1
|
Bayón-Gil Á, Martinez-Picado J, Puertas MC. Viremic non-progression in HIV/SIV infection: A tied game between virus and host. Cell Rep Med 2025; 6:101921. [PMID: 39842407 PMCID: PMC11866547 DOI: 10.1016/j.xcrm.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
High-efficacy antiretroviral treatment (ART) has been a game-changer for HIV/AIDS pandemic, but incomplete CD4+ T cell recovery and persistent chronic immune activation still affect HIV-suppressed people. Exceptional cases of HIV infection that naturally exhibit delayed disease progression provide invaluable insights into protective biological mechanisms with potential clinical application. Viremic non-progressors (VNPs) represent an extremely rare population of individuals with HIV, characterized by preservation of the CD4+ T cell compartment despite persistent high levels of viral load (>10,000 copies/mL). While only a few studies have investigated the immunovirological characteristics of adult and pediatric VNPs, most of our knowledge about this phenotype stems from its non-human-primate counterpart, the natural simian immunodeficiency virus (SIV) hosts. In this review, we synthesize the insights gained from recent studies of natural SIV hosts and VNPs and evaluate the potential similarities and differences in the mechanisms that underlie the absence of pathogenesis, with special focus on the control of immune activation.
Collapse
Affiliation(s)
- Ángel Bayón-Gil
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Bond NG, Fahlberg MD, Yu S, Rout N, Tran D, Fitzpatrick-Schmidt T, Sprehe LM, Scheef EA, Mudd JC, Schaub R, Kaur A. Immunomodulatory potential of in vivo natural killer T (NKT) activation by NKTT320 in Mauritian-origin cynomolgus macaques. iScience 2022; 25:103889. [PMID: 35243248 PMCID: PMC8866157 DOI: 10.1016/j.isci.2022.103889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T-lymphocytes (iNKT) are unique immunomodulatory innate T cells with an invariant TCRα recognizing glycolipids presented on MHC class-I-like CD1d molecules. Activated iNKT rapidly secrete pro-and anti-inflammatory cytokines, potentiate immunity, and modulate inflammation. Here, we report the effects of in vivo iNKT activation in Mauritian-origin cynomolgus macaques by a humanized monoclonal antibody, NKTT320, that binds to the invariant region of the iNKT TCR. NKTT320 led to rapid iNKT activation, increased polyfunctionality, and elevation of multiple plasma analytes within 24 hours. Flow cytometry and RNA-Seq confirmed downstream activation of multiple immune subsets, enrichment of JAK/STAT and PI3K/AKT pathway genes, and upregulation of inflammation-modulating genes. NKTT320 also increased iNKT frequency in adipose tissue and did not cause iNKT anergy. Our data indicate that NKTT320 has a sustained effect on in vivo iNKT activation, potentiation of innate and adaptive immunity, and resolution of inflammation, which supports its future use as an immunotherapeutic. NKTT320 rapidly activates iNKT in vivo, modulating downstream immune function In vivo NKTT320 treatment modulates pro- and anti-inflammatory genes NKTT320 treatment results in activation of innate and adaptive immune subsets NKTT320 has promise as an immunotherapeutic with translational potential
Collapse
|
3
|
Moström MJ, Scheef EA, Sprehe LM, Szeltner D, Tran D, Hennebold JD, Roberts VHJ, Maness NJ, Fahlberg M, Kaur A. Immune Profile of the Normal Maternal-Fetal Interface in Rhesus Macaques and Its Alteration Following Zika Virus Infection. Front Immunol 2021; 12:719810. [PMID: 34394129 PMCID: PMC8358803 DOI: 10.3389/fimmu.2021.719810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
The maternal decidua is an immunologically complex environment that balances maintenance of immune tolerance to fetal paternal antigens with protection of the fetus against vertical transmission of maternal pathogens. To better understand host immune determinants of congenital infection at the maternal-fetal tissue interface, we performed a comparative analysis of innate and adaptive immune cell subsets in the peripheral blood and decidua of healthy rhesus macaque pregnancies across all trimesters of gestation and determined changes after Zika virus (ZIKV) infection. Using one 28-color and one 18-color polychromatic flow cytometry panel we simultaneously analyzed the frequency, phenotype, activation status and trafficking properties of αβ T, γδ T, iNKT, regulatory T (Treg), NK cells, B lymphocytes, monocytes, macrophages, and dendritic cells (DC). Decidual leukocytes showed a striking enrichment of activated effector memory and tissue-resident memory CD4+ and CD8+ T lymphocytes, CD4+ Tregs, CD56+ NK cells, CD14+CD16+ monocytes, CD206+ tissue-resident macrophages, and a paucity of B lymphocytes when compared to peripheral blood. t-distributed stochastic neighbor embedding (tSNE) revealed unique populations of decidual NK, T, DC and monocyte/macrophage subsets. Principal component analysis showed distinct spatial localization of decidual and circulating leukocytes contributed by NK and CD8+ T lymphocytes, and separation of decidua based on gestational age contributed by memory CD4+ and CD8+ T lymphocytes. Decidua from 10 ZIKV-infected dams obtained 16-56 days post infection at third (n=9) or second (n=1) trimester showed a significant reduction in frequency of activated, CXCR3+, and/or Granzyme B+ memory CD4+ and CD8+ T lymphocytes and γδ T compared to normal decidua. These data suggest that ZIKV induces local immunosuppression with reduced immune recruitment and impaired cytotoxicity. Our study adds to the immune characterization of the maternal-fetal interface in a translational nonhuman primate model of congenital infection and provides novel insight in to putative mechanisms of vertical transmission.
Collapse
Affiliation(s)
- Matilda J Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| | - Elizabeth A Scheef
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Lesli M Sprehe
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Dawn Szeltner
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Dollnovan Tran
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nicholas J Maness
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States.,Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Marissa Fahlberg
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
5
|
Yu KKQ, Wilburn DB, Hackney JA, Darrah PA, Foulds KE, James CA, Smith MT, Jing L, Seder RA, Roederer M, Koelle DM, Swanson WJ, Seshadri C. Conservation of molecular and cellular phenotypes of invariant NKT cells between humans and non-human primates. Immunogenetics 2019; 71:465-478. [PMID: 31123763 PMCID: PMC6647187 DOI: 10.1007/s00251-019-01118-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/27/2022]
Abstract
Invariant NKT (iNKT) cells in both humans and non-human primates are activated by the glycolipid antigen, α-galactosylceramide (α-GalCer). However, the extent to which the molecular mechanisms of antigen recognition and in vivo phenotypes of iNKT cells are conserved among primate species has not been determined. Using an evolutionary genetic approach, we found a lack of diversifying selection in CD1 genes over 45 million years of evolution, which stands in stark contrast to the history of the MHC system for presenting peptide antigens to T cells. The invariant T cell receptor (TCR)-α chain was strictly conserved across all seven primate clades. Invariant NKT cells from rhesus macaques (Macaca mulatta) bind human CD1D-α-GalCer tetramer and are activated by α-GalCer-loaded human CD1D transfectants. The dominant TCR-β chain cloned from a rhesus-derived iNKT cell line is nearly identical to that found in the human iNKT TCR, and transduction of the rhesus iNKT TCR into human Jurkat cells show that it is sufficient for binding human CD1D-α-GalCer tetramer. Finally, we used a 20-color flow cytometry panel to probe tissue phenotypes of iNKT cells in a cohort of rhesus macaques. We discovered several tissue-resident iNKT populations that have not been previously described in non-human primates but are known in humans, such as TCR-γδ iNKTs. These data reveal a diversity of iNKT cell phenotypes despite convergent evolution of the genes required for lipid antigen presentation and recognition in humans and non-human primates.
Collapse
Affiliation(s)
- Krystle K Q Yu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Joshua A Hackney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte A James
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Malisa T Smith
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Tuberculosis Research & Training Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Wu C, Espinoza DA, Koelle SJ, Potter EL, Lu R, Li B, Yang D, Fan X, Donahue RE, Roederer M, Dunbar CE. Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation. J Exp Med 2017; 215:217-232. [PMID: 29141868 PMCID: PMC5748860 DOI: 10.1084/jem.20171341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 01/13/2023] Open
Abstract
Wu et al. use barcode tracking to uncover prolonged geographic bone marrow segregation of regenerating hematopoietic stem and progenitor cell clones after transplantation and provide evidence for local bone marrow production of T cells. The geographic distribution of hematopoiesis at a clonal level is of interest in understanding how hematopoietic stem and progenitor cells (HSPCs) and their progeny interact with bone marrow (BM) niches during regeneration. We tagged rhesus macaque autologous HSPCs with genetic barcodes, allowing clonal tracking over time and space after transplantation. We found marked geographic segregation of CD34+ HSPCs for at least 6 mo posttransplantation, followed by very gradual clonal mixing at different BM sites over subsequent months to years. Clonal mapping was used to document local production of granulocytes, monocytes, B cells, and CD56+ natural killer (NK) cells. In contrast, CD16+CD56− NK cells were not produced in the BM, and in fact were clonally distinct from multipotent progenitors producing all other lineages. Most surprisingly, we documented local BM production of CD3+ T cells early after transplantation, using both clonal mapping and intravascular versus tissue-resident T cell staining, suggesting a thymus-independent T cell developmental pathway operating during BM regeneration, perhaps before thymic recovery.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Diego A Espinoza
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Samson J Koelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brian Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Di Yang
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,Institute of hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Fan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Exley MA, Wilson SB, Balk SP. Isolation and Functional Use of Human NKT Cells. ACTA ACUST UNITED AC 2017; 119:14.11.1-14.11.20. [PMID: 29091262 DOI: 10.1002/cpim.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit details methods for the isolation, in vitro expansion, and functional characterization of human iNKT cells. The term 'iNKT' derives from the fact that a large fraction of murine and some human NK marker+ T cells ('NKT') recognize the MHC class I-like CD1d protein and use an identical 'invariant' TCRα chain, which is generated in humans by precise Vα24 and Jα18 rearrangements with either no N-region diversity or subsequent trimming to identical or nearly identical amino acid sequence (hence, 'iNKT' cells). iNKT are mostly CD4+ or CD4-CD8- ('double negative'), although a few CD8+ iNKT can be found in some humans. Basic Protocol 1 and Alternate Protocol 1 use multi-color FACS analysis to identify and quantitate rare iNKT cells from human samples. Basic Protocol 2 describes iNKT cell purification. Alternate Protocol 2 describes a method for high-speed FACS sorting of iNKT cells. Basic Protocol 3 explains functional analysis of iNKT. Alternate Protocol 3 employs a cell sorting approach to isolate iNKT cell clones. A support protocol for secondary stimulation and rapid expansion of iNKT cells is also included. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Mark A Exley
- Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Manchester Collaborative Centre for Inflammation Research, Manchester, United Kingdom
| | - S Brian Wilson
- Diabetes Center of Excellence, University of Florida, Gainesville, Florida
| | - Steven P Balk
- Cancer Biology Program, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M, Tezera L, Singhania A, Elliott T, Tebruegge M, Elkington P, Gadola S, Sharpe S, Mansour S. Quantitative and qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque tuberculosis infection. Tuberculosis (Edinb) 2017; 105:86-95. [PMID: 28610792 PMCID: PMC6168056 DOI: 10.1016/j.tube.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Correlates of immune protection that reliably predict vaccine efficacy against Mycobacterium tuberculosis (Mtb) infection are urgently needed. Invariant NKT cells (iNKTs) are CD1d-dependent innate T cells that augment host antimicrobial immunity through production of cytokines, including interferon (IFN)-γ and tumour necrosis factor (TNF)-α. We determined peripheral blood iNKT numbers, their proliferative responses and iNKT subset proportions after in vitro antigen expansion by α-galactosylceramide (αGC) in a large cohort of mycobacteria-naïve non-human primates, and macaques from Bacillus Calmette-Guerin (BCG) vaccine and Mtb challenge studies. Animals studied included four genetically distinct groups of macaques within cynomolgus and rhesus species that differ in their susceptibility to Mtb infection. We demonstrate significant differences in ex vivo iNKT frequency between groups, which trends towards an association with susceptibility to Mtb, but no significant difference in overall iNKT proliferative responses. Susceptible animals exhibited a skewed CD4+/CD8+ iNKT subset ratio in comparison to more Mtb-resistant groups. Correlation of iNKT subsets post BCG vaccination with clinical disease manifestations following Mtb challenge in the Chinese cynomolgus and Indian rhesus macaques identified a consistent trend linking increased CD8+ iNKTs with favourable disease outcome. Finally, a similar iNKT profile was conferred by BCG vaccination in rhesus macaques. Our study provides the first detailed characterisation of iNKT cells in macaque tuberculosis infection, suggesting that iNKT repertoire differences may impact on disease outcome, which warrants further investigation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Andrew White
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Anna S Tocheva
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joe R Fenn
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Mike Dennis
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Liku Tezera
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Akul Singhania
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tebruegge
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Elkington
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Stephan Gadola
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sally Sharpe
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Salah Mansour
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
9
|
Huot N, Rascle P, Garcia-Tellez T, Jacquelin B, Müller-Trutwin M. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 2016; 19:37-44. [PMID: 27447445 DOI: 10.1016/j.coviro.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
HIV-1/SIVmac infections deeply disturb innate host responses. Most studies have focused on the impact on dendritic cells and NK cells. A few but insufficient data are available on other innate immune cell types, such as neutrophils. It has been shown that innate lymphoid cells are depleted early and irreversibly during SIVmac/HIV-1 infections. Studies in natural hosts of SIV have contributed to pinpoint that early control of inflammation is crucial. In natural hosts, plasmacytoid dendritic cells, myeloid dendritic cells and NK cells are depleted during acute infection but return to normal levels by the end of acute infection. We summarize here the similarities and differences of various types of innate immune responses in natural hosts compared to pathogenic HIV/SIV mac infections.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France; Vaccine Research Institute, Créteil, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France
| | | | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
10
|
Juno JA, Stalker AT, Waruk JL, Oyugi J, Kimani M, Plummer FA, Kimani J, Fowke KR. Elevated expression of LAG-3, but not PD-1, is associated with impaired iNKT cytokine production during chronic HIV-1 infection and treatment. Retrovirology 2015; 12:17. [PMID: 25810006 PMCID: PMC4332911 DOI: 10.1186/s12977-015-0142-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background LAG-3 is a potent negative regulator of the immune response but its impact in HIV infection in poorly understood. Unlike exhaustion markers such as PD-1, Tim-3, 2B4 and CD160, LAG-3 is poorly expressed on bulk and antigen-specific T cells during chronic HIV infection and its expression on innate lymphocyte subsets is not well understood. The aim of this study was to assess LAG-3 expression and association with cellular dysfunction on T cells, NK cells and iNKT cells among a cohort of healthy and HIV-infected female sex workers in Nairobi, Kenya. Results Ex vivo LAG-3 expression was measured by multiparametric flow cytometry, and plasma cytokine/chemokine concentrations measured by bead array. Although LAG-3 expression on bulk T cells was significantly increased among HIV-infected women, the proportion of cells expressing the marker was extremely low. In contrast, LAG-3 was more highly expressed on NK and iNKT cells and was not reduced among women treated with ART. To assess the functional impact of LAG-3 on iNKT cells, iNKT cytokine production was measured in response to lipid (αGalCer) and PMA/Io stimulation by both flow cytometry and cytokine bead array. iNKT cytokine production is profoundly altered by both HIV infection and treatment, and LAG-3, but not PD-1, expression is associated with a reduction in iNKT IFNγ production. Conclusions LAG-3 does not appear to mediate T cell exhaustion in this African population, but is instead expressed on innate lymphocyte subsets including iNKT cells. HIV infection alters iNKT cytokine production patterns and LAG-3 expression is uniquely associated with iNKT dysfunction. The continued expression of LAG-3 during treatment suggests it may contribute to the lack of innate immune reconstitution commonly observed during ART. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Padte NN, Boente-Carrera M, Andrews CD, McManus J, Grasperge BF, Gettie A, Coelho-dos-Reis JG, Li X, Wu D, Bruder JT, Sedegah M, Patterson N, Richie TL, Wong CH, Ho DD, Vasan S, Tsuji M. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates. PLoS One 2013; 8:e78407. [PMID: 24205224 PMCID: PMC3808339 DOI: 10.1371/journal.pone.0078407] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/11/2013] [Indexed: 01/12/2023] Open
Abstract
A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.
Collapse
Affiliation(s)
- Neal N. Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Mar Boente-Carrera
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Chasity D. Andrews
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jenny McManus
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Brooke F. Grasperge
- Tulane National Primate Research Center, Tulane University Medical Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Tulane National Primate Research Center, Tulane University Medical Center, Covington, Louisiana, United States of America
| | - Jordana G. Coelho-dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Douglass Wu
- Department of Chemistry, the Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph T. Bruder
- Research, GenVec, Inc., Gaithersburg, Maryland, United States of America
| | - Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Noelle Patterson
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Chi-Huey Wong
- Department of Chemistry, the Scripps Research Institute, La Jolla, California, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Sandhya Vasan
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail: (SV); (MT)
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail: (SV); (MT)
| |
Collapse
|
12
|
Fernandez CS, Jegaskanda S, Godfrey DI, Kent SJ. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide. Clin Exp Immunol 2013; 173:480-92. [PMID: 23656283 DOI: 10.1111/cei.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.
Collapse
Affiliation(s)
- C S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
13
|
Ibarrondo FJ, Wilson SB, Hultin LE, Shih R, Hausner MA, Hultin PM, Anton PA, Jamieson BD, Yang OO. Preferential depletion of gut CD4-expressing iNKT cells contributes to systemic immune activation in HIV-1 infection. Mucosal Immunol 2013; 6:591-600. [PMID: 23149661 PMCID: PMC3865278 DOI: 10.1038/mi.2012.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic inappropriate immune activation is the central defect-driving loss of CD4(+) T helper cells and progression to AIDS in persons with HIV-1 infection, but the mechanisms remain controversial. We examined key regulatory invariant receptor natural killer T (iNKT) cells in the gut, the largest reservoir of lymphocytes and a key arena of HIV-1 pathogenesis. In healthy control persons, the anti-inflammatory CD4(+) iNKT-cell subset predominated over the pro-inflammatory CD4(-) iNKT-cell subset in the gut, but not in the blood, compartment. HIV-1 infection resulted in a preferential loss of this anti-inflammatory CD4(+) iNKT-cell subset within the gut. The degree of loss of the CD4(+) iNKT-cell subset in the gut, but not in the blood, correlated to the systemic immune activation and exhaustion that have been linked to disease progression. These results suggest a potentially important contribution of gut iNKT-cell imbalance in determining the systemic immune activation that is the hallmark of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- FJ Ibarrondo
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - SB Wilson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - LE Hultin
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - R Shih
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - MA Hausner
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - PM Hultin
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - PA Anton
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - BD Jamieson
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - OO Yang
- Department of Medicine and UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Li X, Polacino P, Garcia-Navarro R, Hu SL, Tsuji M. Peripheral blood invariant natural killer T cells of pig-tailed macaques. PLoS One 2012; 7:e48166. [PMID: 23110202 PMCID: PMC3479117 DOI: 10.1371/journal.pone.0048166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022] Open
Abstract
In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet+ CD3+iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24+CD3+ cells are α-GalCer-CD1d-Tet+CD3+iNKT cells, which primarily consist of either the CD4+ or CD8+ subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8+iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.
Collapse
Affiliation(s)
- Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, United States of America
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Raquel Garcia-Navarro
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, United States of America
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rout N, Greene J, Yue S, O'Connor D, Johnson RP, Else JG, Exley MA, Kaur A. Loss of effector and anti-inflammatory natural killer T lymphocyte function in pathogenic simian immunodeficiency virus infection. PLoS Pathog 2012; 8:e1002928. [PMID: 23028326 PMCID: PMC3447755 DOI: 10.1371/journal.ppat.1002928] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022] Open
Abstract
Chronic immune activation is a key determinant of AIDS progression in HIV-infected humans and simian immunodeficiency virus (SIV)-infected macaques but is singularly absent in SIV-infected natural hosts. To investigate whether natural killer T (NKT) lymphocytes contribute to the differential modulation of immune activation in AIDS-susceptible and AIDS-resistant hosts, we compared NKT function in macaques and sooty mangabeys in the absence and presence of SIV infection. Cynomolgus macaques had significantly higher frequencies of circulating invariant NKT lymphocytes compared to both rhesus macaques and AIDS-resistant sooty mangabeys. Despite this difference, mangabey NKT lymphocytes were functionally distinct from both macaque species in their ability to secrete significantly more IFN-γ, IL-13, and IL-17 in response to CD1d/α-galactosylceramide stimulation. While NKT number and function remained intact in SIV-infected mangabeys, there was a profound reduction in NKT activation-induced, but not mitogen-induced, secretion of IFN-γ, IL-2, IL-10, and TGF-β in SIV-infected macaques. SIV-infected macaques also showed a selective decline in CD4+ NKT lymphocytes which correlated significantly with an increase in circulating activated memory CD4+ T lymphocytes. Macaques with lower pre-infection NKT frequencies showed a significantly greater CD4+ T lymphocyte decline post SIV infection. The disparate effect of SIV infection on NKT function in mangabeys and macaques could be a manifestation of their differential susceptibility to AIDS. Alternately, these data also raise the possibility that loss of anti-inflammatory NKT function promotes chronic immune activation in pathogenic SIV infection, while intact NKT function helps to protect natural hosts from developing immunodeficiency and aberrant immune activation. Several African nonhuman primate species such as sooty mangabeys are naturally infected with SIV and maintain high levels of viral replication without developing AIDS. SIV-infected natural hosts do not show evidence of increased chronic immune activation, a feature that distinguishes them from AIDS-susceptible SIV-infected Asian macaques. In this study we compared natural killer T (NKT) lymphocytes, a unique subset of innate T lymphocytes with anti-inflammatory properties, in AIDS-resistant and AIDS-susceptible hosts. Sooty mangabey NKT cells retained normal functionality following SIV infection and were more potent than macaque NKT cells in their ability to produce interferon-γ and secrete anti-inflammatory cytokines. In contrast, NKT cells of SIV-infected macaques were markedly hypo-functional with regards to secretion of anti-inflammatory and effector cytokines and showed an association between loss of CD4+ NKT cells and increased immune activation. These findings suggest that dysfunctional NKT cells may promote increased immune activation in AIDS-susceptible hosts while intact effector and anti-inflammatory NKT cells could help to prevent immunodeficiency and increased immune activation in natural hosts.
Collapse
Affiliation(s)
- Namita Rout
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.
Collapse
Affiliation(s)
- Jennifer A. Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
17
|
Fernandez CS, Cameron G, Godfrey DI, Kent SJ. Ex-vivo α-galactosylceramide activation of NKT cells in humans and macaques. J Immunol Methods 2012; 382:150-9. [PMID: 22683545 DOI: 10.1016/j.jim.2012.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/18/2012] [Accepted: 05/30/2012] [Indexed: 01/08/2023]
Abstract
NKT cells are key mediators of antiviral and anticancer immunity. Experiments in mice have demonstrated that activation of NKT cells in vivo induces the expression of multiple effector molecules critical to successful immunity. Human clinical trials have shown similar responses, although in vivo activation of NKT cells in humans or primate models are far more limited in number and scope. Measuring ex vivo activation of NKT cells by the CD1d-restricted glycolipid ligand α-Galactosylceramide (α-GalCer) through cytokine expression profiles is a useful marker of NKT cell function, but for reasons that are unclear, this approach does not appear to work as well in humans and non-human primate macaque models in comparison to mice. We performed a series of experiments on human and macaque (Macaca nemestrina) fresh whole blood samples to define optimal conditions to detect NKT cell cytokine (TNF, IFNγ, IL-2) and degranulation marker (CD107a) expression by flow cytometry. We found that conditions previously described for mouse splenocyte NKT cell activation were suboptimal on human or macaque blood NKT cells. In contrast, a 6h incubation with brefeldin A added for the last 4h, in a 96-well plate based assay, and using an α-GalCer concentration of 1 μg/ml were optimal methods to stimulate NKT cells in fresh blood from both humans and macaques. Unexpectedly, we noted that blood NKT cells from macaques infected with SIV were more readily activated by α-GalCer than NKT cells from uninfected macaques, suggesting that SIV infection may have primed the NKT cells. In conclusion, we describe optimized methods for the ex vivo antigen-specific activation of human and macaque blood NKT cells. These assays should be useful in monitoring NKT cells in disease and in immunotherapy studies.
Collapse
Affiliation(s)
- Caroline S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
18
|
V. Nuvor S, Whittle H, Rowland-Jones S, Jaye A. Greater Expansion of IFN-<i>γ</i><sup>﹣</sup> CD4<sup>+</sup> NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4<sup>+</sup> T Cell Counts. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wja.2012.22014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Exley MA, Wilson B, Balk SP. Isolation and functional use of human NKT cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 14:Unit 14.11. [PMID: 20814940 DOI: 10.1002/0471142735.im1411s90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit details methods for the isolation, in vitro expansion, and functional characterization of human iNKT cells. The term iNKT derives from the fact that a large fraction of murine NKT cells recognize the MHC class I-like CD1d protein, are CD4+ or CD4-CD8- (double negative), and use an identical "invariant" TCRalpha chain, which is generated by precise Valpha14 and Jalpha281 (now renamed Jalpha18) rearrangements with either no N-region diversity or subsequent trimming to nearly identical amino-acid sequence (hence, 'iNKT'). Basic Protocol 1 and Alternate Protocol 1 use multi-color FACS analysis to identify and quantitate rare iNKT cells from human samples. Basic Protocol 2 describes iNKT cell purification. Alternate Protocol 2 describes a method for high-speed FACS sorting of iNKT cells. Alternate Protocol 3 employs a cell sorting approach to isolate iNKT cell clones. A Support Protocol for secondary stimulation and rapid expansion of iNKT cells is also included. Basic Protocol 3 explains functional analysis of iNKT.
Collapse
Affiliation(s)
- Mark A Exley
- Cancer Biology Program, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
20
|
Mir KD, Gasper MA, Sundaravaradan V, Sodora DL. SIV infection in natural hosts: resolution of immune activation during the acute-to-chronic transition phase. Microbes Infect 2011; 13:14-24. [PMID: 20951225 PMCID: PMC3022004 DOI: 10.1016/j.micinf.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 10/18/2022]
Abstract
SIV-infected natural hosts do not progress to clinical AIDS yet display high viral replication and an acute immunologic response similar to pathogenic SIV/HIV infections. During chronic SIV infection, natural hosts suppress their immune activation, whereas pathogenic hosts display a highly activated immune state. Here, we review natural host SIV infections with an emphasis on specific immune cells and their contribution to the transition from the acute-to-chronic phases of infection.
Collapse
Affiliation(s)
- Kiran D Mir
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
21
|
Sims S, Willberg C, Klenerman P. MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 2010; 9:765-74. [PMID: 20624049 DOI: 10.1586/erv.10.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the fluorescently labeled tetrameric MHC-peptide complex has enabled the direct visualization, quantification and phenotypic characterization of antigen-specific T cells using flow cytometry and has transformed our understanding of cellular immune responses. The combination of this technology with functional assays provides many new insights into these cells, allowing investigation into their lifecycle, manner of death and effector function. In this article, we hope to provide an overview of the techniques used in the construction of these tetramers, the problems and solutions associated with them, and the methods used in the study of antigen-specific T cells. Understanding how the antigen-specific cells develop and function in different circumstances and with different pathogens will be key to understanding natural host defense, as well as vaccine design and assessment.
Collapse
Affiliation(s)
- Stuart Sims
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
22
|
Rout N, Else JG, Yue S, Connole M, Exley MA, Kaur A. Heterogeneity in phenotype and function of CD8+ and CD4/CD8 double-negative Natural Killer T cell subsets in sooty mangabeys. J Med Primatol 2010; 39:224-34. [PMID: 20618588 PMCID: PMC2904642 DOI: 10.1111/j.1600-0684.2010.00431.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have recently reported the presence of CD8(+) and CD4/8 double-negative (DN) natural killer T (NKT) lymphocytes in sooty mangabeys. To investigate differences in the two NKT cell subsets, we compared the phenotype and function of sooty mangabey CD8(+) and DN NKT cells. METHODS Flow-sorted NKT lymphocytes from one SIV-negative sooty mangabey were subjected to limiting dilution cloning. Invariant NKT clones were characterized by flow cytometry and cytokine ELISA. RESULTS The majority of NKT clones displayed an effector memory phenotype and expressed CXCR3 and NKG2D. While CD8(+) NKT subsets expressed significantly higher levels of granzyme B and perforin and produced more IFN-gamma, the DN NKT subsets secreted significantly more IL-4, IL-13, and IL-10. CONCLUSIONS The Th1 and Th2 cytokine bias of CD8(+) and DN NKT cells, respectively, indicates the presence of functionally heterogeneous populations of NKT cells in sooty mangabeys.
Collapse
Affiliation(s)
- Namita Rout
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - James G. Else
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Simon Yue
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Michelle Connole
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Mark A. Exley
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Amitinder Kaur
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| |
Collapse
|