1
|
Tamura S, Ishiguro H, Suwabe T, Katagiri T, Cho K, Fuse K, Shibasaki Y, Mikami T, Shindo T, Kitagawa H, Igarashi M, Sone H, Masuko M, Ushiki T. Genetic manipulation resulting in decreased donor chondroitin sulfate synthesis mitigates hepatic GVHD via suppression of T cell activity. Sci Rep 2023; 13:13098. [PMID: 37567982 PMCID: PMC10421903 DOI: 10.1038/s41598-023-40367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Donor T cell activation, proliferation, differentiation, and migration are the major steps involved in graft-versus-host disease (GVHD) development following bone marrow transplantation. Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and causes immune modulation by interacting with cell growth factors and inducing cell adhesion. However, its precise effects on immune function are unclear than those of other proteoglycan families. Thus, we investigated the significance of CS within donor cells in acute GVHD development utilizing CSGalNAc T1-knockout (T1KO) mice. To determine the effects of T1KO, the mice underwent allogenic bone marrow transplantation from major histocompatibility complex-mismatched donors. While transplantation resulted in hepatic GVHD with inflammatory cell infiltration of both CD4+ and CD8+ effector memory T cells, transplantation in T1KO-donors showed milder cell infiltration and improved survival with fewer splenic effector T cells. In vitro T-cell analyses showed that the ratio of effector memory T cells was significantly lower via phorbol myristate acetate/ionomycin stimulation. Moreover, quantitative PCR analyses showed significantly less production of inflammatory cytokines, such as IFN-γ and CCL-2, in splenocytes of T1KO mice. These results suggest that reduction of CS in donor blood cells may suppress the severity of acute GVHD after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Suguru Tamura
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hajime Ishiguro
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Tatsuya Suwabe
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Takayuki Katagiri
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kaori Cho
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kyoko Fuse
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yasuhiko Shibasaki
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Masayoshi Masuko
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Ushiki
- Department of Hematology, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
2
|
Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021; 9:biomedicines9070752. [PMID: 34209598 PMCID: PMC8301491 DOI: 10.3390/biomedicines9070752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil;
| | - Lucas E. B. de Souza
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14051-060, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
3
|
Katagiri T, Uemura S, Ushiki T, Nakajima-Takagi Y, Oshima M, Mikami T, Kawasaki A, Ishiguro H, Tanaka T, Sone H, Kitagawa H, Igarashi M, Iwama A, Masuko M. Distinct effects of chondroitin sulfate on hematopoietic cells and the stromal microenvironment in bone marrow hematopoiesis. Exp Hematol 2021; 96:52-62.e5. [PMID: 33582241 DOI: 10.1016/j.exphem.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
The bone marrow (BM) microenvironment, known as the BM niche, regulates hematopoiesis but is also affected by interactions with hematopoietic cells. Recent evidence indicates that extracellular matrix components are involved in these interactions. Chondroitin sulfate (CS), a glycosaminoglycan, is a major component of the extracellular matrix; however, it is not known whether CS has a physiological role in hematopoiesis. Here, we analyzed the functions of CS in hematopoietic and niche cells. CSGalNAcT1, which encodes CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, was highly expressed in hematopoietic stem and progenitor cells (HSPCs) and endothelial cells (ECs), but not in mesenchymal stromal cells (MSCs) in BM. In T1 knockout (T1KO) mice, a greater number of HSPCs existed compared with the wild-type (WT), but HSPCs from T1KO mice showed significantly impaired repopulation in WT recipient mice on serial transplantation. RNA sequence analysis revealed the activation of IFN-α/β signaling and endoplasmic reticulum stress in T1KO HSPCs. In contrast, the number of WT HSPCs repopulated in T1KO recipient mice was larger than that in WT recipient mice after serial transplantation, indicating that the T1KO niche supports repopulation of HSPCs better than the WT niche. There was no obvious difference in the distribution of vasculature and MSCs between WT and T1KO BM, suggesting that CS loss alters vascular niche functions without affecting its structure. Our results revealed distinct roles of CS in hematopoietic cells and BM niche, indicating that crosstalk between these components is important to maintain homeostasis in BM.
Collapse
Affiliation(s)
- Takayuki Katagiri
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Shun Uemura
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan; Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Ushiki
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hajime Ishiguro
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Tomoyuki Tanaka
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masayoshi Masuko
- Department of Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan.
| |
Collapse
|
4
|
3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. MATERIALS 2020; 13:ma13214819. [PMID: 33126650 PMCID: PMC7662749 DOI: 10.3390/ma13214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies. This paper concisely reviews 3D printing techniques in terms of hardware, software, and materials with a focus on surgery. In addition, it reviews bioprinting technology and a non-invasive monitoring method using near-infrared (NIR) fluorescence, with special attention to the 3D-bioprinted tissue constructs. NIR fluorescence imaging applied to 3D printing technology can play a significant role in monitoring the therapeutic efficacy of 3D structures for clinical implants. Consequently, these techniques can provide individually customized products and improve the treatment outcome of surgeries.
Collapse
|
5
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
6
|
Robb KP, Shridhar A, Flynn LE. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater Sci Eng 2017; 4:3627-3643. [PMID: 33429606 DOI: 10.1021/acsbiomaterials.7b00619] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue-specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM-derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kevin P Robb
- Biomedical Engineering Graduate Program, The University of Western Ontario, Claudette MacKay Lassonde Pavilion, London, Ontario, Canada N6A 5B9
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9
| | - Lauren E Flynn
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
7
|
Smith P, O'Sullivan C, Gergely P. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2017; 18:ijms18102027. [PMID: 28934113 PMCID: PMC5666709 DOI: 10.3390/ijms18102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Allogeneic haemopoietic stem cell transplantation (HSCT) is increasingly used to treat haematological malignant diseases via the graft-versus-leukaemia (GvL) or graft-versus-tumour effects. Although improvements in infectious disease prophylaxis, immunosuppressive treatments, supportive care, and molecular based tissue typing have contributed to enhanced outcomes, acute graft-versus-host disease and other transplant related complications still contribute to high mortality and significantly limit the more widespread use of HSCT. Sphingosine 1-phosphate (S1P) is a zwitterionic lysophospholipid that has been implicated as a crucial signaling regulator in many physiological and pathophysiological processes including multiple cell types such as macrophages, dendritic cells, T cells, T regulatory cells and endothelial cells. Recent data suggested important roles for S1P signaling in engraftment, graft-versus-host disease (GvHD), GvL and other processes that occur during and after HSCT. Based on such data, pharmacological intervention via S1P modulation may have the potential to improve patient outcome by regulating GvHD and enhancing engraftment while permitting effective GvL.
Collapse
Affiliation(s)
- Philip Smith
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| | - Catherine O'Sullivan
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| |
Collapse
|
8
|
Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS One 2016; 11:e0162111. [PMID: 27583437 PMCID: PMC5008821 DOI: 10.1371/journal.pone.0162111] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease.
Collapse
|
9
|
Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 2014; 34:313-26. [PMID: 24381292 DOI: 10.1523/jneurosci.2425-13.2014] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 10(6) hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1' dioactadecyl-3-3-3',3'-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen.
Collapse
|
10
|
Progatzky F, Dallman MJ, Lo Celso C. From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 2013; 3:20130001. [PMID: 23853708 PMCID: PMC3638420 DOI: 10.1098/rsfs.2013.0001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intravital microscopy has become increasingly popular over the past few decades because it provides high-resolution and real-time information about complex biological processes. Technological advances that allow deeper penetration in live tissues, such as the development of confocal and two-photon microscopy, together with the generation of ever-new fluorophores that facilitate bright labelling of cells and tissue components have made imaging of vertebrate model organisms efficient and highly informative. Genetic manipulation leading to expression of fluorescent proteins is undoubtedly the labelling method of choice and has been used to visualize several cell types in vivo. This approach, however, can be technically challenging and time consuming. Over the years, several dyes have been developed to allow rapid, effective and bright ex vivo labelling of cells for subsequent transplantation and imaging. Here, we review and discuss the advantages and limitations of a number of strategies commonly used to label and track cells at high resolution in vivo in mouse and zebrafish, using fluorescence microscopy. While the quest for the perfect label is far from achieved, current reagents are valuable tools enabling the progress of biological discovery, so long as they are selected and used appropriately.
Collapse
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences , Imperial College London , London SW7 2AZ , UK
| | | | | |
Collapse
|
11
|
Haddad-Mashadrizeh A, Bahrami AR, Matin MM, Edalatmanesh MA, Zomorodipour A, Gardaneh M, Farshchian M, Momeni-Moghaddam M. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation 2013; 20:165-76. [PMID: 23679842 DOI: 10.1111/xen.12033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Novel threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness. Accordingly, achievement to suitable cell source with potential-to-long-term survival and appropriate differentiation can be an effective step in this direction. METHODS After derivation of human adipose-derived mesenchymal stem cells (HAD-MSCs), they were stably transfected with a vector containing Turbo-green fluorescent protein (GFP) and JRed to be able to trace them after transplantation. Labeled HAD-MSCs were transplanted into the intact adult rat eye and their survival, integration, and migration during 6 months post-transplantation were assessed. RESULTS The transplanted cells were traceable in the rat vitreous humor (VH) up until 90 days after transplantation, with gradual reduction in numbers, their adhesion and expansion capacity after recovery. These cells were also integrated into the ocular tissues. Nonetheless, some of the implanted cells succeeded to cross the blood-retina barrier (BRB) and accumulate in the spleen with time. CONCLUSIONS The survival of the HAD-MSCs for a period of 90 days in VH and even longer period of up to 6 months in other eye tissues makes them a promising source to be considered in regenerative medicine of eye diseases. However, the potency of crossing the BRB by the implanted cells suggests that use of HAD-MSCs must be handled with extreme caution.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Biffi S, Dal Monego S, Dullin C, Garrovo C, Bosnjak B, Licha K, Welker P, Epstein MM, Alves F. Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model. PLoS One 2013; 8:e57150. [PMID: 23437332 PMCID: PMC3578827 DOI: 10.1371/journal.pone.0057150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 01/21/2013] [Indexed: 01/20/2023] Open
Abstract
Background Non-invasive in vivo imaging strategies are of high demand for longitudinal monitoring of inflammation during disease progression. In this study we present an imaging approach using near infrared fluorescence (NIRF) imaging in combination with a polyanionic macromolecular conjugate as a dedicated probe, known to target L- and P-selectin and C3/C5 complement factors. Methodology/Principal Findings We investigated the suitability of dendritic polyglycerol sulfates (dPGS), conjugated with a hydrophilic version of the indocyanine green label with 6 sulfonate groups (6S-ICG) to monitor sites of inflammation using an experimental mouse model of allergic asthma. Accumulation of the NIRF-conjugated dPGS (dPGS-NIRF) in the inflamed lungs was analyzed in and ex vivo in comparison with the free NIRF dye using optical imaging. Commercially available smart probes activated by matrix metalloproteinase's (MMP) and cathepsins were used as a comparative control. The fluorescence intensity ratio between lung areas of asthmatic and healthy mice was four times higher for the dPGS in comparison to the free dye in vivo at four hrs post intravenous administration. No significant difference in fluorescence intensity between healthy and asthmatic mice was observed 24 hrs post injection for dPGS-NIRF. At this time point ex-vivo scans of asthmatic mice confirmed that the fluorescence within the lungs was reduced to approximately 30% of the intensity observed at 4 hrs post injection. Conclusions/Significance Compared with smart-probes resulting in a high fluorescence level at 24 hrs post injection optical imaging with dPGS-NIRF conjugates is characterized by fast uptake of the probe at inflammatory sites and represents a novel approach to monitor lung inflammation as demonstrated in mice with allergic asthma.
Collapse
Affiliation(s)
- Stefania Biffi
- Cluster in Biomedicine (CBM scrl), Optical Imaging Laboratory, Trieste, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bossolasco P, Cova L, Levandis G, Diana V, Cerri S, Deliliers GL, Polli E, Silani V, Blandini F, Armentero MT. Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease. Int J Nanomedicine 2012; 7:435-47. [PMID: 22334776 PMCID: PMC3273978 DOI: 10.2147/ijn.s27537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have previously shown that human mesenchymal stem cells (hMSCs) can reduce toxin-induced neurodegeneration in a well characterized rodent model of Parkinson's disease. However, the precise mechanisms, optimal cell concentration required for neuroprotection, and detailed cell tracking need to be defined. We exploited a near-infrared imaging platform to perform noninvasive tracing following transplantation of tagged hMSCs in live parkinsonian rats. METHODS hMSCs were labeled both with a membrane intercalating dye, emitting in the near- infrared 815 nm spectrum, and the nuclear counterstain, Hoechst 33258. Effects of near-infrared dye on cell metabolism and proliferation were extensively evaluated in vitro. Tagged hMSCs were then administered to parkinsonian rats bearing a 6-hydroxydopamine-induced lesion of the nigrostriatal pathway, via two alternative routes, ie, intrastriatal or intranasal, and the cells were tracked in vivo and ex vivo using near-infrared technology. RESULTS In vitro, NIR815 staining was stable in long-term hMSC cultures and did not interfere with cell metabolism or proliferation. A significant near-infrared signal was detectable in vivo, confined around the injection site for up to 14 days after intrastriatal transplantation. Conversely, following intranasal delivery, a strong near-infrared signal was immediately visible, but rapidly faded and was completely lost within 1 hour. After sacrifice, imaging data were confirmed by presence/absence of the Hoechst signal ex vivo in coronal brain sections. Semiquantitative analysis and precise localization of transplanted hMSCs were further performed ex vivo using near-infrared imaging. CONCLUSION Near-infrared technology allowed longitudinal detection of fluorescent-tagged cells in living animals giving immediate information on how different delivery routes affect cell distribution in the brain. Near-infrared imaging represents a valuable tool to evaluate multiple outcomes of transplanted cells, including their survival, localization, and migration over time within the host brain. This procedure considerably reduces the number of animal experiments needed, as well as interindividual variability, and may favor the development of efficient therapeutic strategies promptly applicable to patients.
Collapse
Affiliation(s)
- P Bossolasco
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - L Cova
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
| | - G Levandis
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - V Diana
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
| | - S Cerri
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - G Lambertenghi Deliliers
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - E Polli
- Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan
| | - V Silani
- Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino
- Department of Neurology and Laboratory of Neuroscience, Centro “Dino Ferrari” Università degli Studi di Milano-IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - F Blandini
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| | - MT Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia
| |
Collapse
|
14
|
Song MG, Kang B, Jeon JY, Chang J, Lee S, Min CK, Youn H, Choi EY. In vivo imaging of differences in early donor cell proliferation in graft-versus-host disease hosts with different pre-conditioning doses. Mol Cells 2012; 33:79-86. [PMID: 22228184 PMCID: PMC3887749 DOI: 10.1007/s10059-012-2228-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023] Open
Abstract
Graft-versus-host disease (GVHD) results from immunemediated attacks on recipient tissues by donor-originated cells through the recognition of incompatible antigens expressed on host cells. The pre-conditioning irradiation dose is a risk factor influencing GVHD severity. In this study, using newly generated luciferase transgenic mice on a B6 background (B6.Luc(Tg)) as bone marrow and splenocyte donors, we explored the effects of irradiation doses on donor cell dynamics in major histocompatibility complex (MHC)-matched allogeneic GVHD hosts via bioluminescence imaging (BLI). Results from BLI of GVHD hosts showed higher emission intensities of luminescence signals from hosts irradiated with 900 cGy as compared with those irradiated with 400 cGy. In particular, BLI signals from target organs, such as the spleen, liver, and lung, and several different lymph nodes fluctuated with similar time kinetics soon after transplantation, reflecting the synchronous proliferation of donor cells in the different organs in hosts irradiated with 900 cGy. The kinetic curves of the BLI signals were not synchronized between the target organs and the secondary organs in hosts irradiated with 400 cGy. These results demonstrate that pre-conditioning doses influence the kinetics and degree of proliferation in the target organs soon after transplantation. The results from this study are the first describing donor cell dynamics in MHC-matched allogeneic GVHD hosts and the influence of irradiation doses on proliferation dynamics, and will provide spatiotemporal information to help understand GVHD pathophysiology.
Collapse
Affiliation(s)
- Myung Geun Song
- Department of Tumor Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Bora Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ji Yeong Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jun Chang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,
Korea
| | - Seungbok Lee
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| | - Chang-Ki Min
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, St. Mary’s Hospital, Seoul 137-701,
Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Cancer Imaging Center, Seoul National University Cancer Hospital, Seoul 110-799,
Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
15
|
The Airways, a Novel Route for Delivering Monoclonal Antibodies to Treat Lung Tumors. Pharm Res 2011; 28:2147-56. [DOI: 10.1007/s11095-011-0442-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/25/2011] [Indexed: 01/24/2023]
|
16
|
Kalchenko V, Neeman M, Harmelin A. Whole-Body Imaging of Hematopoietic and Cancer Cells Using Near-Infrared Probes. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY III 2011. [DOI: 10.1007/978-3-642-18035-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|