1
|
Oo A, Chen Z, Cao D, Cho YJ, Liang B, Schinazi RF, Kim B. Biochemical simulation of mutation synthesis and repair during SARS-CoV-2 RNA polymerization. Virology 2024; 600:110255. [PMID: 39366027 DOI: 10.1016/j.virol.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
We biochemically simulated the mutation synthesis process of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) complex (nsp7/nsp8/nsp12) involving two sequential mechanistic steps that occur during genomic replication: misinsertion (incorporation of incorrect nucleotides) and mismatch extension. Then, we also simulated mismatch repair process catalyzed by the viral nsp10/nsp14 ExoN complex. In these mechanistic simulations, while SARS-CoV-2 RdRp displays efficient mutation synthesis capability, the viral ExoN complex was able to effectively repair the mismatch primers generated during the mutation synthesis. Also, we observed that the delayed RNA synthesis induced by mutation synthesis process was rescued by the viral ExoN activity. Collectively, our biochemical simulations suggest that SARS-CoV-2 ExoN complex may contribute to both maintenance of proper viral genetic diversity levels and successful completion of the viral large RNA genome replication by removing mismatches generated by the viral RdRp.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zhenhang Chen
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dongdong Cao
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Bo Liang
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Jones CH, Beitelshees M, Williams BA, Hill AB, Welch VL, True JM. In silico prediction of pathogen's pandemic potential using the viral trait assessment for pandemics (ViTAP) model. PNAS NEXUS 2024; 3:pgae558. [PMID: 39703231 PMCID: PMC11658415 DOI: 10.1093/pnasnexus/pgae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Our world is ever evolving and interconnected, creating constant opportunities for disease outbreaks and pandemics to occur, making pandemic preparedness and pathogen management crucial for global health security. Early pathogen identification and intervention play a key role in mitigating the impacts of disease outbreaks. In this perspective, we present the Viral Trait Assessment for Pandemics (ViTAP) model to aid in the early identification of high-risk viruses that have pandemic potential, which incorporates lessons from past pandemics, including which key viral characteristics are important such as genetic makeup, transmission modes, mutation rates, and symptom severity. This model serves as the foundation for the development of powerful, quantitative tools for the early prediction of pandemic pathogens. The use of such a tool, in conjunction with other pandemic preparedness measures, can allow for early intervention and containment of the virus. This proactive approach could enable timely interventions, guiding public health responses, and resource allocation to prevent widespread outbreaks and mitigate the impact of emerging pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Verna L Welch
- Pfizer, 66 Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, 66 Hudson Boulevard, New York, NY 10018, USA
| |
Collapse
|
3
|
Martin MF, Bonaventure B, McCray NE, Peersen OB, Rozen-Gagnon K, Stapleford KA. Distinct chikungunya virus polymerase palm subdomains contribute to viral protein accumulation and virion production. PLoS Pathog 2024; 20:e1011972. [PMID: 39401243 PMCID: PMC11501042 DOI: 10.1371/journal.ppat.1011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/24/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in replication. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the coxsackievirus B3 3D polymerase. We rescued each variant in mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to host-specific replication. In C6/36 cells, we found that while the nsP4 variants had replicase function similar to that of wild-type CHIKV, many variants presented changes in protein accumulation and virion production even when viral nonstructural and structural proteins were produced. Finally, we found that WT CHIKV and nsP4 variant replication and protein production could be enhanced in mammalian cells at 28°C, yet growing virus under these conditions led to changes in virus infectivity. Taken together, these studies highlight that distinct nsP4 subdomains are required for proper RNA transcription and translation, having major effects on virion production.
Collapse
Affiliation(s)
- Marie-France Martin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nia E. McCray
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
4
|
Brennan JW, Sun Y. Defective viral genomes: advances in understanding their generation, function, and impact on infection outcomes. mBio 2024; 15:e0069224. [PMID: 38567955 PMCID: PMC11077978 DOI: 10.1128/mbio.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.
Collapse
Affiliation(s)
- Justin W. Brennan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Sun
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Yin X, Popa H, Stapon A, Bouda E, Garcia-Diaz M. Fidelity of Ribonucleotide Incorporation by the SARS-CoV-2 Replication Complex. J Mol Biol 2023; 435:167973. [PMID: 36690070 PMCID: PMC9854147 DOI: 10.1016/j.jmb.2023.167973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The SARS-CoV-2 coronavirus has caused a global pandemic. Despite the initial success of vaccines at preventing infection, genomic variation has led to the proliferation of variants capable of higher infectivity. Mutations in the SARS-CoV-2 genome are the consequence of replication errors, highlighting the importance of understanding the determinants of SARS-CoV-2 replication fidelity. The RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit for SARS-CoV-2 RNA replication and genome transcription. Here, we report the fidelity of ribonucleotide incorporation by SARS-CoV-2 RdRp (nsp12), along with its co-factors nsp7/nsp8, using steady-state kinetic analysis. Our analysis suggests that in the absence of the proofreading subunit (nsp14), the nsp12/7/8 complex has a surprisingly low base substitution fidelity (10-1-10-3). This is orders of magnitude lower than the fidelity reported for other coronaviruses (10-6-10-7), highlighting the importance of proofreading for faithful SARS-CoV-2 replication. We performed a mutational analysis of all reported SARS-CoV-2 genomes and identified mutations in both nsp12 and nsp14 that appear likely to lower viral replication fidelity through mechanisms that include impairing the nsp14 exonuclease activity or its association with the RdRp. Our observations provide novel insight into the mechanistic basis of replication fidelity in SARS-CoV-2 and the potential effect of nsp12 and nsp14 mutations on replication fidelity, informing the development of future antiviral agents and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xingyu Yin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Horia Popa
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Anthony Stapon
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Emilie Bouda
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
6
|
Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 2020; 209:107512. [PMID: 32097670 PMCID: PMC7102570 DOI: 10.1016/j.pharmthera.2020.107512] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Favipiravir has been developed as an anti-influenza drug and licensed as an anti-influenza drug in Japan. Additionally, favipiravir is being stockpiled for 2 million people as a countermeasure for novel influenza strains. This drug functions as a chain terminator at the site of incorporation of the viral RNA and reduces the viral load. Favipiravir cures all mice in a lethal influenza infection model, while oseltamivir fails to cure the animals. Thus, favipiravir contributes to curing animals with lethal infection. In addition to influenza, favipiravir has a broad spectrum of anti-RNA virus activities in vitro and efficacies in animal models with lethal RNA viruses and has been used for treatment of human infection with life-threatening Ebola virus, Lassa virus, rabies, and severe fever with thrombocytopenia syndrome. The best feature of favipiravir as an antiviral agent is the apparent lack of generation of favipiravir-resistant viruses. Favipiravir alone maintains its therapeutic efficacy from the first to the last patient in an influenza pandemic or an epidemic lethal RNA virus infection. Favipiravir is expected to be an important therapeutic agent for severe influenza, the next pandemic influenza strain, and other severe RNA virus infections for which standard treatments are not available.
Collapse
Affiliation(s)
- Kimiyasu Shiraki
- Senri Kinran University and Department of Virology, University of Toyama, Japan.
| | - Tohru Daikoku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
7
|
Zhong M, Wang HQ, Yan HY, Wu S, Gu ZY, Li YH. Santin inhibits influenza A virus replication through regulating MAPKs and NF-κB pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1205-1214. [PMID: 30417663 DOI: 10.1080/10286020.2018.1520221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
Influenza A virus (IAV) causes high morbidity and significant mortality worldwide. Given the limitations of existing vaccination and antiviral drugs, it is urgent to develop new anti-influenza drugs. Flavonoids are natural polyphenolic compounds with broad applications to treatments for influenza infection. In this study, we demonstrated that santin, a flavonoid compound, showed anti-influenza activity in MDCK and THP-1 cells. Mechanistic studies revealed that santin depressed the phosphorylation of p38 MAPK, JNK/SAPK, ERK, and NF-κB factor and subsequently attenuated the expression of inflammatory cytokines in IAV-infected cells. Thus, santin is a potential candidate for the future development of anti-IAV drugs.
Collapse
Affiliation(s)
- Ming Zhong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
- Xinjiang Institute of Materia Medica, Urumqi 830002, China
| | - Hui-Qiang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Hai-Yan Yan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Shuo Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Zheng-Yi Gu
- Xinjiang Institute of Materia Medica, Urumqi 830002, China
| | - Yu-Huan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
8
|
Chen W, Xu Q, Zhong Y, Yu H, Shu J, Ma T, Li Z. Genetic variation and co-evolutionary relationship of RNA polymerase complex segments in influenza A viruses. Virology 2017; 511:193-206. [PMID: 28866238 DOI: 10.1016/j.virol.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qi Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
9
|
Barauskas O, Xing W, Aguayo E, Willkom M, Sapre A, Clarke M, Birkus G, Schultz BE, Sakowicz R, Kwon H, Feng JY. Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Polymerase activity and mechanisms of action of nucleotide analogs. PLoS One 2017; 12:e0185998. [PMID: 29020100 PMCID: PMC5636120 DOI: 10.1371/journal.pone.0185998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/22/2017] [Indexed: 12/02/2022] Open
Abstract
Influenza polymerase is a heterotrimer protein with both endonuclease and RNA-dependent RNA polymerase (RdRp) activity. It plays a critical role in viral RNA replication and transcription and has been targeted for antiviral drug development. In this study, we characterized the activity of recombinant RdRp purified at 1:1:1 ratio in both ApG-primed RNA replication and mRNA-initiated RNA transcription. The heterotrimer complex showed comparable activity profiles to that of viral particle derived crude replication complex, and in contrast to the crude replication complex, was suitable for detailed mechanistic studies of nucleotide incorporation. The recombinant RdRp was further used to examine distinct modes of inhibition observed with five different nucleotide analog inhibitors, and the apparent steady-state binding affinity Kapp was measured for selected analogs to correlate antiviral activity and enzymatic inhibition with substrate efficiency.
Collapse
Affiliation(s)
- Ona Barauskas
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Weimei Xing
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Esmeralda Aguayo
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Madeleine Willkom
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Annapurna Sapre
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Michael Clarke
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Gabriel Birkus
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian E. Schultz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - HyockJoo Kwon
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail: (HJK); (JYF)
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail: (HJK); (JYF)
| |
Collapse
|
10
|
Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N. Iminosugars: Promising therapeutics for influenza infection. Crit Rev Microbiol 2017; 43:521-545. [PMID: 27931136 PMCID: PMC5470110 DOI: 10.1080/1040841x.2016.1242868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023]
Abstract
Influenza virus causes three to five million severe respiratory infections per year in seasonal epidemics, and sporadic pandemics, three of which occurred in the twentieth century and are a continuing global threat. Currently licensed antivirals exclusively target the viral neuraminidase or M2 ion channel, and emerging drug resistance necessitates the development of novel therapeutics. It is believed that a host-targeted strategy may combat the development of antiviral drug resistance. To this end, a class of molecules known as iminosugars, hydroxylated carbohydrate mimics with the endocyclic oxygen atom replaced by a nitrogen atom, are being investigated for their broad-spectrum antiviral potential. The influenza virus glycoproteins, hemagglutinin and neuraminidase, are susceptible to inhibition of endoplasmic reticulum α-glucosidases by certain iminosugars, leading to reduced virion production or infectivity, demonstrated by in vitro and in vivo studies. In some experiments, viral strain-specific effects are observed. Iminosugars may also inhibit other host and virus targets with antiviral consequences. While investigations of anti-influenza iminosugar activities have been conducted since the 1980s, recent successes of nojirimycin derivatives have re-invigorated investigation of the therapeutic potential of iminosugars as orally available, low cytotoxicity, effective anti-influenza drugs.
Collapse
Affiliation(s)
- Beatrice Ellen Tyrrell
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Andrew Cameron Sayce
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Kelly Lyn Warfield
- Antiviral Research and Development, Emergent BioSolutions IncGaithersburgMDUnited States
| | - Joanna Louise Miller
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
Rai DK, Diaz-San Segundo F, Campagnola G, Keith A, Schafer EA, Kloc A, de Los Santos T, Peersen O, Rieder E. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity. J Virol 2017; 91:e00081-17. [PMID: 28515297 PMCID: PMC5651715 DOI: 10.1128/jvi.00081-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches.
Collapse
Affiliation(s)
- Devendra K Rai
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- University of Connecticut, Storrs, Connecticut, USA
| | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- University of Connecticut, Storrs, Connecticut, USA
| | - Grace Campagnola
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anna Keith
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Schafer
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| | - Anna Kloc
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
- Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, Tennessee, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USA
| |
Collapse
|
13
|
Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. eLife 2017; 6. [PMID: 28598328 PMCID: PMC5511008 DOI: 10.7554/elife.26437] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Influenza virus’ low replicative fidelity contributes to its capacity for rapid evolution. Clonal sequencing and fluctuation tests have suggested that the influenza virus mutation rate is 2.7 × 10–6 - 3.0 × 10–5 substitutions per nucleotide per strand copied (s/n/r). However, sequencing assays are biased toward mutations with minimal fitness impacts and fluctuation tests typically investigate only a subset of all possible single nucleotide mutations. We developed a fluctuation test based on reversion to fluorescence in a set of virally encoded mutant green fluorescent proteins, which allowed us to measure the rates of selectively neutral mutations representative of the twelve different mutation types. We measured an overall mutation rate of 1.8 × 10–4 s/n/r for PR8 (H1N1) and 2.5 × 10–4 s/n/r for Hong Kong 2014 (H3N2) and a transitional bias of 2.7–3.6. Our data suggest that each replicated genome will have an average of 2–3 mutations and highlight the importance of mutational load in influenza virus evolution. DOI:http://dx.doi.org/10.7554/eLife.26437.001
Collapse
Affiliation(s)
- Matthew D Pauly
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Megan C Procario
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
14
|
Abstract
Despite having very limited coding capacity, RNA viruses are able to withstand challenge of antiviral drugs, cause epidemics in previously exposed human populations, and, in some cases, infect multiple host species. They are able to achieve this by virtue of their ability to multiply very rapidly, coupled with their extraordinary degree of genetic heterogeneity. RNA viruses exist not as single genotypes, but as a swarm of related variants, and this genomic diversity is an essential feature of their biology. RNA viruses have a variety of mechanisms that act in combination to determine their genetic heterogeneity. These include polymerase fidelity, error-mitigation mechanisms, genomic recombination, and different modes of genome replication. RNA viruses can vary in their ability to tolerate mutations, or “genetic robustness,” and several factors contribute to this. Finally, there is evidence that some RNA viruses exist close to a threshold where polymerase error rate has evolved to maximize the possible sequence space available, while avoiding the accumulation of a lethal load of deleterious mutations. We speculate that different viruses have evolved different error rates to complement the different “life-styles” they possess.
Collapse
Affiliation(s)
- J.N. Barr
- University of Leeds, Leeds, United Kingdom
| | - R. Fearns
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Alternative divalent cations (Zn²⁺, Co²⁺, and Mn²⁺) are not mutagenic at conditions optimal for HIV-1 reverse transcriptase activity. BMC BIOCHEMISTRY 2015; 16:12. [PMID: 25934642 PMCID: PMC4472245 DOI: 10.1186/s12858-015-0041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Fidelity of DNA polymerases can be influenced by cation co-factors. Physiologically, Mg(2+) is used as a co-factor by HIV reverse transcriptase (RT) to perform catalysis; however, alternative cations including Mn(2+), Co(2+), and Zn(2+) can also support catalysis. Although Zn(2+) supports DNA synthesis, it inhibits HIV RT by significantly modifying RT catalysis. Zn(2+) is currently being investigated as a component of novel treatment options against HIV and we wanted to investigate the fidelity of RT with Zn(2+). METHODS We used PCR-based and plasmid-based alpha complementation assays as well as steady-state misinsertion and misincorporation assays to examine the fidelity of RT with Mn(2+), Co(2+), and Zn(2+). RESULTS The fidelity of DNA synthesis by HIV-1 RT was approximately 2.5 fold greater in Zn(2+) when compared to Mg(2+) at cation conditions optimized for nucleotide catalysis. Consistent with this, RT extended primers with mismatched 3' nucleotides poorly and inserted incorrect nucleotides less efficiently using Zn(2+) than Mg(2+). In agreement with previous literature, we observed that Mn(2+) and Co(2+) dramatically decreased the fidelity of RT at highly elevated concentrations (6 mM). However, surprisingly, the fidelity of HIV RT with Mn(2+) and Co(2+) remained similar to Mg(2+) at lower concentrations that are optimal for catalysis. CONCLUSION This study shows that Zn(2+), at optimal extension conditions, increases the fidelity of HIV-1 RT and challenges the notion that alternative cations capable of supporting polymerase catalysis are inherently mutagenic.
Collapse
|
16
|
Mori K, Murano K, Ohniwa RL, Kawaguchi A, Nagata K. Oseltamivir expands quasispecies of influenza virus through cell-to-cell transmission. Sci Rep 2015; 5:9163. [PMID: 25772381 PMCID: PMC4649863 DOI: 10.1038/srep09163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kensaku Murano
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryosuke L Ohniwa
- Division of Biomedical Science, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Abstract
UNLABELLED Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. IMPORTANCE Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low mutational tolerance of most RNA viruses. It is thought to possess a higher barrier to resistance than conventional antiviral strategies. We investigated the effectiveness of lethal mutagenesis against influenza virus using three different drugs. We showed that influenza virus was sensitive to lethal mutagenesis by demonstrating that all three drugs induced mutations and led to an increase in the generation of defective viral particles. We also found that it may be difficult for resistance to these drugs to arise at a population-wide level. Our data suggest that lethal mutagenesis may be an attractive anti-influenza strategy that warrants further investigation.
Collapse
|
18
|
te Velthuis AJW. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 2014; 71:4403-20. [PMID: 25080879 PMCID: PMC4207942 DOI: 10.1007/s00018-014-1695-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Eukaryotes and bacteria can be infected with a wide variety of RNA viruses. On average, these pathogens share little sequence similarity and use different replication and transcription strategies. Nevertheless, the members of nearly all RNA virus families depend on the activity of a virally encoded RNA-dependent polymerase for the condensation of nucleotide triphosphates. This review provides an overview of our current understanding of the viral RNA-dependent polymerase structure and the biochemistry and biophysics that is involved in replicating and transcribing the genetic material of RNA viruses.
Collapse
Affiliation(s)
- Aartjan J W te Velthuis
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| |
Collapse
|
19
|
Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5'-triphosphate towards influenza A virus polymerase. PLoS One 2013; 8:e68347. [PMID: 23874596 PMCID: PMC3707847 DOI: 10.1371/journal.pone.0068347] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
T-705 (Favipiravir) is a broad-spectrum antiviral molecule currently in late stage clinical development for the treatment of influenza virus infection. Although it is believed that T-705 potency is mediated by its ribofuranosyl triphosphate (T-705 RTP) metabolite that could be mutagenic, the exact molecular interaction with the polymerase of influenza A virus (IAVpol) has not been elucidated. Here, we developed a biochemical assay to measure the kinetics of nucleotide incorporation by IAVpol in the elongation mode. In this assay, T-705 RTP was recognized by IAVpol as an efficient substrate for incorporation to the RNA both as a guanosine and an adenosine analog. Compared to natural GTP and ATP, the discrimination of T-705 RTP was about 19- and 30-fold, respectively. Although the single incorporation of the ribonucleotide monophosphate form of T-705 did not efficiently block RNA synthesis, two consecutive incorporation events prevented further primer extension. In comparison, 3'-deoxy GTP caused immediate chain termination but was incorporated less efficiently by the enzyme, with a discrimination of 4,900-fold relative to natural GTP. Collectively, these results provide the first detailed biochemical characterization to evaluate the substrate efficiency and the inhibition potency of nucleotide analogs against influenza virus polymerase. The combination of ambiguous base-pairing with low discrimination of T-705 RTP provides a mechanistic basis for the in vitro mutagenic effect of T-705 towards influenza virus.
Collapse
Affiliation(s)
- Zhinan Jin
- Alios BioPharma, Inc., South San Francisco, California, United States of America.
| | | | | | | | | |
Collapse
|
20
|
T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 2013; 87:3741-51. [PMID: 23325689 DOI: 10.1128/jvi.02346-12] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.
Collapse
|
21
|
Abstract
Influenza A virus (IAV) is an unremitting virus that results in significant morbidity and mortality worldwide. Key to the viral life cycle is the RNA-dependent RNA polymerase (RdRp), a heterotrimeric complex responsible for both transcription and replication of the segmented genome. Here, we demonstrate that the viral polymerase utilizes a small RNA enhancer to regulate enzymatic activity and maintain stoichiometric balance of the viral genome. We demonstrate that IAV synthesizes small viral RNAs (svRNAs) that interact with the viral RdRp in order to promote genome replication in a segment-specific manner. svRNAs localize to the nucleus, the site of IAV replication, are synthesized from the positive-sense genomic intermediate, and interact within a novel RNA binding channel of the polymerase PA subunit. Synthetic svRNAs promote polymerase activity in vitro, while loss of svRNA inhibits viral RNA synthesis in a segment-specific manner. Taking these observations together, we mechanistically define svRNA as a small regulatory enhancer RNA, which functions to promote genome replication and maintain segment balance through allosteric modulation of polymerase activity.
Collapse
|
22
|
Noble E, Cox A, Deval J, Kim B. Endonuclease substrate selectivity characterized with full-length PA of influenza A virus polymerase. Virology 2012; 433:27-34. [PMID: 22841552 DOI: 10.1016/j.virol.2012.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022]
Abstract
The influenza A polymerase is a heterotrimer which transcribes viral mRNAs and replicates the viral genome. To initiate synthesis of mRNA, the polymerase binds a host pre-mRNA and cleaves a short primer downstream of the 5' end cap structure. The N-terminal domain of PA has been demonstrated to have endonuclease activity in vitro. Here we sought to better understand the biochemical nature of the PA endonuclease by developing an improved assay using full-length PA protein. This full-length protein is active against both RNA and DNA in a cap-independent manner and can use several different divalent cations as cofactors, which affects the secondary structure of the full-length PA. Our in vitro assay was also able to demonstrate the minimal substrate size and sequence selectivity of the PA protein, which is crucial information for inhibitor design. Finally, we confirmed the observed endonuclease activity of the full-length PA with a FRET-based assay.
Collapse
Affiliation(s)
- Erin Noble
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
23
|
Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH. The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS One 2012; 7:e38323. [PMID: 22685560 PMCID: PMC3369869 DOI: 10.1371/journal.pone.0038323] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022] Open
Abstract
The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
Collapse
Affiliation(s)
- Walter N. Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Salvatore F. Priore
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tsai HJ, Chi LA, Yu AL. Monoclonal antibodies targeting the synthetic peptide corresponding to the polybasic cleavage site on H5N1 influenza hemagglutinin. J Biomed Sci 2012; 19:37. [PMID: 22471562 PMCID: PMC3366877 DOI: 10.1186/1423-0127-19-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/03/2012] [Indexed: 12/03/2022] Open
Abstract
Background Avian influenza H5N1 virus is highly pathogenic partially because its H5 hemagglutinin contains a polybasic cleavage site that can be processed by proteases in multiple organs. Methods Monoclonal antibodies (mAb) specific to the synthetic peptide of hemagglutinin polybasic cleavage site of H5N1 virus were raised and tested for their neutralizing potential. Results Purified mAb showed suppression of H5N1 pseudovirus infection on Madin-Darby Canine Kidney (MDCK) cells but the efficacy was less than 50%. Since those mAb are specific to the intact uncut polybasic cleavage site of hemagglutinin, their efficacy depends on the extent of hemagglutinin cleavage on the viral surface. Conclusions Proteolytic analysis suggests the low efficacy associated with those mAb may be due to proteolytic cleavage already present on the majority of hemagglutinin prior to the infection of virus.
Collapse
Affiliation(s)
- Henry J Tsai
- Genomic Research Center, Academia Sinica, Taipei, Taiwan.
| | | | | |
Collapse
|
25
|
Cheng VCC, To KKW, Tse H, Hung IFN, Yuen KY. Two years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev 2012; 25:223-63. [PMID: 22491771 PMCID: PMC3346300 DOI: 10.1128/cmr.05012-11] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords "pandemic influenza virus H1N1 2009" yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics.
Collapse
Affiliation(s)
- Vincent C C Cheng
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
26
|
MacDonald LA, Aggarwal S, Bussey KA, Desmet EA, Kim B, Takimoto T. Molecular interactions and trafficking of influenza A virus polymerase proteins analyzed by specific monoclonal antibodies. Virology 2012; 426:51-9. [PMID: 22325937 DOI: 10.1016/j.virol.2012.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/04/2012] [Accepted: 01/17/2012] [Indexed: 12/21/2022]
Abstract
The influenza polymerase complex composed of PA, PB1 and PB2, plays a key role in viral replication and pathogenicity. Newly synthesized components must be translocated to the nucleus, where replication and transcription of viral genomes take place. Previous studies suggest that while PB2 is translocated to the nucleus independently, PA and PB1 subunits could not localize to the nucleus unless in a PA-PB1 complex. To further determine the molecular interactions between the components, we created a panel of 16 hybridoma cell lines, which produce monoclonal antibodies (mAbs) against each polymerase component. We showed that, although PB1 interacts with both PA and PB2 individually, nuclear localization of PB1 is enhanced only when co-expressed with PA. Interestingly, one of the anti-PA mAbs reacted much more strongly with PA when co-expressed with PB1. These results suggest that PA-PB1 interactions induce a conformational change in PA, which could be required for its nuclear translocation.
Collapse
Affiliation(s)
- Leslie A MacDonald
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
27
|
Takemura T, Urushisaki T, Fukuoka M, Hosokawa-Muto J, Hata T, Okuda Y, Hori S, Tazawa S, Araki Y, Kuwata K. 3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2012:946867. [PMID: 21876716 PMCID: PMC3163148 DOI: 10.1155/2012/946867] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022]
Abstract
Brazilian green propolis water extract (PWE) and its chemical components, caffeoylquinic acids, such as 3,4-dicaffeoylquinic acid (3,4-diCQA), act against the influenza A virus (IAV) without influencing the viral components. Here, we evaluated the anti-IAV activities of these compounds in vivo. PWE or PEE (Brazilian green propolis ethanol extract) at a dose of 200 mg/kg was orally administered to Balb/c mice that had been inoculated with IAV strain A/WSN/33. The lifetimes of the PWE-treated mice were significantly extended compared to the untreated mice. Moreover, oral administration of 3,4-diCQA, a constituent of PWE, at a dose of 50 mg/kg had a stronger effect than PWE itself. We found that the amount of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA in the mice that were administered 3,4-diCQA was significantly increased compared to the control group, while H1N1 hemagglutinin (HA) mRNA was slightly decreased. These data indicate that PWE, PEE or 3,4-diCQA possesses a novel and unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL.
Collapse
Affiliation(s)
- Tomoaki Takemura
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu 502-0071, Japan
| | - Tomohiko Urushisaki
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu 502-0071, Japan
| | - Mayuko Fukuoka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junji Hosokawa-Muto
- Center for Emerging Infectious Diseases, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- First Department of Forensic Science, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Taketoshi Hata
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu 502-0071, Japan
| | - Yumiko Okuda
- Center for Emerging Infectious Diseases, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Sachie Hori
- Center for Emerging Infectious Diseases, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Shigemi Tazawa
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu 502-0071, Japan
| | - Yoko Araki
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu 502-0071, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Emerging Infectious Diseases, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
28
|
Aggarwal S, Dewhurst S, Takimoto T, Kim B. Biochemical impact of the host adaptation-associated PB2 E627K mutation on the temperature-dependent RNA synthesis kinetics of influenza A virus polymerase complex. J Biol Chem 2011; 286:34504-13. [PMID: 21816827 DOI: 10.1074/jbc.m111.262048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most avian influenza A viruses, which preferentially replicate at the high temperatures found in the digestive tract of birds, have a glutamic acid at residue 627 of the viral RNA polymerase PB2 subunit (Glu-627), whereas the human viruses, which optimally replicate at the low temperatures observed in the human respiratory tract, have a lysine (Lys-627). The mechanism of action for this mutation is still not understood, although interaction with host factors has been proposed to play a major role. In this study, we explored an alternative, yet related, hypothesis that this PB2 mutation may alter the temperature-dependent enzymatic polymerase activity of the viral polymerase. First, the avian polymerase protein, which was purified from baculovirus expression system, indeed remained significantly active at higher temperatures (i.e. 37 and 42 °C), whereas the human E627K mutant drastically lost activity at these high temperatures. Second, our steady-state kinetics data revealed that the human E627K mutant polymerase is catalytically more active than the avian Glu-627 polymerase at 34 °C. Importantly, the E627K mutation elevates apparent K(cat) at low temperatures with little effect on K(m), suggesting that the E627K mutation alters the biochemical steps involved in enzyme catalysis rather than the interaction with the incoming NTP. Third, this temperature-dependent kinetic impact of the human E627K mutation was also observed with different RNA templates, with different primers and also in the presence of nucleoprotein. In conclusion, our study suggests that the amino acid sequence variations at residue 627 of PB2 subunit can directly alter the enzyme kinetics of influenza polymerase.
Collapse
Affiliation(s)
- Shilpa Aggarwal
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
29
|
Kennedy EM, Gavegnano C, Nguyen L, Slater R, Lucas A, Fromentin E, Schinazi RF, Kim B. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J Biol Chem 2010; 285:39380-91. [PMID: 20924117 PMCID: PMC2998149 DOI: 10.1074/jbc.m110.178582] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Indexed: 01/04/2023] Open
Abstract
We biochemically simulated HIV-1 DNA polymerization in physiological nucleotide pools found in two HIV-1 target cell types: terminally differentiated/non-dividing macrophages and activated/dividing CD4(+) T cells. Quantitative tandem mass spectrometry shows that macrophages harbor 22-320-fold lower dNTP concentrations and a greater disparity between ribonucleoside triphosphate (rNTP) and dNTP concentrations than dividing target cells. A biochemical simulation of HIV-1 reverse transcription revealed that rNTPs are efficiently incorporated into DNA in the macrophage but not in the T cell environment. This implies that HIV-1 incorporates rNTPs during viral replication in macrophages and also predicts that rNTP chain terminators lacking a 3'-OH should inhibit HIV-1 reverse transcription in macrophages. Indeed, 3'-deoxyadenosine inhibits HIV-1 proviral DNA synthesis in human macrophages more efficiently than in CD4(+) T cells. This study reveals that the biochemical landscape of HIV-1 replication in macrophages is unique and that ribonucleoside chain terminators may be a new class of anti-HIV-1 agents specifically targeting viral macrophage infection.
Collapse
Affiliation(s)
- Edward M. Kennedy
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Christina Gavegnano
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Laura Nguyen
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Rebecca Slater
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Amanda Lucas
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Emilie Fromentin
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Raymond F. Schinazi
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Baek Kim
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| |
Collapse
|