1
|
Miyasaka Y, Yamamoto N. Neuronal Activity Patterns Regulate Brain-Derived Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. Front Neurosci 2021; 15:699583. [PMID: 34955705 PMCID: PMC8702648 DOI: 10.3389/fnins.2021.699583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
During development, cortical circuits are remodeled by spontaneous and sensory-evoked activity via alteration of the expression of wiring molecules. An intriguing question is how physiological neuronal activity modifies the expression of these molecules in developing cortical networks. Here, we addressed this issue, focusing on brain-derived neurotrophic factor (BDNF), one of the factors underlying cortical wiring. Real-time imaging of BDNF promoter activity in organotypic slice cultures revealed that patterned stimuli differentially regulated the increase and the time course of the promoter activity in upper layer neurons. Calcium imaging further demonstrated that stimulus-dependent increases in the promoter activity were roughly proportional to the increase in intracellular Ca2+ concentration per unit time. Finally, optogenetic stimulation showed that the promoter activity was increased efficiently by patterned stimulation in defined cortical circuits. These results suggest that physiological stimulation patterns differentially tune activity-dependent gene expression in developing cortical neurons via cortical circuits, synaptic responses, and alteration of intracellular calcium signaling.
Collapse
Affiliation(s)
- Yumi Miyasaka
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Dong W, Cao Z, Pang Y, Feng T, Tian H. CARF, As An Oncogene, Promotes Colorectal Cancer Stemness By Activating ERBB Signaling Pathway. Onco Targets Ther 2019; 12:9041-9051. [PMID: 31802911 PMCID: PMC6830361 DOI: 10.2147/ott.s225733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction The role of CARF, a calcium-responsive transcription factor, in colorectal cancer initiation and development is still unknown. Here, we report that CARF promotes colorectal cancer stemness through ERBB signaling pathway. Materials and methods Both colorectal cancer cell lines and primary cells were used in this study. The levels of target mRNA and protein in the cells were examined by qRT-PCR and Western blot. Gene manipulation was achieved by the lentivirus delivery system. Luciferase reporter gene assay was employed to analyze the transcriptional activity of the promoter. ChIP assay was performed for the examination of the binding between CARF and the promoters of MAPK8 and JUN. Kaplan-Meier survival curve was generated by the R2 program. Correlation analysis was performed using Spearman correlation analysis. Results Aberrant upregulation of CARF has been found in tumor tissues of colorectal cancer patients and associated with poor prognosis. Ectopic expression of CARF promoted the sphere-formation activities, as well as the expression of stem cell markers in colorectal cancer cells and knockdown of CARF, inhibited these activities. The mechanistic analysis showed that CARF directly binds to the promoter of MAPK8 and JUN, promotes the expression of MAPK8 and JUN, activates the ERBB signaling pathway, and thereby promotes the maintenance of the stemness in colorectal cancer cells. Conclusion CARF, as an oncogene, promotes colorectal cancer stemness by activating ERBB signaling pathway. The ERBB signaling pathway that serves as the main downstream effector of CARF could be an efficient drug target for colorectal cancer caused by aberrant expression of CARF.
Collapse
Affiliation(s)
- Weiyi Dong
- Department of Pathology, Heze Municipal Hospital, Heze City, Shandong 274031, People's Republic of China
| | - Zheng Cao
- Department of Pathology, Juye County People's Hospital, Heze City, Shandong 274900, People's Republic of China
| | - Yanmin Pang
- Department of Intensive Care Unit, Heze Municipal Hospital, Heze City, Shandong 274031, People's Republic of China
| | - Teng Feng
- Department of Pathology, Heze Municipal Hospital, Heze City, Shandong 274031, People's Republic of China
| | - Hongtao Tian
- Department of Pathology, Heze Municipal Hospital, Heze City, Shandong 274031, People's Republic of China
| |
Collapse
|
3
|
Corney BPA, Widnall CL, Rees DJ, Davies JS, Crunelli V, Carter DA. Regulatory Architecture of the Neuronal Cacng2/Tarpγ2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs. J Mol Neurosci 2019; 67:282-294. [PMID: 30478755 PMCID: PMC6373327 DOI: 10.1007/s12031-018-1208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3' UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
Collapse
Affiliation(s)
- B P A Corney
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - C L Widnall
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D J Rees
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - V Crunelli
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D A Carter
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK.
| |
Collapse
|
4
|
Varrault A, Dantec C, Le Digarcher A, Chotard L, Bilanges B, Parrinello H, Dubois E, Rialle S, Severac D, Bouschet T, Journot L. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res 2017; 45:10466-10480. [PMID: 28985358 PMCID: PMC5737700 DOI: 10.1093/nar/gkx672] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Christelle Dantec
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laëtitia Chotard
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Benoit Bilanges
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Dany Severac
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| |
Collapse
|
5
|
Hinney A, Kesselmeier M, Jall S, Volckmar AL, Föcker M, Antel J, Heid IM, Winkler TW, Grant SFA, Guo Y, Bergen AW, Kaye W, Berrettini W, Hakonarson H, Herpertz-Dahlmann B, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Egberts KM, Adan R, Brandys M, van Elburg A, Boraska Perica V, Franklin CS, Tschöp MH, Zeggini E, Bulik CM, Collier D, Scherag A, Müller TD, Hebebrand J. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol Psychiatry 2017; 22:192-201. [PMID: 27184124 PMCID: PMC5114162 DOI: 10.1038/mp.2016.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.
Collapse
Affiliation(s)
- A Hinney
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Kesselmeier
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - S Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - A-L Volckmar
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Föcker
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - J Antel
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - I M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - T W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - S F A Grant
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - W Kaye
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - W Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - H Hakonarson
- The Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - M de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - W Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - S Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU-Dresden, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - S Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
| | - K M Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - R Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - M Brandys
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, The Netherlands
| | - A van Elburg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V Boraska Perica
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- University of Split School of Medicine, Split, Croatia
| | - C S Franklin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - E Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - C M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- Eli Lilly and Company Ltd, Surrey, UK
| | - A Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - J Hebebrand
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Lyons MR, Chen LF, Deng JV, Finn C, Pfenning AR, Sabhlok A, Wilson KM, West AE. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem 2016; 137:164-76. [PMID: 26826701 DOI: 10.1111/jnc.13556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Neuronal activity sculpts brain development by inducing the transcription of genes such as brain-derived neurotrophic factor (Bdnf) that modulate the function of synapses. Sensory experience is transduced into changes in gene transcription via the activation of calcium signaling pathways downstream of both L-type voltage-gated calcium channels (L-VGCCs) and NMDA-type glutamate receptors (NMDARs). These signaling pathways converge on the regulation of transcription factors including calcium-response factor (CaRF). Although CaRF is dispensable for the transcriptional induction of Bdnf following the activation of L-VGCCs, here we show that the loss of CaRF leads to enhanced NMDAR-dependent transcription of Bdnf as well as Arc. We identify the NMDAR subunit-encoding gene Grin3a as a regulatory target of CaRF, and we show that expression of both Carf and Grin3a is depressed by the elevation of intracellular calcium, linking the function of this transcriptional regulatory pathway to neuronal activity. We find that light-dependent activation of Bdnf and Arc transcription is enhanced in the visual cortex of young CaRF knockout mice, suggesting a role for CaRF-dependent dampening of NMDAR-dependent transcription in the developing brain. Finally, we demonstrate that enhanced Bdnf expression in CaRF-lacking neurons increases inhibitory synapse formation. Taken together, these data reveal a novel role for CaRF as an upstream regulator of NMDAR-dependent gene transcription and synapse formation in the developing brain. NMDARs promote brain development by inducing the transcription of genes, including brain-derived neurotrophic factor (BDNF). We show that the transcription factor calcium-response factor (CaRF) limits NMDAR-dependent BDNF induction by regulating expression of the NMDAR subunit GluN3A. Loss of CaRF leads to enhanced BDNF-dependent GABAergic synapse formation indicating the importance of this process for brain development. Our observation that both CaRF and GluN3A are down-regulated by intracellular calcium suggests that this may be a mechanism for experience-dependent modulation of synapse formation.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jie V Deng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Caitlin Finn
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andreas R Pfenning
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditi Sabhlok
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelli M Wilson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
De Loof A. The essence of female-male physiological dimorphism: differential Ca2+-homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroids? The Calcigender paradigm. Gen Comp Endocrinol 2015; 211:131-46. [PMID: 25540913 DOI: 10.1016/j.ygcen.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
Ca(2+) is the most omnipresent pollutant on earth, in higher concentrations a real threat to all living cells. When [Ca(2+)]i rises above 100 nM (=resting level), excess Ca(2+) needs to be confined in the SER and mitochondria, or extruded by the different Ca(2+)-ATPases. The evolutionary origin of eggs and sperm cells has a crucial, yet often overlooked link with Ca(2+)-homeostasis. Because there is no goal whatsoever in evolution, gametes did neither originate "with the purpose" of generating a progeny nor of increasing fitness by introducing meiosis. The explanation may simply be that females "invented the trick" to extrude eggs from their body as an escape strategy for getting rid of toxic excess Ca(2+) resulting from a sex-hormone driven increased influx into particular cells and tissues. The production of Ca(2+)-rich milk, seminal fluid in males and all secreted proteins by eukaryotic cells may be similarly explained. This view necessitates an upgrade of the role of the RER-Golgi system in extruding Ca(2+). In the context of insect metamorphosis, it has recently been (re)discovered that (some isoforms of) Ca(2+)-ATPases act as membrane receptors for some types of lipophilic ligands, in particular for endogenous farnesol-like sesquiterpenoids (FLS) and, perhaps, for some steroid hormones as well. A novel paradigm, tentatively named "Calcigender" emerges. Its essence is: gender-specific physiotypes ensue from differential Ca(2+)-homeostasis enabled by genetic differences, farnesol/FLS and sex hormones. Apparently the body of reproducing females gets temporarily more poisoned by Ca(2+) than the male one, a selective benefit rather than a disadvantage.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| |
Collapse
|
8
|
Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet JN, Kellis M, Mukherjee S, Sinha S, Hartemink AJ, West AE, Jarvis ED. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 2014; 346:1256780. [PMID: 25504732 DOI: 10.1126/science.1256780] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.
Collapse
Affiliation(s)
- Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| | - Andreas R Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Blatti
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James M Ward
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jean-Nicoles Audet
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | | | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
De Loof A, Marchal E, Rivera-Perez C, Noriega FG, Schoofs L. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional "inbrome" anti-aging counterpart of juvenile hormone of insects? Front Endocrinol (Lausanne) 2014; 5:222. [PMID: 25610425 PMCID: PMC4285131 DOI: 10.3389/fendo.2014.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023] Open
Abstract
Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named "juvenile hormone" (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca(2+)-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca(2+)-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer's disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely metamorphosis.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Arnold De Loof, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven–University of Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Agostino PV, Cheng RK, Williams CL, West AE, Meck WH. Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF. GENES BRAIN AND BEHAVIOR 2013; 12:633-44. [DOI: 10.1111/gbb.12059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 01/25/2023]
Affiliation(s)
- P. V. Agostino
- Laboratory of Chronobiology, Department of Science and Technology; National University of Quilmes; Buenos Aires; Argentina
| | - R.-K. Cheng
- A*STAR/Duke-NUS Neuroscience Research Partnership; Singapore; Singapore
| | | | - A. E. West
- Department of Neurobiology; Duke University; Durham; NC; USA
| | | |
Collapse
|
11
|
Kadakkuzha BM, Puthanveettil SV. Genomics and proteomics in solving brain complexity. MOLECULAR BIOSYSTEMS 2013; 9:1807-21. [PMID: 23615871 PMCID: PMC6425491 DOI: 10.1039/c3mb25391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human brain is extraordinarily complex, composed of billions of neurons and trillions of synaptic connections. Neurons are organized into circuit assemblies that are modulated by specific interneurons and non-neuronal cells, such as glia and astrocytes. Data on human genome sequences predicts that each of these cells in the human brain has the potential of expressing ∼20 000 protein coding genes and tens of thousands of noncoding RNAs. A major challenge in neuroscience is to determine (1) how individual neurons and circuitry utilize this potential during development and maturation of the nervous system, and for higher brain functions such as cognition, and (2) how this potential is altered in neurological and psychiatric disorders. In this review, we will discuss how recent advances in next generation sequencing, proteomics and bioinformatics have transformed our understanding of gene expression and the functions of neural circuitry, memory storage, and disorders of cognition.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
12
|
Members of the myocyte enhancer factor 2 transcription factor family differentially regulate Bdnf transcription in response to neuronal depolarization. J Neurosci 2012; 32:12780-5. [PMID: 22973001 DOI: 10.1523/jneurosci.0534-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription of the gene encoding brain-derived neurotropic factor (BDNF) is induced in response to a wide variety of extracellular stimuli via the activation of a complex array of transcription factors. However, to what degree individual transcription factors confer specificity upon the regulation of Bdnf is poorly understood. Previous studies have shown that members of the myocyte enhancer factor 2 (MEF2) transcription factor family bind a regulatory element upstream of Bdnf promoter I and associate with an unknown binding site in Bdnf promoter IV. Here we identify calcium-response element 1 as the MEF2 binding site in promoter IV of the Bdnf gene and determine the requirements for individual MEF2 family members in Bdnf regulation. MEF2A, MEF2C, and MEF2D are all highly expressed in embryonic rat cortical neurons; however, only the Mef2c gene encodes an MEF2 splice variant that lacks the γ repressor-domain. We find that MEF2C variants lacking the γ-domain are particularly sensitive to activation by membrane depolarization, raising the possibility that the MEF2s may differentially contribute to activity-regulated gene expression. We find that only knockdown of MEF2C significantly impairs membrane depolarization-induced expression of Bdnf exon IV. By contrast, knockdown of MEF2D significantly enhanced depolarization-induced expression of Bdnf exon I. Together, these data show that individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, revealing a new mechanism that may confer specificity on the induction of this biologically important gene.
Collapse
|
13
|
Gross J, Angerstein M, Fuchs J, Stute K, Mazurek B. Expression analysis of prestin and selected transcription factors in newborn rats. Cell Mol Neurobiol 2011; 31:1089-101. [PMID: 21614551 PMCID: PMC11498639 DOI: 10.1007/s10571-011-9708-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/11/2011] [Indexed: 01/16/2023]
Abstract
Transcription factors (TFs) have a central role to play in regulating gene expression. To analyze the co-expression patterns of selected TFs with the motor protein prestin of the outer hair cells, we applied an real-time PCR approach combining several kinds of information: (i) expression changes during postnatal development, (ii) expression changes by exposure of organotypic cultures of the organ of Corti to factors which significantly affect prestin expression [thyroid hormone (T4), retinoic acid (RA), butyric acid (BA), increased KCl concentration] and (iii) changes along the apical-basal gradient. We found that the mRNA levels of the TF Brn-3c (Pou4f3), a member of the POU family, are significantly associated with the regulation of prestin during postnatal development and in cultures supplemented with T4 (0.5 μM), BA (0.5-2.0 mM), and high KCl (50 mM) concentration. The mRNA level of the constitutively active TF C/ebpb (CCAAT/enhancer binding protein beta) correlates positively with the prestin expression during postnatal development and in cultures exposed to T4 and RA (50-100 μM). The mRNA levels of the calcium-dependent TF CaRF correlates significantly with the prestin expression in cultures exposed to T4 and high KCl concentration. The observed coexpression patterns may suggest that the TFs Brn-3c, C/ebpb, and Carf contribute to regulating the expression of prestin under the investigated conditions.
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
14
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
15
|
Abstract
Calcium-response factor (CaRF) is a unique DNA-binding protein first recognized as a transcription factor for its role in modulating transcription of the gene encoding Brain-Derived Neurotrophic Factor (BDNF) in neurons. Here I review evidence for the biological functions and transcriptional targets of CaRF in the brain and discuss potential mechanisms by which calcium-activated signaling pathways may modulate CaRF-dependent transcription. These data paint an emerging picture of CaRF as a regulatory nexus for signaling pathways that control aspects of synaptic development and neuronal function.
Collapse
Affiliation(s)
- Anne E West
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 2011; 27:141-8. [PMID: 21295369 PMCID: PMC3068217 DOI: 10.1016/j.tig.2011.01.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022]
Abstract
The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors. Surprisingly, data from a variety of model organisms and tissues have demonstrated that transcription factors vary greatly in their number of genomic binding sites, and that binding events can significantly exceed the number of known or possible direct gene targets. Thus, current understanding of transcription factor function must expand to encompass what role, if any, binding might have outside of direct transcriptional target regulation. In this review, we discuss the biological significance of genome-wide binding of transcription factors and present models that can account for this phenomenon.
Collapse
Affiliation(s)
- Kyle L. MacQuarrie
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Abraham P. Fong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Randall H. Morse
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
17
|
Konopka G. Functional genomics of the brain: uncovering networks in the CNS using a systems approach. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:628-48. [PMID: 21197665 DOI: 10.1002/wsbm.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is undoubtedly the most complex human organ system in terms of its diverse functions, cellular composition, and connections. Attempts to capture this diversity experimentally were the foundation on which the field of neurobiology was built. Until now though, techniques were either painstakingly slow or insufficient in capturing this heterogeneity. In addition, the combination of multiple layers of information needed for a complete picture of neuronal diversity from the epigenome to the proteome requires an even more complex compilation of data. In this era of high-throughput genomics though, the ability to isolate and profile neurons and brain tissue has increased tremendously and now requires less effort. Both microarrays and next-generation sequencing have identified neuronal transcriptomes and signaling networks involved in normal brain development, as well as in disease. However, the expertise needed to organize and prioritize the resultant data remains substantial. A combination of supervised organization and unsupervised analyses are needed to fully appreciate the underlying structure in these datasets. When utilized effectively, these analyses have yielded striking insights into a number of fundamental questions in neuroscience on topics ranging from the evolution of the human brain to neuropsychiatric and neurodegenerative disorders. Future studies will incorporate these analyses with behavioral and physiological data from patients to more efficiently move toward personalized therapeutics.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|