and study group were compared. Lastly performed target genes analysis of significantly dysregulated miRNA by target analyze databases for obtained related biological pathways. RESULTS This study showed that has-miR-145, has-miR-23b, has-miR-31 and has-miR-30b were significantly up-regulated in PP and down-regulated in SP endometrium samples. In serum samples, has-miR-145 and hsa-miR-23b were significantly down-regulated in both of PP and SP. Target gene and pathway analysis for dysregulated miRNAs identified important, validated and predicted genes for the implantation process. CONCLUSIONS This study is the first study to obtain endometrium and serum samples in two different phases from the same cases and measure the candidate miRNAs expression. Our finding suggests that expression level of four candidate miRNAs may be involved in RIF development in women. Furthermore, these miRNAs can be potential biomarker for early diagnosis of RIF patients.
Collapse
Affiliation(s)
- Fatemeh Azhari
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | - Nazife Cevik
- Department of Computer Engineering, Engineering-Architecture Faculty, Arel University, Istanbul, Turkey
| | - Ercan Bastu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Njoku K, Chiasserini D, Jones ER, Barr CE, O’Flynn H, Whetton AD, Crosbie EJ. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. Front Oncol 2020; 10:559016. [PMID: 33224875 PMCID: PMC7670058 DOI: 10.3389/fonc.2020.559016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract and its incidence is rising in parallel with the mounting prevalence of obesity. Early diagnosis has great potential to improve outcomes as treatment can be curative, especially for early stage disease. Current tests and procedures for diagnosis are limited by insufficient accuracy in some and unacceptable levels of invasiveness and discomfort in others. There has, therefore, been a growing interest in the search for sensitive and specific biomarkers for endometrial cancer detection based on non-invasive sampling methodologies. Urine, the prototype non-invasive sample, is attractive for biomarker discovery as it is easily accessible and can be collected repeatedly and in quantity. Identification of urinary biomarkers for endometrial cancer detection relies on the excretion of systemic biomarkers by the kidneys or urinary contamination by biomarkers shed from the uterus. In this review, we present the current standing of the search for endometrial cancer urinary biomarkers based on cytology, genomic, transcriptomic, proteomic, and metabolomic platforms. We summarize the biomarker candidates and highlight the challenges inherent in urinary biomarker discovery. We review the various technologies with promise for biomarker detection and assess these novel approaches for endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleanor R. Jones
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chloe E. Barr
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helena O’Flynn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
7
|
Drissennek L, Baron C, Brouillet S, Entezami F, Hamamah S, Haouzi D. Endometrial miRNome profile according to the receptivity status and implantation failure. HUM FERTIL 2020; 25:356-368. [DOI: 10.1080/14647273.2020.1807065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Loubna Drissennek
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Chloé Baron
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Sophie Brouillet
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
- Univ Grenoble-Alpes, INSERM 1036, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l’Infection (BCI), Grenoble, France
| | - Frida Entezami
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- American Hospital of Paris, IVF department, Neuilly-Sur-Seine, France
| | - Samir Hamamah
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| | - Delphine Haouzi
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| |
Collapse
|
8
|
Xiao X, Sticht C, Yin L, Liu L, Karakhanova S, Yin Y, Georgikou C, Gladkich J, Gross W, Gretz N, Herr I. Novel plant microRNAs from broccoletti sprouts do not show cross-kingdom regulation of pancreatic cancer. Oncotarget 2020; 11:1203-1217. [PMID: 32292571 PMCID: PMC7147085 DOI: 10.18632/oncotarget.27527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Food-derived plant microRNAs are suggested to control human genes by “cross-kingdom” regulation. We examined microRNAs in sprouts from Brassica rapa sylvestris, known as broccoletti, which are widely used as sulforaphane supplements, and assessed their influence on pancreatic cancer. RNA was isolated from 4-day-old sprouts, followed by deep sequencing and bioinformatic analysis. We identified 2 new and 745 known plant microRNA sequences in the miRbase database and predicted 15,494 human target genes and 76,747 putative 3′-UTR binding sites in these target genes. The most promising candidates were the already known microRNA sequence bra-miR156g-5p and the new sequence Myseq-330, both with predicted human target genes related to apoptosis. The overexpression of the respective oligonucleotides by lipofection did not alter the viability, apoptosis, clonogenicity, migration or associated protein expression patterns in pancreatic cancer cells. These data demonstrate that broccoletti sprouts contain microRNA sequences with putative binding sites in human genes, but the sequences evaluated here did not affect cancer growth. Our database of broccoletti-derived microRNA sequences provides a valuable tool for future analysis.
Collapse
Affiliation(s)
- Xi Xiao
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany.,These authors contributed equally to this work and share the first authorship
| | - Carsten Sticht
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,These authors contributed equally to this work and share the first authorship
| | - Libo Yin
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Li Liu
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yefeng Yin
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Christina Georgikou
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jury Gladkich
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,These authors contributed equally to this work and share the last authorship
| | - Ingrid Herr
- Molecular OncoSurgery Group, Section of Surgical Research, Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany.,These authors contributed equally to this work and share the last authorship
| |
Collapse
|
9
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Abstract
microRNAs are small non-coding RNA molecules playing a central role in gene regulation. miRBase is the standard reference source for analysis and interpretation of experimental studies. However, the richness and complexity of the annotation is often underappreciated by users. Moreover, even for experienced users, the size of the resource can make it difficult to explore annotation to determine features such as species coverage, the impact of specific characteristics and changes between successive releases. A further consideration is that each new miRBase release contains entries that have had limited review and which may subsequently be removed in a future release to ensure the quality of annotation. To aid the miRBase user, we developed a software tool, miRBaseMiner, for investigating miRBase annotation and generating custom annotation sets. We apply the tool to characterize each release from v9.2 to v22 to examine how annotation has changed across releases and highlight some of the annotation features that users should keep in mind when using for miRBase for data analysis. These include: (1) entries with identical or very similar sequences; (2) entries with multiple annotated genome locations; (3) hairpin precursor entries with extremely low-estimated minimum free energy; (4) entries possessing reverse complementary; (5) entries with 3ʹ poly(A) ends. As each of these factors can impact the identification of dysregulated features and subsequent clinical or biological conclusions, miRBaseMiner is a valuable resource for any user using miRBase as a reference source.
Collapse
Affiliation(s)
- Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo , Norway
| |
Collapse
|
11
|
Gunaratne PH, Pan Y, Rao AK, Lin C, Hernandez‐Herrera A, Liang K, Rait AS, Venkatanarayan A, Benham AL, Rubab F, Kim SS, Rajapakshe K, Chan CK, Mangala LS, Lopez‐Berestein G, Sood AK, Rowat AC, Coarfa C, Pirollo KF, Flores ER, Chang EH. Activating p53 family member TAp63: A novel therapeutic strategy for targeting p53-altered tumors. Cancer 2019; 125:2409-2422. [PMID: 31012964 PMCID: PMC6617807 DOI: 10.1002/cncr.32053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/25/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Over 96% of high-grade ovarian carcinomas and 50% of all cancers are characterized by alterations in the p53 gene. Therapeutic strategies to restore and/or reactivate the p53 pathway have been challenging. By contrast, p63, which shares many of the downstream targets and functions of p53, is rarely mutated in cancer. METHODS A novel strategy is presented for circumventing alterations in p53 by inducing the tumor-suppressor isoform TAp63 (transactivation domain of tumor protein p63) through its direct downstream target, microRNA-130b (miR-130b), which is epigenetically silenced and/or downregulated in chemoresistant ovarian cancer. RESULTS Treatment with miR-130b resulted in: 1) decreased migration/invasion in HEYA8 cells (p53 wild-type) and disruption of multicellular spheroids in OVCAR8 cells (p53-mutant) in vitro, 2) sensitization of HEYA8 and OVCAR8 cells to cisplatin (CDDP) in vitro and in vivo, and 3) transcriptional activation of TAp63 and the B-cell lymphoma (Bcl)-inhibitor B-cell lymphoma 2-like protein 11 (BIM). Overexpression of TAp63 was sufficient to decrease cell viability, suggesting that it is a critical downstream effector of miR-130b. In vivo, combined miR-130b plus CDDP exhibited greater therapeutic efficacy than miR-130b or CDDP alone. Mice that carried OVCAR8 xenograft tumors and were injected with miR-130b in 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) liposomes had a significant decrease in tumor burden at rates similar to those observed in CDDP-treated mice, and 20% of DOPC-miR-130b plus CDDP-treated mice were living tumor free. Systemic injections of scL-miR-130b plus CDDP in a clinically tested, tumor-targeted nanocomplex (scL) improved survival in 60% and complete remissions in 40% of mice that carried HEYA8 xenografts. CONCLUSIONS The miR-130b/TAp63 axis is proposed as a new druggable pathway that has the potential to uncover broad-spectrum therapeutic options for the majority of p53-altered cancers.
Collapse
Affiliation(s)
- Preethi H. Gunaratne
- Department of Biochemistry and BiologyUniversity of HoustonHoustonTexas
- Department of Molecular and Cell BiologyBaylor College of MedicineHoustonTexas
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTexas
| | - Yinghong Pan
- Department of Biochemistry and BiologyUniversity of HoustonHoustonTexas
- UPMC Genome CenterPittsburghPennsylvania
| | - Abhi K. Rao
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, Division of Basic ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | | | - Ke Liang
- Department of Molecular and Cellular Oncology, Division of Basic ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Antonina S. Rait
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia
| | - Avinashnarayan Venkatanarayan
- Department of Molecular and Cellular Oncology, Division of Basic ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Genentech, Inc.South San FranciscoCalifornia
| | - Ashley L. Benham
- Department of Biochemistry and BiologyUniversity of HoustonHoustonTexas
- 10X Genomics Inc.PleasantonCalifornia
| | | | - Sang Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia
- SynerGene Therapeutics, Inc.PotomacMaryland
| | - Kimal Rajapakshe
- Department of Molecular and Cell BiologyBaylor College of MedicineHoustonTexas
| | - Clara K. Chan
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| | - Lingegowda S. Mangala
- Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNAi and Non-Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Gabriel Lopez‐Berestein
- Center for RNAi and Non-Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Anil K. Sood
- Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNAi and Non-Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Amy C. Rowat
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| | - Cristian Coarfa
- Department of Molecular and Cell BiologyBaylor College of MedicineHoustonTexas
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia
| | - Elsa R. Flores
- Department of Molecular and Cellular Oncology, Division of Basic ScienceThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Department of Molecular OncologyCancer Biology and Evolution Program, Moffitt Cancer CenterTampaFlorida
| | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia
- SynerGene Therapeutics, Inc.PotomacMaryland
| |
Collapse
|
12
|
Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, Sheller-Miller S, Salomon C, The Garbhini Study Team. Circulating Exosomal miRNA Profile During Term and Preterm Birth Pregnancies: A Longitudinal Study. Endocrinology 2019; 160:249-275. [PMID: 30358826 PMCID: PMC6394761 DOI: 10.1210/en.2018-00836] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research in the field of human reproduction, the mechanisms responsible for human parturition still remain elusive. The objective of this study was to describe the changes in the exosomal miRNA concentrations circulating in the maternal plasma between mothers delivering term and preterm neonates, across gestation using a longitudinal study design. This descriptive study identifies the miRNA content in exosomes present in maternal plasma of term and preterm birth (PTB) (n = 20 and n = 10 per each gestational period, respectively) across gestation (i.e., first, second, and third trimesters and at the time of delivery). Changes in exosomal miRNA signature in maternal plasma during term and preterm gestation were determined using the NextSeq 500 high-output 75 cycles sequencing platform. A total of 167 and 153 miRNAs were found to significantly change (P < 0.05) as a function of the gestational age across term and PTB pregnancies, respectively. Interestingly, a comparison analysis between the exosomal miRNA profile between term and PTB reveals a total of 173 miRNAs that significantly change (P < 0.05) across gestation. Specific trends of changes (i.e., increase, decrease, and both) as a function of the gestational age were also identified. The bioinformatics analyses establish that the differences in the miRNA profile are targeting signaling pathways associated with TGF-β signaling, p53, and glucocorticoid receptor signaling, respectively. These data suggest that the miRNA content of circulating exosomes in maternal blood might represent a biomolecular "fingerprint" of the progression of pregnancy.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Chirantan Debnath
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Pallavi K Kshetrapal
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | |
Collapse
|
13
|
Hong L, Yu T, Xu H, Hou N, Cheng Q, Lai L, Wang Q, Sheng J, Huang H. Down-regulation of miR-378a-3p induces decidual cell apoptosis: a possible mechanism for early pregnancy loss. Hum Reprod 2019; 33:11-22. [PMID: 29165645 DOI: 10.1093/humrep/dex347] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Do microRNAs (miRNAs) contribute to human early pregnancy loss (EPL)? SUMMARY ANSWER miR-378a-3p expression is regulated by progesterone and is down-regulated in ducidua of EPL patients which may contribute to decidual apoptosis through Caspase-3 activation. WHAT IS KNOWN ALREADY A variety of miRNAs have been demonstrated to be associated with the development of decidualization and placental formation. However, little has been reported on the roles of miRNA in the pathogenesis of EPL. STUDY DESIGN, SIZE, DURATION Normal and EPL decidual tissues were collected from patients with normal pregnancies undergoing elective termination of gestation, and from patients with EPL, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS miRNA microarrays were used to identify the differentially expressed miRNAs between normal and EPL decidua, and miRNA expression was confirmed by qRT-PCR, qRT-PCR, western blotting and luciferase reporter assays were employed to validate the downstream targets of miR-378a-3p. The effects of miR-378a-3p were evaluated using miR-378a-3p-transfected decidual cells. MAIN RESULTS AND THE ROLE OF CHANCE Of note, 32 up-regulated miRNAs and 38 down-regulated miRNAs were identified by microarray analysis when comparing EPL to normal decidua. MiR-378a-3p was significantly down-regulated in the EPL decidua and was found to inversely regulate the expression of Caspase-3 by directly binding to its 3'-UTRs. In decidual cells, transfection of miR-378a-3p mimics resulted in the inhibition of cell apoptosis and in the increase of cell proliferation through Caspase-3 suppression. Moreover, we found that progesterone could induce the expression of miR-378a-3p in decidual cells. LIMITATIONS, REASONS FOR CAUTION This study focused on the function of miR-378a-3p and its target Caspase-3, however, numerous other targets and miRNAs may also be responsible for the pathogenesis of EPL. Therefore, further studies are required to elucidate the role of miRNAs in EPL. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that miR-378a-3p may contribute to the development of EPL, and that it could serve as a new potential predictive and therapeutic target of progesterone-treatment for EPL. STUDY FUNDING/COMPETING INTEREST This study was supported by National Basic Research Program of China (No.2012CB944900); National Science Foundation of China (No.31471405 and 81490742, No.81361120246); The National Science and Technology Support Program (No.2012BA132B00). Authors declare no competing interests.
Collapse
Affiliation(s)
- Lihua Hong
- Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Tiantian Yu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20030, China
| | - Haiyan Xu
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Ningning Hou
- Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Qi Cheng
- Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| | - Lihua Lai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianzhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Hefeng Huang
- Women's Hospital, Zhejiang University Medical College, Hangzhou 310006, P.R. China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20030, China.,Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| |
Collapse
|
14
|
Calcatera SM, Reicks D, Pratt SL. Novel and differentially abundant microRNAs in sperm cells, seminal plasma, and serum of boars due to porcine reproduction and respiratory syndrome virus infection. Anim Reprod Sci 2018; 199:60-71. [PMID: 30455097 DOI: 10.1016/j.anireprosci.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 01/10/2023]
Abstract
The objectives of this study were to identify and determine relative abundance of miRNAs in boar sperm, seminal plasma (SP), and serum pre- and post-viral infection. Functional enrichment analyses on predicted targets of miRNAs of interest were performed. Boars (n = 6) were inoculated with porcine reproductive and respiratory syndrome virus (PRRSv) strain 1-8-4 (Day 0). Semen and serum were collected on Day -2 and 6. Sperm and SP were separated and aliquots were flash frozen and stored at -80 °C. Serum was frozen and stored at -80 °C. Total RNA was isolated from sperm and SP samples and subjected to RNA sequencing. Microarray analysis was performed using the Day -2 and 6 RNA samples from serum, sperm and SP. Potential miRNA targets were predicted using miRanda 3.3a and targets were then analyzed for enrichment of Gene Ontology) and InterPro terms and were considered to be enriched if P < 0.01 using the Bonferroni correction. Microarray analyses resulted in 83, 13, and 10 miRNAs with differences in abundances in sperm, serum, and SP, respectively, when comparing Day -2 and 6. Results from enrichment analyses indicated that the predicted targets of 35, nine, and five miRNAs with differences in abundances for sperm, SP, and serum, respectively, that have functions and/or conserved protein domains that are enriched when compared to the pig genome. Enriched terms for P2X purinoceptors were identified for sperm, SP and serum. Enriched terms for cell adhesion were identified for sperm and serum transcripts. Enriched terms for cell signaling were identified for sperm and SP transcripts.
Collapse
Affiliation(s)
- Samantha M Calcatera
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States
| | - Darwin Reicks
- P.O. Box 314, 314 S. 3rd St., St. Peter, MN, 5608, United States
| | - Scott L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States.
| |
Collapse
|
15
|
Comparison of diploid and triploid Carassius auratus provides insights into adaptation to environmental change. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1407-1419. [DOI: 10.1007/s11427-017-9358-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
|
16
|
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018; 36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.
Collapse
Affiliation(s)
- Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Zhou L, Quan S, Xu H, Ma L, Niu J. Identification and Expression of miRNAs Related to Female Flower Induction in Walnut ( Juglans regia L.). Molecules 2018; 23:molecules23051202. [PMID: 29772800 PMCID: PMC6099546 DOI: 10.3390/molecules23051202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Flower induction is an essential stage in walnut (Juglans regia L.) trees, directly affecting yield, yield stability, fruit quality and commodity value. The objective of this study was to identify miRNAs related to female flower induction via high-throughput sequencing and bioinformatics analysis. A total of 123 miRNAs were identified including 51 known miRNAs and 72 novel miRNAs. Differential expression was observed in 19 of the known miRNAs and 34 of the novel miRNAs. Twelve miRNAs were confirmed by RT-qPCR. A total of 1339 target genes were predicted for the differentially expressed miRNAs. The functions of 616 of those target genes had been previously annotated. The target genes of the differentially expressed miRNAs included: (i) floral homeotic protein APETALA 2 (AP2) and ethylene-responsive transcription factor RAP2-7 which were targeted by jre-miRn69; (ii) squamosa promoter-binding protein 1 (SPB1) and various SPLs (squamosa promoter-binding-like protein) which were targeted by jre-miR157a-5p; (iii) various hormone response factors which were targeted by jre-miR160a-5p (ARF18) and jre-miR167a-5p (ARF8) and (iv) transcription factor SCL6 which was targeted by jre-miR171b-3p, jre-miRn46 and jre-miRn49. The KEGG pathway analysis of the target genes indicated that the differentially expressed miRNAs were mainly enriched to ubiquitin mediated proteolysis, RNA degradation and various carbohydrate metabolism pathways. Many miRNAs were detected in J. regia during female flower induction. Some miRNAs (jre-miR157a-5p, jre-miR160a-5p, jre-miR167a-5p, miR171b-3p jre-miRn69 and jre-miRn49) were involved in female flower induction. The results of this experiment will contribute valuable information for further research about the function of miRNAs in flower induction of J. regia and other fruit trees.
Collapse
Affiliation(s)
- Li Zhou
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| | - Hang Xu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| | - Li Ma
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
18
|
Choi W, Yeom SY, Kim J, Jung S, Jung S, Shim TS, Kim SK, Kang JY, Lee SH, Cho IJ, Choi J, Choi N. Hydrogel micropost-based qPCR for multiplex detection of miRNAs associated with Alzheimer's disease. Biosens Bioelectron 2018; 101:235-244. [DOI: 10.1016/j.bios.2017.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
|
19
|
Zhang L, Liu X, Liu J, Ma X, Zhou Z, Song Y, Cao B. miR-26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN-PI3K/AKT pathway in dairy goats. J Cell Physiol 2018; 233:4688-4706. [PMID: 29115668 DOI: 10.1002/jcp.26252] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
Abstract
Changes in endometrial cell morphology and function are absolutely necessary for successful embryo implantation. In this study, miR-26a was widely expressed in dairy goats, and was found to be regulated by β-estradiol (E2) and progesterone (P4) in endometrial epithelium cells (EECs) as well as stromal cells (ESCs). Furthermore, miR-26a played a role in the regulation of cells proliferation and apoptosis by directly regulating PTEN and indirectly regulating the PI3K/AKT pathway in EECs but not in ESCs of dairy goats in vitro. In addition, miR-26a regulated the expression of osteopontin (OPN), vascular endothelial growth factor (VEGF), Cyclooxygenase-2 (COX-2), and prolactin (PRL) in endometrial cells. Therefore, we could get a conclusion that miR-26a had very complex and diverse functions in the endometrial cells during the development of endometrial receptivity in dairy goats. This study provided an efficient platform for studying the regulatory effect of miR-26a on endometrial cells during the development of endometrial receptivity in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Junze Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | |
Collapse
|
20
|
Small RNAs and the competing endogenous RNA network in high grade serous ovarian cancer tumor spread. Oncotarget 2018; 7:39640-39653. [PMID: 27172797 PMCID: PMC5129959 DOI: 10.18632/oncotarget.9243] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
High grade serous ovarian cancer (HGSOC) is among the most deadly malignancies in women, frequently involving peritoneal tumor spread. Understanding molecular mechanisms of peritoneal metastasis is essential to develop urgently needed targeted therapies. We described two peritoneal tumor spread types in HGSOC apparent during surgery: miliary (numerous millet-sized implants) and non-miliary (few big, bulky implants). The former one is defined by a more epithelial-like tumor cell characteristic with less immune cell reactivity and with significant worse prognosis, even if corrected for typical clinicopathologic factors. 23 HGSOC patients were enrolled in this study. Isolated tumor cells from fresh tumor tissues of ovarian and peritoneal origin and from ascites were used for ribosomal RNA depleted RNA and small RNA sequencing. RT-qPCR was used to validate results and an independent cohort of 32 patients to validate the impact on survival. Large and small RNA sequencing data were integrated and a new gene-miRNA set analysis method was developed. Thousands of new small RNAs (miRNAs and piwi-interacting RNAs) were predicted and a 13 small RNA signature was developed to predict spread type from formalin-fixed paraffin-embedded tissues. Furthermore, integrative analyses of RNA sequencing and small RNA sequencing data revealed a global upregulation of the competing endogenous RNA network in tumor tissues of non-miliary compared to miliary spread, i.e. higher expression of circular RNAs and long non-coding RNAs compared to coding RNAs but unchanged abundance of small RNAs. This global deregulated expression pattern could be co-responsible for the spread characteristic, miliary or non-miliary, in ovarian cancer.
Collapse
|
21
|
Yang D, Yang K, Yang M. Circular RNA in Aging and Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:17-35. [DOI: 10.1007/978-981-13-1117-8_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Farina NH, Ramsey JE, Cuke ME, Ahern TP, Shirley DJ, Stein JL, Stein GS, Lian JB, Wood ME. Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget 2017; 8:112170-112183. [PMID: 29348816 PMCID: PMC5762501 DOI: 10.18632/oncotarget.22750] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Significant limitations exist in our ability to predict breast cancer risk at the individual level. Circulating microRNAs (C-miRNAs) have emerged as measurable biomarkers (liquid biopsies) for cancer detection. We evaluated the ability of C-miRNAs to identify women most likely to develop breast cancer by profiling miRNA from serum obtained long before diagnosis. 24 breast cancer cases and controls (matched for risk and age) were identified from women enrolled in the High-Risk Breast Program at the UVM Cancer Center. Isolated RNA from serum was profiled for over 2500 human miRNAs. The miRNA expression data were input into a stepwise linear regression model to discover a multivariable miRNA signature that predicts long-term risk of breast cancer. 25 candidate miRNAs were identified that individually classified cases and controls based on statistical methodologies. A refined 6-miRNA risk-signature was discovered following regression modeling that distinguishes cases and controls (AUC0.896, CI 0.804-0.988) in this cohort. A functional relationship between miRNAs that cluster together when cases are contrasted against controls was suggested and confirmed by pathway analyses. The discovered 6 miRNA risk-signature can discriminate high-risk women who ultimately develop breast cancer from those who remain cancer-free, improving current risk assessment models. Future studies will focus on functional analysis of the miRNAs in this signature and testing in larger cohorts. We propose that the combined signature is highly significant for predicting cancer risk, and worthy of further screening in larger, independent clinical cohorts.
Collapse
Affiliation(s)
- Nicholas H Farina
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jon E Ramsey
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Melissa E Cuke
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Surgery, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - David J Shirley
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Janet L Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jane B Lian
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marie E Wood
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
23
|
Li X, Zhao Z, Jian D, Li W, Tang H, Li M. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 2017; 14:510-515. [PMID: 28777011 PMCID: PMC5652644 DOI: 10.1177/1479164117722714] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The purpose of this study was to identify the expression characteristics of circular RNAs in the peripheral blood of coronary artery disease patients and type 2 diabetes mellitus patients. METHODS Circular RNA in the peripheral blood from 6 control individuals, 6 coronary artery disease patients, 6 type 2 diabetes mellitus patients and 6 coronary artery disease combined with type 2 diabetes mellitus patients was collected for microarray analysis, and a further independent cohort consisting of 20 normal individuals, 20 type 2 diabetes mellitus subjects and 20 coronary artery disease subjects was used to verify the expression of five circular RNAs chosen for further analysis. The findings were then tested in a third cohort using quantitative real-time polymerase chain reaction. RESULTS In total, 40 circular RNAs differentially expressed between the three experimental groups and the control group were identified by microarray analysis: 13 were upregulated in the experimental groups, while 27 were downregulated. Of the five circular RNAs chosen for further analysis, three were significantly downregulated in the experimental groups. The crude odds ratios and adjusted odds ratios of hsa-circRNA11783-2 showed significant differences in both the coronary artery disease group and type 2 diabetes mellitus group. We then verified hsa-circRNA11783-2 in the third cohort, and it remained closely related to both coronary artery disease and type 2 diabetes mellitus. CONCLUSION Hsa-circRNA11783-2 is closely related to both coronary artery disease and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xuejie Li
- Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenzhou Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongdong Jian
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Wentao Li
- Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Haiyu Tang
- Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Muwei Li
- Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Muwei Li, Department of Cardiology, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
24
|
Zhang L, Liu X, Liu J, Zhou Z, Song Y, Cao B, An X. miR-182 aids in receptive endometrium development in dairy goats by down-regulating PTN expression. PLoS One 2017; 12:e0179783. [PMID: 28678802 PMCID: PMC5497977 DOI: 10.1371/journal.pone.0179783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/04/2017] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has shown that miRNAs play important roles in endometrium development during the menstrual cycle in humans and many other animals. Our previous data indicated that miR-182 levels increase 15.55-fold and pleiotrophin (PTN) levels decrease 20.97-fold in the receptive endometrium (RE, D15) compared with the pre-receptive endometrium (PE, D5) in dairy goats. The present study shows that miR-182 is widely expressed in different tissues of dairy goats and that its expression levels are regulated by E2 and P4 in endometrial epithelium cells (EECs). We confirmed that PTN is a target of miR-182 and that miR-182 regulates the protein levels of AKT, Bcl-2, FAS, MAPK, Caspase-3 and SP1 in EECs. Furthermore, miR-182 up-regulates or maintains the expression levels of osteopontin (OPN), cyclooxygenase-2 (COX-2) and prolactin receptor (PRLR) in EECs, suggesting that miR-182 is an important regulatory factor in the construction of endometrial receptivity in dairy goats. In conclusion, miR-182 participates in the development of endometrial receptivity by down-regulating PTN and affecting the expression of select apoptosis-related genes and increasing or maintaining the expression levels of OPN, COX-2 and PRLR in the EECs of dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Junze Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Kim SH, Bennett PR, Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol 2017; 449:56-63. [PMID: 28119132 DOI: 10.1016/j.mce.2017.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 12/26/2022]
Abstract
Oxytocin (OT) is a neurohypophysial hormone which has been found to play a central role in the regulation of human parturition. The most established role of oxytocin/oxytocin receptor (OT/OTR) system in human parturition is the initiation of uterine contractions, however, recent evidence have demonstrated that it may have a more complex role including initiation of inflammation, regulation of miRNA expression, as well as mediation of other non-classical oxytocin actions via receptor crosstalk with other G protein-coupled receptors (GPCRs). In this review we highlight both established and newly emerging roles of OT/OTR system in human parturition and discuss the expanding potential for OTRs as pharmacological targets in the management of preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
26
|
McCreight JC, Schneider SE, Wilburn DB, Swanson WJ. Evolution of microRNA in primates. PLoS One 2017; 12:e0176596. [PMID: 28640911 PMCID: PMC5480830 DOI: 10.1371/journal.pone.0176596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNA play an important role in post-transcriptional regulation of most transcripts in the human genome, but their evolution across the primate lineage is largely uncharacterized. A particular miRNA can have one to thousands of messenger RNA targets, establishing the potential for a small change in sequence or overall miRNA structure to have profound phenotypic effects. However, the majority of non-human primate miRNA is predicted solely by homology to the human genome and lacks experimental validation. In the present study, we sequenced thirteen species representing a wide range of the primate phylogeny. Hundreds of miRNA were validated, and the number of species with experimentally validated miRNA was tripled. These species include a sister taxon to humans (bonobo) and basal primates (aye-aye, mouse lemur, galago). Consistent with previous studies, we found the seed region and mature miRNA to be highly conserved across primates, with overall structural conservation of the pre-miRNA hairpin. However, there were a number of interesting exceptions, including a seed shift due to structural changes in miR-501. We also identified an increase in the number of miR-320 paralogs throughout primate evolution. Many of these non-conserved miRNA appear to regulate neuronal processes, illustrating the importance of investigating miRNA to learn more about human evolution.
Collapse
Affiliation(s)
- Jey C. McCreight
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sean E. Schneider
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Damien B. Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Willie J. Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Allam M, Spillings BL, Abdalla H, Mapiye D, Koekemoer LL, Christoffels A. Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing. Malar J 2016; 15:542. [PMID: 27825380 PMCID: PMC5101901 DOI: 10.1186/s12936-016-1591-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Over the past several years, thousands of microRNAs (miRNAs) have been identified in the genomes of various insects through cloning and sequencing or even by computational prediction. However, the number of miRNAs identified in anopheline species is low and little is known about their role. The mosquito Anopheles funestus is one of the dominant malaria vectors in Africa, which infects and kills millions of people every year. Therefore, small RNA molecules isolated from the four life stages (eggs, larvae, pupae and unfed adult females) of An. funestus were sequenced using next generation sequencing technology. RESULTS High throughput sequencing of four replicates in combination with computational analysis identified 107 mature miRNA sequences expressed in the An. funestus mosquito. These include 20 novel miRNAs without sequence identity in any organism and eight miRNAs not previously reported in the Anopheles genus but are known in non-anopheles mosquitoes. Finally, the changes in the expression of miRNAs during the mosquito development were determined and the analysis showed that many miRNAs have stage-specific expression, and are co-transcribed and co-regulated during development. CONCLUSIONS This study presents the first direct experimental evidence of miRNAs in An. funestus and the first profiling study of miRNA associated with the maturation in this mosquito. Overall, the results indicate that miRNAs play important roles during the growth and development. Silencing such molecules in a specific life stage could decrease the vector population and therefore interrupt malaria transmission.
Collapse
Affiliation(s)
- Mushal Allam
- SA Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Cape Town, 7535 South Africa
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, 1 Modderfontein Road, Johannesburg, 2131 South Africa
| | - Belinda L. Spillings
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, 1 Modderfontein Road, Johannesburg, 2131 South Africa
| | - Hiba Abdalla
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, 1 Modderfontein Road, Johannesburg, 2131 South Africa
- Faculty of Health Sciences, Wits Research Institute for Malaria, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, 2000 South Africa
- Vector Biology & Control Unit, Blue Nile National Institute for Communicable Disease, Wad Medani, Sudan
| | - Darlington Mapiye
- SA Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Cape Town, 7535 South Africa
| | - Lizette L. Koekemoer
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, National Health Laboratory Service, 1 Modderfontein Road, Johannesburg, 2131 South Africa
- Faculty of Health Sciences, Wits Research Institute for Malaria, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, 2000 South Africa
| | - Alan Christoffels
- SA Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Cape Town, 7535 South Africa
| |
Collapse
|
28
|
Wang X, Zhang X, Liu S, Li G, Cui L, Qin Y, Chen ZJ. Novel mutations in the TP63 gene are potentially associated with Müllerian duct anomalies. Hum Reprod 2016; 31:2865-2871. [PMID: 27798044 DOI: 10.1093/humrep/dew259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Are mutations and/or polymorphisms in the TP63 gene associated with human Müllerian duct anomalies (MDAs)? SUMMARY ANSWER The novel mutation c.*374 G > A in the TP63 gene resulted in decreased expression of TP63 by generating new binding sites with miR-1260a/miR-532-3p and revealed the potential association between TP63 and human MDAs. WHAT IS KNOWN ALREADY It has been shown that mice lacking Tp63 exhibit hypoplastic genitalia, a single cloacal opening, and persistence of columnar epithelium at lower genital tract sites. It has also been reported that a nonsense mutation in EMX2 results in decreased TP63 expression in a woman with MDAs. However, generally in humans the association between TP63 and MDAs is unknown. STUDY DESIGN, SIZE, DURATION A total of 200 unrelated Chinese women with MDAs and 200 unrelated Chinese women with a normal uterus and vagina, as controls, were recruited in the Center for Reproductive Medicine of Shandong University. All participants had a normal karyotype (46, XX). PARTICIPANTS/MATERIALS, SETTING, METHODS The 20 exons of the TP63 gene were sequenced in 200 cases and 200 controls. Putative binding sites for microRNAs were validated by dual luciferase activity assays. The role of microRNAs was further examined by western blot. MAIN RESULTS AND THE ROLE OF CHANCE Sequence analysis revealed 15 known single-nucleotide polymorphisms. Additionally, three novel heterozygous variants, c.387 G > C, c.*374 G > A and c.*749 G > A, were identified in three patients with MDAs, none of which were detected in controls. Variant c.*374 G > A, located in the 3' untranslated region, was highly conserved among mammals and predicted to create microRNAs binding sites, which was confirmed by dual luciferase activity assays. Western blot demonstrated that the binding with miR-1260a/miR-532-3p resulting from the variation c.*374 G > A decreased the expression of TP63. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION: Further study is needed to uncover the role of the EMX2-TP63 pathway in the development of the Müllerian duct. WIDER IMPLICATIONS OF THE FINDINGS This study revealed the possible association between TP63 and MDAs and suggested a potential contribution of microRNA-regulated expression of genes in the etiology of MDAs. STUDY FUNDING/COMPETING INTERESTS This research was supported by National Basic Research Program of China (973 Program) (2012CB944700), the State Key Program of National Natural Science Foundation of China (81430029), the National Natural Science Foundation of China (81270662, 81471509), China Postdoctoral Science Foundation (2014M561939) and the Scientific Research Foundation of Shandong Province of Outstanding Young Scientists (BS2014YY013, 2014BSE27022). The authors have no competing interests.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China
| | - Xiruo Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Guangyu Li
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China
| | - Linlin Cui
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University; Shandong Provincial Key Laboratory of Reproductive Medicine .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China.,The Key laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan, 250021, China.,Center for Reproductive Medicine,Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China
| |
Collapse
|
29
|
Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, Fleming S, Wu Q, Zehner ZE. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis 2016; 37:2780-2788. [DOI: 10.1002/elps.201600258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolyn Lewis
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Chelsea Calloway
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Nerissa Peace
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Ariana Harrison
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Christina Hayes-Nash
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Samantha Fleming
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Qianni Wu
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
30
|
Xiong XR, Lan DL, Li J, Zi XD, Li MY. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing. Reprod Domest Anim 2016; 51:886-894. [PMID: 27562759 DOI: 10.1111/rda.12754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division.
Collapse
Affiliation(s)
- X R Xiong
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - D L Lan
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - J Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - X D Zi
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - M Y Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Ren W, Shen S, Sun Z, Shu P, Shen X, Bu C, Ai F, Zhang X, Tang A, Tian L, Li G, Li X, Ma J. Jak-STAT3 pathway triggers DICER1 for proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) to promote colon cancer development. Cancer Lett 2016; 375:209-220. [PMID: 26965998 DOI: 10.1016/j.canlet.2016.02.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/06/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
Chronic intestinal inflammation is closely associated with colon cancer development and STAT3 seems to take center stage in bridging chronic inflammation to colon cancer progress. Here, we discovered that DICER1 was significantly downregulated in response to IL-6 or LPS stimulation and identified a novel mechanism for DICER1 downregulation via proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) in colon cancer cells. Meanwhile, PI3K-AKT signaling pathway phosphorylated DICER1 and contributed to its proteasomal degradation. The regulation of DICER1 by CUL4A(DCAF1) affected cell growth and apoptosis which is controlled by IL-6 activated Jak-STAT3 pathway. Intervention of CUL4A(DCAF1) ubiquitin ligase complex led to fluctuation in expression levels of DICER1 and microRNAs, and thus affected tumor growth in a mouse xenograft model. A panel of microRNAs that were downregulated by IL-6 stimulation was rescued by siRNA-CUL4A, and their predicated functions are involved in regulation of cell proliferation, apoptosis and motility. Furthermore, clinical specimen analysis revealed that decreased DICER1 expression was negatively correlated with STAT3 activation and cancer progression in human colon cancers. DICER1 and p-STAT3 expression levels correlated with 5-year overall survival of colon cancer patients. Consequently, this study proposes that inflammation-induced Jak-STAT3 signaling leads to colon cancer development through proteasomal degradation of DICER1 by ubiquitin ligase complex of CUL4A(DCAF1), which suggests a novel therapeutic opportunity for colon cancer.
Collapse
Affiliation(s)
- Weiguo Ren
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhenqiang Sun
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Peng Shu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chibin Bu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xuemei Zhang
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.
| | - Jian Ma
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
32
|
Marí-Alexandre J, Barceló-Molina M, Olcina-Guillem M, García-Oms J, Braza-Boïls A, Gilabert-Estellés J. MicroRNAs: New players in endometriosis. World J Obstet Gynecol 2016; 5:28-38. [DOI: 10.5317/wjog.v5.i1.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/14/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disorder that limits the quality of life of affected women. This pathology affects 10% of reproductive-age women, although the prevalence in those patients experiencing pain, infertility or both is as high as 35%-50%. Endometriosis is characterized by endometrial-like tissue outside the uterus, primarily on the pelvic peritoneum, ovaries and the pouch of Douglas. Despite extensive research endeavours, a unifying theory regarding the exact etiopathogenic mechanism of this high prevalent and incapacitating condition is still lacking, although it has been suggested that epigenetics could be involved. MicroRNAs (miRNAs), one of the epigenetic players, are small non-coding RNAs that can act as post-transcriptional regulators of gene expression, reducing the expression of their target mRNAs either inhibiting its translation or promoting its degradation. MiRNA expression profiles are specific of tissue and cell type. Abnormal miRNA expression has been described in different pathological conditions, such as a myriad of oncological, cardiovascular and inflammatory diseases and gynecological pathologies. In endometriosis, miRNA expression patterns of eutopic endometrium from patients and control women and from different endometriotic lesions have been described. These small non-coding molecules have become attractive candidates as novel biomarkers for an early non-invasive diagnosis of the disease, which could suppose a valuable benefit to the patients in terms of improvement of prognosis and reduction of the ratio of recurrence. In this systematic review we will focus on the role of miRNAs in the pathophisiology of endometriosis.
Collapse
|
33
|
Guo W, Zhang Y, Wang Q, Zhan Y, Zhu G, Yu Q, Zhu L. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. PLANTA 2016; 243:83-95. [PMID: 26342708 PMCID: PMC4698290 DOI: 10.1007/s00425-015-2389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/20/2015] [Indexed: 05/24/2023]
Abstract
High-throughput sequencing and degradome analysis for Cercis gigantea identified 194 known miRNAs and 23 novel miRNAs with 61 targets. The comparison results of highly conserved miRNAs and non-conserved miRNAs implied that C. gigantea miRNAs were subjected to the neutral evolution. MicroRNAs play a key role in post-transcriptionally regulating gene expression during plant growth, development and other various biological processes. Although numerous miRNAs have been identified and documented, to date, there are no reports on Cercis gigantea (C. gigantea) miRNAs. In this study, C. gigantea miRNAs and their target genes were investigated by extracting RNA from young roots, tender stems, young leaves, and flower buds of C. gigantea to establish a small RNA and a degradome library to further sequence. This study identified 194 known miRNAs belonging to 52 miRNA families and 23 novel miRNAs. Among these, 158 miRNAs from 27 miRNA families were highly conserved and existed in a plurality of plants. In addition, 60 different targets for 30 known families and one target for novel miRNA were identified by high-throughput sequencing and degradome analysis in C. gigantea. The comparison results revealed that highly conserved miRNAs have higher expression levels, more family members and more targets than non-conserved miRNAs, indicating that C. gigantea miRNAs were subjected to the neutral evolution. Meanwhile, these conserved miRNAs were also found to be involved in auxin signal transduction, regulation of transcription, and other developmental processes, which will help further understanding regulatory mechanisms of C. gigantea miRNAs.
Collapse
Affiliation(s)
- Wenna Guo
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ying Zhang
- Yangzhou Breeding Biological Agriculture Technology Co. Ltd, Yangzhou, 225200, People's Republic of China.
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Yueping Zhan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Guanghui Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
34
|
Joshi NR, Su RW, Chandramouli GVR, Khoo SK, Jeong JW, Young SL, Lessey BA, Fazleabas AT. Altered expression of microRNA-451 in eutopic endometrium of baboons (Papio anubis) with endometriosis. Hum Reprod 2015; 30:2881-91. [PMID: 26370665 DOI: 10.1093/humrep/dev229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are microRNAs (miRs) altered in the eutopic endometrium (EuE) of baboons following the induction of endometriosis? SUMMARY ANSWER Induction of endometriosis causes significant changes in the expression of eight miRs, including miR-451, in the baboon endometrium as early as 3 months following induction of the disease. WHAT IS KNOWN ALREADY Endometriosis is one of the most common gynecological disorders and causes chronic pelvic pain and infertility in women of reproductive age. Altered expression of miRs has been reported in women and has been suggested to play an important role in the pathophysiology of several gynecological disorders including endometriosis. STUDY DESIGN, SIZE, DURATION EuE was obtained from the same group of baboons before and 3 months after the induction of endometriosis. The altered expression of miR-451 was validated in the eutopic and ectopic endometrium of additional baboons between 3 and 15 months following disease induction. Timed endometrial biopsies from women with and without endometriosis were also used to validate the expression of miR-451. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA was extracted from EuE samples before and after the induction of endometriosis, and miRNA expression was analyzed using a 8 × 15 K miR microarray. Microarray signal data were preprocessed by AgiMiRna software, and an empirical Bayes model was used to estimate the changes. The present study focused on quantitative RT-PCR validation of the microarray data, specifically on miR-451 and its target genes in both baboons (n = 3) and women [control (n = 7) and endometriosis (n = 19)]. Descriptive and correlative analysis of miR-451 and target gene expression was conducted using in situ hybridization and immunohistochemistry, while functional analysis utilized an in vitro 3' untranslated region (UTR) luciferase assay and overexpression of miR-451 in human endometrial and endometriotic cell lines. MAIN RESULTS AND THE ROLE OF CHANCE Induction of endometriosis results in the altered expression of miR-451, -141, -29c, -21, -424, -19b, -200a and -181a in the baboon endometrium. In the baboon, induction of endometriosis significantly decreased the expression of miR-451 at 3 months (P < 0.001), which was also associated with increased expression of its target gene YWHAZ (14.3.3ζ). A similar significant (P < 0.0001) decrease in miR-451 expression was observed in women with endometriosis. The 3' UTR luciferase assay confirmed the regulation of YWHAZ expression by miR-451. Furthermore, overexpression of miR-451 in 12Z cells (immortalized human endometriotic epithelial cell line) led to the decreased expression of its target YWHAZ and this was correlated with decreased cell proliferation. LIMITATIONS, REASONS FOR CAUTION The study focused only on miR-451 and one of its targets, namely YWHAZ. A single miR could target number of genes and a single gene could also be regulated by number of miRs; hence, it is possible that other miRs and their regulated genes may contribute to the pathophysiology of endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Our data suggest that the presence of ectopic lesions in baboon causes changes in EuE miR expression as early as 3 months postinduction of the disease, and some of these changes may persist throughout the course of the disease. We propose that the marked down-regulation of miR-451 in both baboons and women with endometriosis increases the expression of multiple target genes. Increased expression of one of the target genes, YWHAZ, increases proliferation, likely contributing to the pathophysiology of the disease.
Collapse
Affiliation(s)
- N R Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - R W Su
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - S K Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, MI 49503, USA
| | - J W Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - S L Young
- Department of Obstetrics and Gynecology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - B A Lessey
- Greenville Hospital System, University of South Carolina School of Medicine, Greenville, SC 29605, USA
| | - A T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| |
Collapse
|
35
|
Yang CW, Chang CYY, Lai MT, Chang HW, Lu CC, Chen Y, Chen CM, Lee SC, Tsai PW, Yang SH, Lin CH, Sheu JJC, Tsai FJ. Genetic variations of MUC17 are associated with endometriosis development and related infertility. BMC MEDICAL GENETICS 2015; 16:60. [PMID: 26285705 PMCID: PMC4593232 DOI: 10.1186/s12881-015-0209-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetic alterations of mucin genes, such as MUC2 and MUC4, were previously identified to be associated with endometriosis and related infertility. Additionally, gene expression profiling has confirmed MUC17 to be overexpressed in mucinous ovarian carcinoma; however, its associated risk for endometriosis remains unclear. This study was focused on the potential impact of genetic variations in MUC17 on endometriosis development and associated clinical features. METHODS The study subjects included 189 female Taiwanese patients with pathology-proven endometriosis and 191 healthy Taiwanese women as controls. Five single-nucleotide polymorphisms (rs4729645, rs10953316, rs74974199, rs4729655, and rs4729656) within the MUC17 gene were selected and genotyped using the Taqman genotyping assay to examine the allele frequency and genotype distributions of MUC17 polymorphisms. RESULTS Genotyping revealed that the A allele at rs10953316 in MUC17 was a protective genetic factor in endometriosis development (p = 0.008; OR = 0.53; 95% CI: 0.36-0.79). Genetic variation of rs4729655 protected patients against endometriosis-induced infertility, but was associated with a higher cancer antigen 125 (CA125) level. Base-pairing analysis, called MaxExpect, predicted an additional loop in the mRNA structure caused by rs10953316 polymorphism, possibly influencing ribosome sliding and translation efficiency. Such predictions were confirmed by immunohistochemistry that patients with AA genotype at rs10953316 showed low MUC17 levels in their endometrium, patients with GA genotype showed moderate levels, and strong staining could be found in patients with GG genotype. CONCLUSIONS MUC17 polymorphisms are involved in endometriosis development and the associated infertility in the Taiwanese population.
Collapse
Affiliation(s)
- Ching-Wen Yang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan. .,Institute of Environmental Health, China Medical University, Taichung, Taiwan.
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Taichung, Taiwan.
| | - Hui-Wen Chang
- School of Medicine, China Medical University, Taichung, Taiwan.
| | - Cheng-Chan Lu
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Pathology, Medical College, National Cheng Kung University, Tainan, Taiwan.
| | - Yi Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.
| | - Shan-Chih Lee
- Collage of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.
| | - Pei-Wen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.
| | - Su-Han Yang
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hung Lin
- Department of Pathology, Kaohsiung University Hospital, Kaohsiung, Taiwan.
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Human Genetic Center, China Medical University Hospital, Taichung, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan. .,School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
36
|
Liu S, Zhang X, Shi C, Lin J, Chen G, Wu B, Wu L, Shi H, Yuan Y, Zhou W, Sun Z, Dong X, Wang J. Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome. J Transl Med 2015. [PMID: 26198660 PMCID: PMC4508762 DOI: 10.1186/s12967-015-0605-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age, and oocyte developmental competence is altered in patients with PCOS. In recent years microRNAs (miRNAs) have emerged as important regulators of gene expression, the aim of the study was to study miRNAs expression patterns of cumulus cells from PCOS patients. Methods The study included 20 patients undergoing in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI): 10 diagnosed with PCOS and 10 matching controls. We used deep sequencing technology to identify the miRNAs differentially expressed in the cumulus cells of PCOS. Results There were 17 differentially expressed miRNAs in PCOS cumulus cells, including 10 miRNAs increase and 7 miRNAs decrease. These miRNAs were predicted to target a large set of genes with different functions, including Wnt- and MAPK- signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation and cell cycle. Unsupervised hierarchical clustering analysis demonstrated that there was a specific miRNAs expression pattern in PCOS cumulus cells. Conclusion We found that the miRNAs expression profile was different in cumulus cells isolated from PCOS patients compared with control. This study provided new evidence for understanding the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Suying Liu
- Department of In-Vitro Fertilization, Shanghai Zhongshan Hospital, Shanghai, China.
| | - Xuan Zhang
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China.
| | - Changgen Shi
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China.
| | - Jimin Lin
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Guowu Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai Jiai Genetics and IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. .,Medical School of Fudan University, Shanghai, China.
| | - Bin Wu
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China.
| | - Ligang Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Huijuan Shi
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China. .,Medical School of Fudan University, Shanghai, China.
| | - Yao Yuan
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China.
| | - Weijin Zhou
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China. .,Medical School of Fudan University, Shanghai, China.
| | - Zhaogui Sun
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China. .,Medical School of Fudan University, Shanghai, China.
| | - Xi Dong
- Department of In-Vitro Fertilization, Shanghai Zhongshan Hospital, Shanghai, China.
| | - Jian Wang
- National Populations and Family Planning Key Laboratory of Contraceptive Drugs and Devices, The Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China. .,Medical School of Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Marí-Alexandre J, García-Oms J, Barceló-Molina M, Gilabert-Aguilar J, Estellés A, Braza-Boíls A, Gilabert-Estellés J. MicroRNAs and angiogenesis in endometriosis. Thromb Res 2015; 135 Suppl 1:S38-40. [PMID: 25903532 DOI: 10.1016/s0049-3848(15)50439-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
miRNAs function as important regulators of a wide range of cellular processes, such as angiogenesis and fibrinolysis, by postranscriptional modulation of gene expression. We present a review on the role of miRNAs and angiogenesis in endometriosis. Endometriosis, defined as the implantation of endometrial tissue outside the uterine cavity, is one of the most frequent benign gynecological diseases and it has important consequences on the quality of life and fertility of patients. Similarly to tumor metastasis, the ectopic endometrium acquires the capability to adhere, proliferate and infiltrate the extracellular matrix. Endometriosis is a multifactorial and polygenic disease in which angiogenesis and proteolysis may be involved, and emerging data provide evidence that a dysregulation of miRNA expression may be implicated in these processes. The detection of circulating miRNAs in plasma and other body fluids and their relative stability has raised the possibility that they might serve as non-invasive biomarkers for the diagnosis of the disease. On the other hand, the development of therapies that might block the expression or mimic the functions of miRNAs could represent new therapeutic strategies for the treatment of endometriosis.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Javier García-Oms
- Area Maternoinfantil, Hospital General Universitario, Valencia, Spain
| | - Moisés Barceló-Molina
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Amparo Estellés
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Aitana Braza-Boíls
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | |
Collapse
|
38
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
39
|
Saare M, Rekker K, Laisk-Podar T, Sõritsa D, Roost AM, Simm J, Velthut-Meikas A, Samuel K, Metsalu T, Karro H, Sõritsa A, Salumets A, Peters M. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLoS One 2014; 9:e112630. [PMID: 25386850 PMCID: PMC4227690 DOI: 10.1371/journal.pone.0112630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022] Open
Abstract
Accumulating data have shown the involvement of microRNAs (miRNAs) in endometriosis pathogenesis. In this study, we used a novel approach to determine the endometriotic lesion-specific miRNAs by high-throughput small RNA sequencing of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissues together with eutopic endometria of the same patients. We found five miRNAs specific to epithelial cells – miR-34c, miR-449a, miR-200a, miR-200b and miR-141 showing significantly higher expression in peritoneal endometriotic lesions compared to healthy peritoneal tissues. We also determined the expression levels of miR-200 family target genes E-cadherin, ZEB1 and ZEB2 and found that the expression level of E-cadherin was significantly higher in endometriotic lesions compared to healthy tissues. Further evaluation verified that studied miRNAs could be used as diagnostic markers for confirming the presence of endometrial cells in endometriotic lesion biopsy samples. Furthermore, we demonstrated that the miRNA profile of peritoneal endometriotic lesion biopsies is largely masked by the surrounding peritoneal tissue, challenging the discovery of an accurate lesion-specific miRNA profile. Taken together, our findings indicate that only particular miRNAs with a significantly higher expression in endometriotic cells can be detected from lesion biopsies, and can serve as diagnostic markers for endometriosis.
Collapse
Affiliation(s)
- Merli Saare
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
- Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Kadri Rekker
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | - Triin Laisk-Podar
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | - Deniss Sõritsa
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Tartu University Hospital's Women's Clinic, Tartu, Estonia
- Elite Clinic, Sangla 63, Tartu, Estonia
| | - Anne Mari Roost
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Jaak Simm
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
- iMinds Medical IT, Leuven, Belgium
- Centre for Biology of Integrated Systems, Tallinn University of Technology, Tallinn, Estonia
| | - Agne Velthut-Meikas
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Centre for Biology of Integrated Systems, Tallinn University of Technology, Tallinn, Estonia
| | - Külli Samuel
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Tauno Metsalu
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Helle Karro
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
- Tartu University Hospital's Women's Clinic, Tartu, Estonia
| | | | - Andres Salumets
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
- Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Marmoset Genome Sequencing and Analysis Consortium. The common marmoset genome provides insight into primate biology and evolution. Nat Genet 2014; 46:850-7. [PMID: 25038751 PMCID: PMC4138798 DOI: 10.1038/ng.3042] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/27/2014] [Indexed: 02/06/2023]
Abstract
We report the whole-genome sequence of the common marmoset (Callithrix jacchus). The 2.26-Gb genome of a female marmoset was assembled using Sanger read data (6×) and a whole-genome shotgun strategy. A first analysis has permitted comparison with the genomes of apes and Old World monkeys and the identification of specific features that might contribute to the unique biology of this diminutive primate, including genetic changes that may influence body size, frequent twinning and chimerism. We observed positive selection in growth hormone/insulin-like growth factor genes (growth pathways), respiratory complex I genes (metabolic pathways), and genes encoding immunobiological factors and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibited evidence of rapid sequence evolution. This genome sequence for a New World monkey enables increased power for comparative analyses among available primate genomes and facilitates biomedical research application.
Collapse
Collaborators
Kim C Worley, Wesley C Warren, Jeffrey Rogers, Devin Locke, Donna M Muzny, Elaine R Mardis, George M Weinstock, Suzette D Tardif, Kjersti M Aagaard, Nicoletta Archidiacono, Nirmala Arul Rayan, Mark A Batzer, Kathryn Beal, Brona Brejova, Oronzo Capozzi, Saverio B Capuano, Claudio Casola, Mimi M Chandrabose, Andrew Cree, Marvin Diep Dao, Pieter J de Jong, Ricardo Cruz-Herrera Del Rosario, Kim D Delehaunty, Huyen H Dinh, Evan E Eichler, Stephen Fitzgerald, Paul Flicek, Catherine C Fontenot, R Gerald Fowler, Catrina Fronick, Lucinda A Fulton, Robert S Fulton, Ramatu Ayiesha Gabisi, Daniel Gerlach, Tina A Graves, Preethi H Gunaratne, Matthew W Hahn, David Haig, Yi Han, R Alan Harris, Javier Herrero, LaDeana W Hillier, Robert Hubley, Jennifer F Hughes, Jennifer Hume, Shalini N Jhangiani, Lynn B Jorde, Vandita Joshi, Emre Karakor, Miriam K Konkel, Carolin Kosiol, Christie L Kovar, Evgenia V Kriventseva, Sandra L Lee, Lora R Lewis, Yih-Shin Liu, John Lopez, Carlos Lopez-Otin, Belen Lorente-Galdos, Keith G Mansfield, Tomas Marques-Bonet, Patrick Minx, Doriana Misceo, J Scott Moncrieff, Margaret B Morgan, Lynne V Nazareth, Irene Newsham, Ngoc Bich Nguyen, Geoffrey O Okwuonu, Shyam Prabhakar, Lora Perales, Ling-Ling Pu, Xose S Puente, Victor Quesada, Megan C Ranck, Brian J Raney, Muthuswamy Raveendran, David Rio Deiros, Mariano Rocchi, David Rodriguez, Corinna Ross, Magali Ruffier, San Juana Ruiz, Saba Sajjadian, Jireh Santibanez, Daniel R Schrider, Steve Searle, Helen Skaletsky, Benjamin Soibam, Arian F A Smit, Jayantha B Tennakoon, Lubomir Tomaska, Brygg Ullmer, Charles E Vejnar, Mario Ventura, Albert J Vilella, Tomas Vinar, Jan-Hinnerk Vogel, Jerilyn A Walker, Qing Wang, Crystal M Warner, Derek E Wildman, David J Witherspoon, Rita A Wright, Yuanqing Wu, Weimin Xiao, Jinchuan Xing, Evgeny M Zdobnov, Baoli Zhu, Richard A Gibbs, Richard K Wilson,
Collapse
|
41
|
Abstract
We provide a review of microRNA (miRNA) related to human implantation which shows the potential diagnostic role of miRNAs in impaired endometrial receptivity, altered embryo development, implantation failure after assisted reproduction technology, and in ectopic pregnancy and pregnancies of unknown location. MicroRNAs may be emerging diagnostic markers and potential therapeutic tools for understanding implantation disorders. However, further research is needed before miRNAs can be used in clinical practice for identifying and treating implantation failure.
Collapse
|
42
|
MicroRNA and gynecological reproductive diseases. Fertil Steril 2014; 101:1545-51. [PMID: 24882618 DOI: 10.1016/j.fertnstert.2014.04.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs estimated to regulate the translation of mRNAs in 30% of all genes in animals by inhibiting translation. Aberrant miRNA expression is associated with many human diseases, including gynecological diseases, cancer, inflammatory diseases, and cardiovascular disorders. Abnormal expression of miRNAs has been observed in multiple human reproductive tract diseases including preeclampsia, endometrioid endometrial adenocarcinoma, uterine leiomyomata, ovarian carcinoma, endometriosis, and recurrent pregnancy loss. In the following review, an update of the role of microRNA and gynecological diseases is performed covering, not only impact of microRNA dysregulation in the origin of each disease, but also showing the potential useful diagnostic and therapeutic tool that miRNA may play in these gynecological pathologies.
Collapse
|
43
|
Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e163. [PMID: 24845106 PMCID: PMC4040629 DOI: 10.1038/mtna.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/12/2014] [Indexed: 12/14/2022]
Abstract
Small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), virus-derived sncRNAs, and more recently identified tRNA-derived RNA fragments, are critical to posttranscriptional control of genes. Upon viral infection, host cells alter their sncRNA expression as a defense mechanism, while viruses can circumvent host defenses and promote their own propagation by affecting host cellular sncRNA expression or by expressing viral sncRNAs. Therefore, characterizing sncRNA profiles in response to viral infection is an important tool for understanding host–virus interaction, and for antiviral strategy development. Human metapneumovirus (hMPV), a recently identified pathogen, is a major cause of lower respiratory tract infections in infants and children. To investigate whether sncRNAs play a role in hMPV infection, we analyzed the changes in sncRNA profiles of airway epithelial cells in response to hMPV infection using ultrahigh-throughput sequencing. Of the cloned sncRNAs, miRNA was dominant in A549 cells, with the percentage of miRNA increasing in a time-dependent manner after the infection. In addition, several hMPV-derived sncRNAs and corresponding ribonucleases for their biogenesis were identified. hMPV M2-2 protein was revealed to be a key viral protein regulating miRNA expression. In summary, this study revealed several novel aspects of hMPV-mediated sncRNA expression, providing a new perspective on hMPV–host interactions.
Collapse
|
44
|
Sun J, Zhou Y, Cai H, Lan X, Lei C, Zhao X, Zhang C, Chen H. Discovery of novel and differentially expressed microRNAs between fetal and adult backfat in cattle. PLoS One 2014; 9:e90244. [PMID: 24587298 PMCID: PMC3938653 DOI: 10.1371/journal.pone.0090244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/25/2014] [Indexed: 11/25/2022] Open
Abstract
The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPARα/RXRα activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality.
Collapse
Affiliation(s)
- Jiajie Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou Jiangsu, China
| | - Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou Jiangsu, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
45
|
Altmäe S, Esteban FJ, Stavreus-Evers A, Simón C, Giudice L, Lessey BA, Horcajadas JA, Macklon NS, D'Hooghe T, Campoy C, Fauser BC, Salamonsen LA, Salumets A. Guidelines for the design, analysis and interpretation of 'omics' data: focus on human endometrium. Hum Reprod Update 2014; 20:12-28. [PMID: 24082038 PMCID: PMC3845681 DOI: 10.1093/humupd/dmt048] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/04/2013] [Accepted: 08/19/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND 'Omics' high-throughput analyses, including genomics, epigenomics, transcriptomics, proteomics and metabolomics, are widely applied in human endometrial studies. Analysis of endometrial transcriptome patterns in physiological and pathophysiological conditions has been to date the most commonly applied 'omics' technique in human endometrium. As the technologies improve, proteomics holds the next big promise for this field. The 'omics' technologies have undoubtedly advanced our knowledge of human endometrium in relation to fertility and different diseases. Nevertheless, the challenges arising from the vast amount of data generated and the broad variation of 'omics' profiling according to different environments and stimuli make it difficult to assess the validity, reproducibility and interpretation of such 'omics' data. With the expansion of 'omics' analyses in the study of the endometrium, there is a growing need to develop guidelines for the design of studies, and the analysis and interpretation of 'omics' data. METHODS Systematic review of the literature in PubMed, and references from relevant articles were investigated up to March 2013. RESULTS The current review aims to provide guidelines for future 'omics' studies on human endometrium, together with a summary of the status and trends, promise and shortcomings in the high-throughput technologies. In addition, the approaches presented here can be adapted to other areas of high-throughput 'omics' studies. CONCLUSION A highly rigorous approach to future studies, based on the guidelines provided here, is a prerequisite for obtaining data on biological systems which can be shared among researchers worldwide and will ultimately be of clinical benefit.
Collapse
Affiliation(s)
- Signe Altmäe
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- School of Medicine, Department of Paediatrics, University of Granada, 18012 Granada, Spain
| | | | - Anneli Stavreus-Evers
- Department of Women's and Children's Health, Uppsala University, Akademiska Sjukhuset, 75185 Uppsala, Sweden
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, 46021 Valencia, Spain
| | - Linda Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143-0132, USA
| | - Bruce A. Lessey
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University Medical Group, Greenville Hospital System, Greenville, South Carolina, SC 29605, USA
| | - Jose A. Horcajadas
- Araid-Hospital Miguel Servet, 50004 Zaragoza, Spain
- Department of Genetics, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Nick S. Macklon
- Department of Obstetrics and Gynaecology, Division of Developmental Origins of Adult Disease, University of Southampton, Princess Anne Hospital, SO16 5YA Southampton, UK
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Thomas D'Hooghe
- Leuven University Fertility Center, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven (Leuven University), 3000 Leuven, Belgium
| | - Cristina Campoy
- School of Medicine, Department of Paediatrics, University of Granada, 18012 Granada, Spain
| | - Bart C. Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lois A. Salamonsen
- Prince Henry's Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Andres Salumets
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Obstetrics and Gynaecology, University of Tartu, 51014 Tartu, Estonia
| |
Collapse
|
46
|
Vitaloni M, Pulecio J, Bilic J, Kuebler B, Laricchia-Robbio L, Izpisua Belmonte JC. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory. J Biol Chem 2013; 289:2084-98. [PMID: 24311783 DOI: 10.1074/jbc.m113.538702] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) maintain during the first few culture passages a set of epigenetic marks and metabolites characteristic of their somatic cell of origin, a concept defined as epigenetic donor memory. These residual somatic features are lost over time after extensive culture passaging. Therefore, epigenetic donor memory may be responsible for the higher differentiation efficiency toward the tissue of origin observed in low passage iPSCs versus high passage iPSC or iPSCs derived from a different tissue source. Remarkably, there are no studies on the relevance of microRNA (miRNA) memory following reprogramming, despite the established role of these molecules in the context of pluripotency and differentiation. Using hematopoietic progenitors cells as a model, we demonstrated that miRNAs play a central role in somatic memory retention in iPSCs. Moreover, the comparison of the miRNA expression profiles among iPSCs from different sources allowed for the detection of a set of candidate miRNAs responsible for the higher differentiation efficiency rates toward blood progenitors observed in low passage iPSCs. Combining bioinformatic predictive algorithms with biological target validation, we identified miR-155 as a key player for the in vitro differentiation of iPSC toward hematopoietic progenitors. In summary, this study reveals that during the initial passages following reprogramming, iPSCs maintained the expression of a miRNA set exclusive to the original somatic population. Hence the use of these miRNAs might hold a direct application toward our understanding of the differentiation process of iPSCs toward hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Marianna Vitaloni
- From the Center for Regenerative Medicine in Barcelona, 08003 Barcelona, Spain and
| | | | | | | | | | | |
Collapse
|
47
|
Deep sequencing identification of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. PLoS One 2013; 8:e78316. [PMID: 24250753 PMCID: PMC3824063 DOI: 10.1371/journal.pone.0078316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
Apoptosis of lymphocytes governs the response of the immune system to environmental stress and toxic insult. Signaling through the ubiquitously expressed glucocorticoid receptor, stress-induced glucocorticoid hormones induce apoptosis via mechanisms requiring altered gene expression. Several reports have detailed the changes in gene expression mediating glucocorticoid-induced apoptosis of lymphocytes. However, few studies have examined the role of non-coding miRNAs in this essential physiological process. Previously, using hybridization-based gene expression analysis and deep sequencing of small RNAs, we described the prevalent post-transcriptional repression of annotated miRNAs during glucocorticoid-induced apoptosis of lymphocytes. Here, we describe the development of a customized bioinformatics pipeline that facilitates the deep sequencing-mediated discovery of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. This analysis identifies the potential presence of over 200 novel glucocorticoid-responsive miRNAs. We have validated the expression of two novel glucocorticoid-responsive miRNAs using small RNA-specific qPCR. Furthermore, through the use of Ingenuity Pathways Analysis (IPA) we determined that the putative targets of these novel validated miRNAs are predicted to regulate cell death processes. These findings identify two and predict the presence of additional novel glucocorticoid-responsive miRNAs in the rat transcriptome, suggesting a potential role for both annotated and novel miRNAs in glucocorticoid-induced apoptosis of lymphocytes.
Collapse
|
48
|
Di Leva G, Croce CM. The Role of microRNAs in the Tumorigenesis of Ovarian Cancer. Front Oncol 2013; 3:153. [PMID: 23785667 PMCID: PMC3682193 DOI: 10.3389/fonc.2013.00153] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/29/2013] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a complex disease, with multiple histological subtypes recognized. There have been major advances in the understanding of the cellular and molecular biology of this human malignancy, however the survival rate of women with EOC has changed little since platinum-based-treatment was introduced more than 30 years ago. Since 2006, an increasing number of studies have indicated an essential role for microRNAs (miRNAs) in ovarian-cancer tumorigenesis. Several miRNA profiling studies have shown that they associate with different aspects of ovarian cancer (tumor subtype, stage, histological grade, prognosis, and therapy resistance) and pointed to a critical role for miRNAs in the pathogenesis and progression of EOC. In this review, we discuss the current data concerning the accumulating evidence of the modulated expression of miRNAs in EOC, their role in diagnosis, prognosis, and prediction of response to therapy. Given the heterogeneity of this disease, it is likely that increases in long-term survival might be also achieved by translating the recent insights of miRNAs involvement in EOC into novel targeted therapies that will have a major impact on the management of ovarian cancer.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
49
|
Toll-like receptor-associated sequence variants and prostate cancer risk among men of African descent. Genes Immun 2013; 14:347-55. [PMID: 23657238 PMCID: PMC3743959 DOI: 10.1038/gene.2013.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recent advances demonstrate a relationship between chronic/recurrent inflammation and prostate cancer (PCA). Among inflammatory regulators, toll-like receptors (TLRs) play a critical role in innate immune responses. However, it remains unclear whether variant TLR genes influence PCA risk among men of African descent. Therefore, we evaluated the impact of 32 TLR-associated single nucleotide polymorphisms (SNPs) on PCA risk among African-Americans and Jamaicans. METHODS SNP profiles of 814 subjects were evaluated using Illumina’s Veracode genotyping platform. Single and combined effects of SNPs in relation to PCA risk were assessed using age-adjusted logistic regression and entropy-based multifactor dimensionality reduction (MDR) models. RESULTS Seven sequence variants detected in TLR6, TOLLIP, IRAK4, IRF3 were marginally related to PCA. However, none of these effects remained significant after adjusting for multiple hypothesis testing. Nevertheless, MDR modeling revealed a complex interaction between IRAK4 rs4251545 and TLR2 rs1898830 as a significant predictor of PCA risk among U.S. men (permutation testing p-value = 0.001). CONCLUSIONS MDR identified an interaction between IRAK4 and TLR2 as the best two factor model for predicting PCA risk among men of African descent. However, these findings require further assessment and validation.
Collapse
|
50
|
Juanchich A, Le Cam A, Montfort J, Guiguen Y, Bobe J. Identification of Differentially Expressed miRNAs and Their Potential Targets During Fish Ovarian Development1. Biol Reprod 2013; 88:128. [DOI: 10.1095/biolreprod.112.105361] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|