1
|
Wu Y, Hou J, Xiao H, Ye S, Tu D, Qiu R, Ma X, Zhao Y, Chen T, Li L. OsHDAC1 deacetylates the aldehyde dehydrogenase OsALDH2B1, repressing OsGR3 and decreasing salt tolerance in rice. PLANT PHYSIOLOGY 2025; 198:kiaf149. [PMID: 40329873 DOI: 10.1093/plphys/kiaf149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 05/07/2025]
Abstract
Salt stress poses a significant challenge to the growth and productivity of rice (Oryza sativa L.). Histone deacetylases (HDACs) play a vital role in modulating responses to various abiotic stresses. However, how OsHDAC1 responds to salt stress remains largely unknown. Here, we report that OsHDAC1 decreases salt tolerance in rice through posttranslational modification of metabolic enzymes. Specifically, the rice OsHDAC1 RNAi lines exhibited enhanced resilience to salt stress, while plants overexpressing OsHDAC1 were notably more sensitive. OsHDAC1 interacts with the aldehyde dehydrogenase (ALDH) OsALDH2B1 and deacetylates it at K311 and K531, triggering ubiquitin-proteasome-mediated degradation of OsALDH2B1. OsALDH2B1 can directly target OsGR3, which encodes a type of glutathione reductase critical for reactive oxygen species scavenging. Compared with wild-type plants, OsALDH2B1-overexpressing plants exhibited higher OsGR3 expression levels and increased salt resistance, whereas OsALDH2B1 RNAi lines showed reduced OsGR3 expression and lower salt resistance. Collectively, our data suggest that salt stress downregulates OsHDAC1, resulting in an increase in the acetylation level of OsALDH2B1, which in turn stabilizes OsALDH2B1 and promotes its activity in the regulation of OsGR3 transcription. This OsHDAC1/OsALDH2B1/OsGR3 regulatory module represents an alternative pathway for governing salt stress adaptation in rice.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shiqi Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ronghua Qiu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Guo X, Yang F, Zhang X, Tang M, Wan K, Lai C, Lai Z, Lin Y. Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase ( SSADH) Gene Family in Banana Low Temperature Stress. Int J Mol Sci 2025; 26:3006. [PMID: 40243690 PMCID: PMC11988443 DOI: 10.3390/ijms26073006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Banana (Musa spp.) is susceptible to low-temperature stress and other environmental stresses, which can hinder the growth and development. Succinic semialdehyde dehydrogenase (SSADH) is critical for GABA biosynthesis and plays a crucial role in plants. However, the SSADH genes of bananas have not been studied. This study found 19 MaSSADHs, 18 MbSSADHs, and 18 MiSSADHs from the banana genome. According to the phylogenetic tree, these genes can be categorized into five branches. This study cloned the MaSSADH1-14 from banana. The subcellular localization assays of MaSSADH1-14 in tobacco leaves confirmed that the presence of SSADH was not only localized mitochondrion but also localized chloroplast. The cis-elements of the SSADH gene family are related to the potential regulation of the banana SSADH gene family; their involvement in diverse stress responses. Transcriptomic data was utilized to examine the effect of MaSSADH genes under cold stress in bananas. The results of RT-qPCR were consistent with transcriptome data. These results showed that most MaSSADHs are passively responsive to low-temperature treatment. In addition, transient overexpression of MaSSADH1-14 in Nicotiana benthamiana leaves resulted in the content of GABA increasing, indicating that MaSSADH1-14 may be involved in the accumulation of GABA of banana. Collectively, these results improve knowledge of the SSADH gene family in banana and establish a basis for comprehending its biological roles in response to low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.G.); (F.Y.); (X.Z.); (M.T.); (K.W.); (C.L.)
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.G.); (F.Y.); (X.Z.); (M.T.); (K.W.); (C.L.)
| |
Collapse
|
3
|
Jin T, Wu C, Huang Z, Zhang X, Li S, Ding C, Long W. The Aldehyde Dehydrogenase Superfamily in Brassica napus L.: Genome-Wide Identification and Expression Analysis Under Low-Temperature Conditions. Int J Mol Sci 2025; 26:2373. [PMID: 40076992 PMCID: PMC11901046 DOI: 10.3390/ijms26052373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The Aldehyde Dehydrogenase (ALDH) superfamily comprises a group of NAD+ or NADP+-dependent enzymes that play essential roles in responding to abiotic stresses in plants. In Brassica napus L., however, the increasing frequency of extremely low temperatures during winter in recent years has significantly affected both yield and quality. This study conducted a genome-wide screening of ALDH superfamily genes, analyzing their gene structures, evolutionary relationships, protein physicochemical properties, and expression patterns under low-temperature stress to explore the function of the ALDH superfamily gene in cold tolerance in Brassica napus L. A total of six BnALDH genes with significant differences in expression levels were verified utilizing quantitative real-time polymerase chain reaction (qRT-PCR), revealing that BnALDH11A2, BnALDH7B2, BnALDH3F5, BnALDH12A3, BnALDH2B6, and BnALDH7B3 all exhibited higher expression in cold-tolerant material 24W233 compared with cold-sensitive material 24W259. Additionally, a single nucleotide polymorphism (SNP) in the BnALDH11A2 promoter region shows differences between the cold-tolerant (24W233) and the cold-sensitive (24W259) Brassica napus varieties, and it may be associated with the cold tolerance of these two varieties. This comprehensive analysis offers valuable insights into the role of ALDH family genes in low-temperature stress adaptation in Brassica napus and offers genetic resources for the development of novel cold-tolerant cultivars.
Collapse
Affiliation(s)
- Ting Jin
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| | - Chunhua Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing 211800, China;
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Shimeng Li
- Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China;
| | - Chao Ding
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| | - Weihua Long
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| |
Collapse
|
4
|
He M, Ouyang X, Cheng L, Li Y, Shi N, Ma H, Sun Y, Yao H, Shen H. Identification of Aldehyde Dehydrogenase Gene Family in Glycyrrhiza uralensis and Analysis of Expression Pattern Under Drought Stress. Int J Mol Sci 2025; 26:2333. [PMID: 40076951 PMCID: PMC11900305 DOI: 10.3390/ijms26052333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a gene family that relies on NAD +/NADP + proteins to oxidize toxic aldehydes to non-toxic carboxylic acids, and they play a crucial role in the growth and development of plants, as well as in their ability to withstand stress. This study identified 26 ALDH genes from six Glycyrrhiza uralensis gene families distributed on six chromosomes. By analyzing the phylogeny, gene structure, conserved motifs, cis-regulatory elements, collinearity of homologs, evolutionary patterns, differentiation patterns, and expression variations under drought stress, we found that the ALDH gene is involved in phytohormones and exhibits responsiveness to various environmental stressors by modulating multiple cis-regulatory elements. In addition, GuALDH3H1, GuALDH6B1, GuALDH12A2, and GuALDH12A1 have been identified as playing a crucial role in the response to drought stress. By analyzing the expression patterns of different tissues under drought stress, we discovered that GuALDH3I2 and GuALDH2B2 exhibited the most pronounced impact in relation to the drought stress response, which indicates that they play a positive role in the response to abiotic stress. These findings provide a comprehensive theoretical basis for the ALDH gene family in Glycyrrhiza uralensis and enhance our understanding of the molecular mechanisms underlying ALDH genes in licorice growth, development, and adaptation to drought stress.
Collapse
Affiliation(s)
- Mengyuan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Xu Ouyang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Linyuan Cheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Yuetao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Nana Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Hongxia Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Yu Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
| | - Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (M.H.); (X.O.); (L.C.); (Y.L.); (N.S.); (H.M.); (Y.S.)
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Granados-Alegría MI, Canto-Canché B, Gómez-Tah R, Félix JW, Tzec-Simá M, Ruiz-May E, Islas-Flores I. Proteomic Profiling of Cocos nucifera L. Zygotic Embryos during Maturation of Dwarf and Tall Cultivars: The Dynamics of Carbohydrate and Fatty Acid Metabolism. Int J Mol Sci 2024; 25:8507. [PMID: 39126077 PMCID: PMC11312736 DOI: 10.3390/ijms25158507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Collapse
Affiliation(s)
- María Inés Granados-Alegría
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Jean Wildort Félix
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Miguel Tzec-Simá
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Ignacio Islas-Flores
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| |
Collapse
|
6
|
Xu J, Liu L, Huang H, Shang C, Pan H, Fan H, Han X, Qiu W, Lu Z, Qiao G, Zhuo R. Genome-wide characterization and gene expression analyses of ALDH gene family in response to drought stress in moso bamboo (Phyllostachys edulis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107954. [PMID: 37573795 DOI: 10.1016/j.plaphy.2023.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Aldehyde dehydrogenase (ALDH) superfamily, comprising enzymes dependent on NAD+ or NADP+, plays an important role in controlling plant growth and development, as well as in responsing to phytohormone and environmental stress. These enzymes possess the ability to prevent toxic effects of aldehydes by converting them into their corresponding carboxylic acids. However, the potential function of ALDH genes in moso bamboo (Phyllostachys edulis) remains largely unknown. In this study, the ALDH gene superfamily in moso bamboo was analyzed through genome-wide screening, the evolutionary relationship of expansion genes was conducted. Tissue-specific expression patterns of ALDH genes were observed in 26 different tissues. Plant hormone and environmental stress responsive cis-elements were identified in the promoter of ALDH genes, which were supported by public databases data on the expression patterns under various abiotic stresses and hormone treatments. ALDH activity was increased in moso bamboo seedlings exposed to drought, compared to control condition. Furthermore, PeALDH2B2 was found to physically interact with PeGPB1 in response to drought. Overall, the study provides a comprehensive analysis of the ALDH family in moso bamboo and contributes to our understanding of the function of ALDH genes in growth, development, and adaptation to drought stresses.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Linxiu Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Changgeng Shang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Huanhuan Pan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
7
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
8
|
Islam MS, Mohtasim M, Islam T, Ghosh A. Aldehyde dehydrogenase superfamily in sorghum: genome-wide identification, evolution, and transcript profiling during development stages and stress conditions. BMC PLANT BIOLOGY 2022; 22:316. [PMID: 35786175 PMCID: PMC9252066 DOI: 10.1186/s12870-022-03708-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are a family of NAD(P)+ dependent enzymes that detoxify aldehydes by promoting their oxidation to respective carboxylic acids. The role of ALDH enzymes in various plant species has been extensively studied, revealing their critical role in salinity, drought, heat, and heavy metal stress tolerance. Despite their physiological significance, ALDH genes in Sorghum bicolor have yet to be studied thoroughly. RESULTS In this study, a total of 19 ALDH genes have been identified that have been grouped into ten families based on the criteria of the ALDH gene nomenclature committee. Segmental duplication assisted more in the enhancement of SbALDH gene family members than tandem duplication. All the identified SbALDH members made a cluster with monocot rice and maize in the phylogenetic tree rather than dicot species, suggesting the pre-eudicot-monocot separation of the ALDH superfamily members. The gene structure and protein domain were found to be mostly conserved in separate phylogenetic classes, indicating that each family played an important role in evolution. Expression analysis revealed that several SbALDHs were expressed in various tissues, developmental stages, and in response to abiotic stresses, indicating that they can play roles in plant growth, development, or stress adaptation. Interestingly, the majority of the SbALDH genes were found to be highly responsive to drought stress, and the SbALDH18B1 transcript showed maximum enhancement in all the stress conditions. The presence of cis-acting elements (mainly ABRE and MBS) in the promoter region of these genes might have a significant role in drought tolerance. CONCLUSIONS Our findings add to the current understanding, evolutionary history, and contribution of SbALDHs in stress tolerance, and smooth the path of further functional validation of these genes.
Collapse
Affiliation(s)
- Md Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Munira Mohtasim
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
9
|
Evolution, family expansion, and functional diversification of plant aldehyde dehydrogenases. Gene X 2022; 829:146522. [PMID: 35447239 DOI: 10.1016/j.gene.2022.146522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) act as "aldehyde scavengers" in plants, eliminating reactive aldehydes and hence performing a crucial part in response to stress. ALDH has been specified multiple activities since its identification in the mammalian system 72 years ago. But the most widely researched role in plants is their engagement in stress tolerance. Multiple ALDH families are found in both animals and plants, and many genes are substantially conserved within these two evolutionary diverse taxa, yet both have their unique members/families. A total of twenty-four ALDH protein family has been reported across organisms, where plants contain fourteen families. Surprisingly, the number of genes in the ALDH superfamily has risen in the higher plants because of genome duplication and expansion, indicating the functional versatilely. Observed expansion in the ALDH isoforms might provide high plasticity in their actions to achieve diversified roles in the plant. The physiological importance and functional diversity of ALDHs including plant development and environmental stress adaptability, and their evolution in plants has been studied extensively. Future investigations need to focus on evaluating the individual and interconnecting function of multiple ALDH isoforms across organisms in providing plants with proper development, maturation, and adaptability against harsh environmental conditions.
Collapse
|
10
|
Carmona-Molero R, Jimenez-Lopez JC, Caballo C, Gil J, Millán T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. PLANTS 2021; 10:plants10112429. [PMID: 34834791 PMCID: PMC8619295 DOI: 10.3390/plants10112429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Legumes play an important role in ensuring food security, improving nutrition and enhancing ecosystem resilience. Chickpea is a globally important grain legume adapted to semi-arid regions under rain-fed conditions. A growing body of research shows that aldehyde dehydrogenases (ALDHs) represent a gene class with promising potential for plant adaptation improvement. Aldehyde dehydrogenases constitute a superfamily of proteins with important functions as ‘aldehyde scavengers’ by detoxifying aldehydes molecules, and thus play important roles in stress responses. We performed a comprehensive study of the ALDH superfamily in the chickpea genome and identified 27 unique ALDH loci. Most chickpea ALDHs originated from duplication events and the ALDH3 gene family was noticeably expanded. Based on the physical locations of genes and sequence similarities, our results suggest that segmental duplication is a major driving force in the expansion of the ALDH family. Supported by expression data, the findings of this study offer new potential target genes for improving stress tolerance in chickpea that will be useful for breeding programs.
Collapse
Affiliation(s)
- Rocío Carmona-Molero
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ-CSIC, 18008 Granada, Spain;
- Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Cristina Caballo
- Área de Genómica y Biotecnología, IFAPA, Alameda del Obispo, 14080 Córdoba, Spain;
| | - Juan Gil
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Teresa Millán
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose V. Die
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
- Correspondence:
| |
Collapse
|
11
|
Mehari TG, Xu Y, Umer MJ, Shiraku ML, Hou Y, Wang Y, Yu S, Zhang X, Wang K, Cai X, Zhou Z, Liu F. Multi-Omics-Based Identification and Functional Characterization of Gh_A06G1257 Proves Its Potential Role in Drought Stress Tolerance in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:746771. [PMID: 34745180 PMCID: PMC8567990 DOI: 10.3389/fpls.2021.746771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 05/08/2023]
Abstract
Cotton is one of the most important fiber crops globally. Despite this, various abiotic stresses, including drought, cause yield losses. We used transcriptome profiles to investigate the co-expression patterns of gene networks associated with drought stress tolerance. We identified three gene modules containing 3,567 genes highly associated with drought stress tolerance. Within these modules, we identified 13 hub genes based on intramodular significance, for further validation. The yellow module has five hub genes (Gh_A07G0563, Gh_D05G0221, Gh_A05G3716, Gh_D12G1438, and Gh_D05G0697), the brown module contains three hub genes belonging to the aldehyde dehydrogenase (ALDH) gene family (Gh_A06G1257, Gh_A06G1256, and Gh_D06G1578), and the pink module has five hub genes (Gh_A02G1616, Gh_D12G2599, Gh_D07G2232, Gh_A02G0527, and Gh_D07G0629). Based on RT-qPCR results, the Gh_A06G1257 gene has the highest expression under drought stress in different plant tissues and it might be the true candidate gene linked to drought stress tolerance in cotton. Silencing of Gh_A06G1257 in cotton leaves conferred significant sensitivity in response to drought stress treatments. Overexpression of Gh_A06G1257 in Arabidopsis also confirms its role in drought stress tolerance. L-valine, Glutaric acid, L-proline, L-Glutamic acid, and L-Tryptophan were found to be the most significant metabolites playing roles in drought stress tolerance. These findings add significantly to existing knowledge of drought stress tolerance mechanisms in cotton.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Islam MS, Hasan MS, Hasan MN, Prodhan SH, Islam T, Ghosh A. Genome-wide identification, evolution, and transcript profiling of Aldehyde dehydrogenase superfamily in potato during development stages and stress conditions. Sci Rep 2021; 11:18284. [PMID: 34521910 PMCID: PMC8440639 DOI: 10.1038/s41598-021-97691-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
The Aldehyde dehydrogenase (ALDH) superfamily comprises a group of enzymes involved in the scavenging of toxic aldehyde molecules by converting them into their corresponding non-toxic carboxylic acids. A genome-wide study in potato identified a total of 22 ALDH genes grouped into ten families that are presented unevenly throughout all the 12 chromosomes. Based on the evolutionary analysis of ALDH proteins from different plant species, ALDH2 and ALDH3 were found to be the most abundant families in the plant, while ALDH18 was found to be the most distantly related one. Gene expression analysis revealed that the expression of StALDH genes is highly tissue-specific and divergent in various abiotic, biotic, and hormonal treatments. Structural modelling and functional analysis of selected StALDH members revealed conservancy in their secondary structures and cofactor binding sites. Taken together, our findings provide comprehensive information on the ALDH gene family in potato that will help in developing a framework for further functional studies.
Collapse
Affiliation(s)
- Md Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Soyib Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tahmina Islam
- Department of Botany, University of Dhaka, Dhaka, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
13
|
Xu D, Liu Q, Chen G, Yan Z, Hu H. Aldehyde dehydrogenase ALDH3F1 involvement in flowering time regulation through histone acetylation modulation on FLOWERING LOCUS C. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1080-1092. [PMID: 31829514 DOI: 10.1111/jipb.12893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Flowering time regulation is one of the most important processes in the whole life of flowering plants and FLOWERING LOCUS C (FLC) is a central repressor of flowering time. However, whether metabolic acetate level affects flowering time is unknown. Here we report that ALDEHYDE DEHYDROGENASE ALDH3F1 plays essential roles in floral transition via FLC-dependent pathway. In the aldh3f1-1 mutant, the flowering time was significant earlier than Col-0 and the FLC expression level was reduced. ALDH3F1 had aldehyde dehydrogenase activity to affect the acetate level in plants, and the amino acids of E214 and C252 are essential for its catalytic activity. Moreover, aldh3f1 mutation reduced acetate level and the total acetylation on histone H3. The H3K9Ac level on FLC locus was decreased in aldh3f1-1, which reduced FLC expression. Expression of ALDH3F1 could rescue the decreased H3K9Ac level on FLC, FLC expression and also the early-flowering phenotype of aldh3f1-1, however ALDH3F1E214A or ALDH3F1C252A could not. Our findings demonstrate that ALDH3F1 participates in flowering time regulation through modulating the supply of acetate for acetyl-CoA, which functions as histone acetylation donor to modulate H3K9Ac on FLC locus.
Collapse
Affiliation(s)
- Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqiang Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
In Silico Identification of QTL-Based Polymorphic Genes as Salt-Responsive Potential Candidates through Mapping with Two Reference Genomes in Rice. PLANTS 2020; 9:plants9020233. [PMID: 32054112 PMCID: PMC7076550 DOI: 10.3390/plants9020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
Recent advances in next generation sequencing have created opportunities to directly identify genetic loci and candidate genes for abiotic stress responses in plants. With the objective of identifying candidate genes within the previously identified QTL-hotspots, the whole genomes of two divergent cultivars for salt responses, namely At 354 and Bg 352, were re-sequenced using Illumina Hiseq 2500 100PE platform and mapped to Nipponbare and R498 genomes. The sequencing results revealed approximately 2.4 million SNPs and 0.2 million InDels with reference to Nipponbare while 1.3 million and 0.07 million with reference to R498 in two parents. In total, 32,914 genes were reported across all rice chromosomes of this study. Gene mining within QTL hotspots revealed 1236 genes, out of which 106 genes were related to abiotic stress. In addition, 27 abiotic stress-related genes were identified in non-QTL regions. Altogether, 32 genes were identified as potential genes containing polymorphic non-synonymous SNPs or InDels between two parents. Out of 10 genes detected with InDels, tolerant haplotypes of Os01g0581400, Os10g0107000, Os11g0655900, Os12g0622500, and Os12g0624200 were found in the known salinity tolerant donor varieties. Our findings on different haplotypes would be useful in developing resilient rice varieties for abiotic stress by haplotype-based breeding studies.
Collapse
|
15
|
The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice. Proc Natl Acad Sci U S A 2020; 117:3867-3873. [PMID: 32024752 DOI: 10.1073/pnas.1918994117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In plants, enhanced defense often compromises growth and development, which is regarded as trade-offs between growth and defense. Here we identified a gene, OsALDH2B1, that functions as a master regulator of the growth-defense trade-off in rice. OsALDH2B1 has its primary function as an aldehyde dehydrogenase and a moonlight function as a transcriptional regulator. Loss of function of OsALDH2B1 greatly enhanced resistance to broad-spectrum pathogens, including fungal blast, bacterial leaf blight, and leaf streak, but caused severe phenotypic changes such as male sterility and reduced plant size, grain size, and number. We showed that its primary function as a mitochondrial aldehyde dehydrogenase conditions male fertility. Its moonlight function of transcriptional regulation, featuring both repressing and activating activities, regulates a diverse range of biological processes involving brassinolide, G protein, jasmonic acid, and salicylic acid signaling pathways. Such regulations cause large impacts on the morphology and immunity of rice plants. The versatile functions of OsALDH2B1 provide an example of the genic basis of growth-defense trade-offs in plants.
Collapse
|
16
|
Na + and Cl - induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech 2019; 9:91. [PMID: 30800602 DOI: 10.1007/s13205-019-1599-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Chloride and sodium constitute as the major ions in most saline soils, contributing to salt-induced damage in plants. Research on salt tolerance has mostly concentrated on the sodium toxicity; however, chloride toxicity also needs to be considered to understand the physiological, biochemical, and metabolite changes under individual and additive salts. In this study, we investigated the effect of individual Na+ and/or Cl- ions (equimolar 100 mM NaCl, Na+ and Cl- salts) using in vitro cultures of four soybean genotypes with contrasting salt tolerance. In general, all the treatments significantly induced antioxidant enzymes activities such as catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase, and superoxide dismutase and osmolytes including proline, glycine betaine, and total soluble sugar (TSS). Both individual (Na+, Cl-) and additive (NaCl) stresses induced more pronounced activation of antioxidant enzyme machinery and osmolytes accumulation in the tolerant genotypes (MAUS-47 and Bragg). The sensitive genotypes (Gujosoya-2 and SL-295) showed higher accumulation of Na+ and Cl-, while the tolerant genotypes were found to maintain a low Na+/K+ and high Ca2+ level in combination with enhanced antioxidant defense and osmotic adjustment. Gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling depicted the association of certain metabolites under individualistic and additive salt effects. The genotype-specific metabolic changes indicated probable involvement of azetidine, 2-furanmethanol, 1,4-dioxin, 3-fluorothiophene, decanoic acid and 2-propenoic acid methyl ester in salt-tolerance mechanism of soybean.
Collapse
|
17
|
Ullah Zaid I, Tang W, He J, Ullah Khan S, Hong D. Association analysis uncovers the genetic basis of general combining ability of 11 yield-related traits in parents of hybrid rice. AOB PLANTS 2019; 11:ply077. [PMID: 30697406 PMCID: PMC6343818 DOI: 10.1093/aobpla/ply077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
Association analysis between constructed single nucleotide polymorphism linkage disequilibrium blocks (SNPLDBs) and general combining ability (GCA) effects is a novel approach to uncover the genetic basis of GCA within the sequence genomes of parents of hybrid rice. Here, we calculated the GCA effect values of 33 parents of hybrid rice and sequenced them to identify genome-wide single nucleotide polymorphisms (SNPs). In total, 64.6 % of the uniquely mapped paired-end short reads revealed a final total of 291 959 SNPs between the 33 parental genomes and the Nipponbare reference genome. The identified SNPs were non-randomly distributed among all chromosomes of rice, whereas one-fourth of the SNPs were situated in the exonic regions with 16 % being non-synonymous. Further, the identified SNPs were merged and optimized for construction of 2612 SNPLDB markers, using linkage disequilibrium information. The single-factor analysis of variance-based association method between the constructed SNPLDB markers and GCA effects values detected 99 significant SNPLDBs for GCA of 11 yield-related traits. The associated SNPLDB markers explained 26.4 % of phenotypic variations with traits, on average. We mined 50 favourable GCA alleles at the associated SNPLDBs regions, distributed across the 33 parental genomes. The parental genomes possessed a small number of favourable GCA alleles for studied traits, with the exception of days to heading and plant height. Our results suggest that the identified GCA alleles could be used to improve the GCA performance of parents of hybrid rice through optimal crossing design. Moreover, favourable GCA alleles should be incorporated in the parental genomes through marker-assisted selection experiments, and the parental lines carrying more alleles could be utilized in breeding as superior parents for developing rice hybrids of desirable characteristics.
Collapse
Affiliation(s)
- Imdad Ullah Zaid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 286 Huaizhong Rd, Shijiazhuang, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sana Ullah Khan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Zhao J, Missihoun TD, Bartels D. The ATAF1 transcription factor is a key regulator of aldehyde dehydrogenase 7B4 (ALDH7B4) gene expression in Arabidopsis thaliana. PLANTA 2018; 248:1017-1027. [PMID: 30027414 DOI: 10.1007/s00425-018-2955-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/15/2018] [Indexed: 05/16/2023]
Abstract
ALDH7B4 expression contributes to abiotic stress tolerance. The NAC transcription factor ATAF1 is a main regulator of expression of the ALDH7B4 gene in Arabidopsis thaliana as shown by ATAF1 mutants. The aldehyde dehydrogenase 7B4 (ALDH7B4) protein has important roles in detoxification of excessive aldehydes, elimination of reactive oxygen species (ROS) and inhibition of lipid peroxidation when plants are exposed to abiotic stress. However, the regulation of the expression of the ALDH7B4 gene under stress is largely unknown. Promoter studies revealed crucial cis-elements in the ALDH7B4 promoter in response to heat and stress combinations. Using a yeast one-hybrid assay, several NAC transcription factors, including ATAF1 were isolated. These transcription factors play an important role in plant adaptation to abiotic stress. ATAF1 activates the expression of the ALDH7B4 gene by directly binding to the promoter. Overexpression of ATAF1 in Arabidopsis plants results in elevated expression of ALDH7B4 in seeds, seedlings, and mature plants, whereas ATAF1 knock-out mutant plants abolished the expression of ALDH7B4. This study implies that ATAF1 may confer stress tolerance by up-regulating the target gene ALDH7B4.
Collapse
Affiliation(s)
- Junyi Zhao
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92521, USA
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
19
|
Abdul W, Aliyu SR, Lin L, Sekete M, Chen X, Otieno FJ, Yang T, Lin Y, Norvienyeku J, Wang Z. Family-Four Aldehyde Dehydrogenases Play an Indispensable Role in the Pathogenesis of Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2018; 9:980. [PMID: 30135691 PMCID: PMC6092734 DOI: 10.3389/fpls.2018.00980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/15/2018] [Indexed: 05/22/2023]
Abstract
The oxidative degradation of lipids through lipid peroxidation processes results in the generation of free fatty acid radicals. These free radicals including reactive oxygen species (ROS) serve as a substrate for generating reactive aldehydes. The accumulation of free fatty acid radicals, ROS, and reactive aldehydes in cell compartments beyond physiological threshold levels tends to exert a damaging effect on proximal membranes and distal tissues. Living organisms deploy a wide array of efficient enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and aldehyde dehydrogenases (ALDHs) for scavenging reactive molecules and intermediates produced from membrane lipid peroxidation events. Although the contributions of SOD, CAT, and POD to the pathogenesis of microbial plant pathogens are well known, the influence of ALDH genes on the morphological and infectious development of plant pathogenic microbes is not well understood. In this study, we deployed RNA interference (RNAi) techniques and successfully silenced two putative family-four aldehyde dehydrogenase genes potassium-activated aldehyde dehydrogenase (MoKDCDH) and delta-1-pyrrorine-5-carboxylate dehydrogenase (MoP5CDH) in the rice blast pathogen Magnaporthe oryzae. The results obtained from the phenotypic analysis of individual knock-down strains showed that the RNAi-mediated inactivation of MoKDCDH and MoP5CDH triggered a significant reduction in conidiogenesis and vegetative growth of ΔMokdcdh and ΔMop5cdh strains. We further observed that downregulating the expression of MoKDCDH and MoP5CDH severely compromised the pathogenesis of the rice blast fungus. Also, the disruption of MoKDCDH and MoP5CDH M. oryzae undermined membrane integrity and rendered the mutant strains highly sensitive to membrane stress inducing osmolytes. However, the MoKDCDH and MoP5CDH knock-down strains generated in this study displayed unaltered cell wall integrity and thus suggested that family-four ALDHs play a dispensable role in enforcing cell wall-directed stress tolerance in M. oryzae. From these results, we deduced that family-four ALDHs play a conserved role in fostering membrane integrity in M. oryzae possibly by scavenging reactive aldehydes, fatty acid radicals, and other alcohol derivatives. The observation that downregulating the expression activities of MoKDCDH had a lethal effect on potential mutants further emphasized the need for comprehensive and holistic evaluation of the numerous ALDHs amassed by the rice blast fungus for their possible engagement as suitable targets as antiblast agents.
Collapse
Affiliation(s)
- Waheed Abdul
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sami R. Aliyu
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Lin
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Malota Sekete
- Department of Crop Science, Faculty of Agriculture, National University of Lesotho, Lesotho, Southern Africa
| | - Xiaomin Chen
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Frankline J. Otieno
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahong Lin
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Justice Norvienyeku
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Justice Norvienyeku, Zonghua Wang,
| | - Zonghua Wang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian and Taiwan Joint Center for Ecological Control of Crop Pests, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Justice Norvienyeku, Zonghua Wang,
| |
Collapse
|
20
|
Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton. Gene 2017; 628:230-245. [PMID: 28711668 DOI: 10.1016/j.gene.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
Abstract
In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton.
Collapse
|
21
|
Wang W, Jiang W, Liu J, Li Y, Gai J, Li Y. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. BMC Genomics 2017; 18:518. [PMID: 28687067 PMCID: PMC5501352 DOI: 10.1186/s12864-017-3908-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) represent a group of enzymes that detoxify aldehydes by facilitating their oxidation to carboxylic acids, and have been shown to play roles in plant response to abiotic stresses. However, the comprehensive analysis of ALDH superfamily in soybean (Glycine max) has been limited. RESULTS In present study, a total of 53 GmALDHs were identified in soybean, and grouped into 10 ALDH families according to the ALDH Gene Nomenclature Committee and phylogenetic analysis. These groupings were supported by their gene structures and conserved motifs. Soybean ALDH superfamily expanded mainly by whole genome duplication/segmental duplications. Gene network analysis identified 1146 putative co-functional genes of 51 GmALDHs. Gene Ontology (GO) enrichment analysis suggested the co-functional genes of these 51 GmALDHs were enriched (FDR < 1e-3) in the process of lipid metabolism, photosynthesis, proline catabolism, and small molecule catabolism. In addition, 22 co-functional genes of GmALDHs are related to plant response to water deprivation/water transport. GmALDHs exhibited various expression patterns in different soybean tissues. The expression levels of 13 GmALDHs were significantly up-regulated and 14 down-regulated in response to water deficit. The occurrence frequencies of three drought-responsive cis-elements (ABRE, CRT/DRE, and GTGCnTGC/G) were compared in GmALDH genes that were up-, down-, or non-regulated by water deficit. Higher frequency of these three cis-elements was observed for the group of up-regulated GmALDH genes as compared to the group of down- or non- regulated GmALDHs by drought stress, implying their potential roles in the regulation of soybean response to drought stress. CONCLUSIONS A total of 53 ALDH genes were identified in soybean genome and their phylogenetic relationships and duplication patterns were analyzed. The potential functions of GmALDHs were predicted by analyses of their co-functional gene networks, gene expression profiles, and cis-regulatory elements. Three GmALDH genes, including GmALDH3H2, GmALDH12A2 and GmALDH18B3, were highly induced by drought stress in soybean leaves. Our study provides a foundation for future investigations of GmALDH gene function in soybean.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Wei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture) / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
22
|
Kondo T, Fujikawa Y, Esaka M. A novel regulatory element responsible for high transcriptional expression of acerola GDP-d-mannose pyrophosphorylase gene. Biosci Biotechnol Biochem 2017; 81:1194-1197. [PMID: 28162085 DOI: 10.1080/09168451.2017.1285690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
GDP-d-mannose pyrophosphorylase (GMP) is one of the enzymes that highly expressed in acerola plants. A promoter assay suggests the presence of a new cis-element in the -1087 to -1083 bp sequence of the MgGMP promoter. Moreover, cis-elements, present in the -1080 to -600 bp sequence of the MgGMP promoter, function as enhancers of MgGMP expression.
Collapse
Affiliation(s)
- Takayuki Kondo
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-hiroshima , Hiroshima , Japan
| | - Yukichi Fujikawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-hiroshima , Hiroshima , Japan
| | - Muneharu Esaka
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-hiroshima , Hiroshima , Japan
| |
Collapse
|
23
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS One 2016; 11:e0164798. [PMID: 27755582 PMCID: PMC5068750 DOI: 10.1371/journal.pone.0164798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling.
Collapse
|
25
|
Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. PLoS One 2016; 11:e0161707. [PMID: 27560927 PMCID: PMC4999093 DOI: 10.1371/journal.pone.0161707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/10/2016] [Indexed: 12/05/2022] Open
Abstract
Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
Collapse
Affiliation(s)
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
26
|
Kim NH, Hwang BK. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3367-80. [PMID: 25873668 PMCID: PMC4449550 DOI: 10.1093/jxb/erv147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
27
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
28
|
Estioko LP, Miro B, Baltazar AM, Merca FE, Ismail AM, Johnson DE. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds. AOB PLANTS 2014; 6:plu064. [PMID: 25336336 PMCID: PMC4243074 DOI: 10.1093/aobpla/plu064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Crop productivity is largely affected by abiotic factors such as flooding and by biotic factors such as weeds. Although flooding after direct seeding of rice helps suppress weeds, it also can adversely affects germination and growth of rice, resulting in poor crop establishment. Barnyard grasses (Echinochloa spp.) are among the most widespread weeds affecting rice, especially under direct seeding. The present work aimed to establish effective management options to control these weeds. We assessed the effects of variable depths and time of submergence on germination, seedling growth and carbohydrate metabolism of (i) two cultivars of rice known to differ in their tolerance to flooding during germination and (ii) two barnyard grasses (Echinochloa colona and E. crus-galli) that commonly infest rice fields. Flooding barnyard grasses with 100-mm-deep water immediately after seeding was effective in suppressing germination and growth. Echinochloa colona showed greater reductions in emergence, shoot and root growth than E. crus-galli. Delaying flooding for 2 or 4 days was less injurious to both species. Echinochloa colona was also more susceptible to flooding than the flood-sensitive rice cultivar 'IR42'. The activity of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) in rice seedlings was increased by flooding after sowing but with greater increases in 'Khao Hlan On' compared with 'IR42'. The activity of ADH and PDC was enhanced to a similar extent in both barnyard grasses. Under aerobic conditions, the activity of ADH and PDC in the two barnyard grasses was downregulated, which might contribute to their inherently faster growth compared with rice. Aldehyde dehydrogenase activity was significantly enhanced in flood-tolerant 'Khao Hlan On' and E. crus-galli, but did not increase in flood-sensitive E. colona and 'IR42', implying a greater ability of the flood-tolerant types to detoxify acetaldehyde generated during anaerobic fermentation. Confirmation of this hypothesis is now being sought.
Collapse
Affiliation(s)
| | - Berta Miro
- International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Aurora M Baltazar
- University of the Philippines Los Banos, College, Laguna, Philippines
| | - Florinia E Merca
- University of the Philippines Los Banos, College, Laguna, Philippines
| | | | - David E Johnson
- International Rice Research Institute, Los Banos, Laguna, Philippines
| |
Collapse
|
29
|
Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily of Gossypium raimondii. Gene 2014; 549:123-33. [PMID: 25058695 DOI: 10.1016/j.gene.2014.07.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are members of the NAD(P)(+)-dependent protein superfamily which catalyzes aliphatic and aromatic aldehyde oxidation to non-toxic carboxylic acids. ALDH genes may offer promise for improving plant adaptation to environmental stress. Recently, elucidated genome sequences of Gossypium raimondii provide a foundation for systematic identification and analysis of ALDH genes. To date, this has been accomplished for many plant species except G. raimondii. RESULTS In this study, thirty unique ALDH sequences that code for 10 ALDH families were identified in the G. raimondii genome. Phylogenetic analysis revealed that ALDHs were split into six clades in G. raimondii, and ALDH proteins from the same families were clustered together. Phylogenetic relationships of ALDHs from 11 plant species suggest that ALDHs in G. raimondii shared the highest protein homology with ALDHs from poplar. Members within ALDH families possessed homologous exon-intron structures. Chromosomal distribution of ALDH did not occur evenly in the G. raimondii genome and many ALDH genes were involved in the syntenic region as documented by identification of physical locations among single chromosomes. In addition, syntenic analysis revealed that homologues of many G. raimondii ALDHs appeared in corresponding Arabidopsis and poplar syntenic blocks, indicating that these genes arose prior to G. raimondii, Arabidopsis and poplar speciation. Finally, based on gene expression analysis of microarray and RNA-seq, we can speculate that some G. raimondii ALDH genes might respond to drought or waterlogging stresses. CONCLUSION Genome-wide identification and analysis of the evolution and expression of ALDH genes in G. raimondii laid a foundation for studying this gene superfamily and offers new insights into the evolution history and speculated roles in Gossypium. These data can be used to inform functional genomic studies and molecular breeding in cotton.
Collapse
|
30
|
Zhu C, Ming C, Zhao-shi X, Lian-cheng L, Xue-ping C, You-zhi M. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.). PLoS One 2014; 9:e101136. [PMID: 24988301 PMCID: PMC4079696 DOI: 10.1371/journal.pone.0101136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023] Open
Abstract
Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional roles of foxtail millet ALDH genes in stress responses.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Chen Ming
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xu Zhao-shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li Lian-cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Chen Xue-ping
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Ma You-zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
31
|
Stiti N, Podgórska K, Bartels D. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:681-93. [DOI: 10.1016/j.bbapap.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
|
32
|
Li X, Guo R, Li J, Singer SD, Zhang Y, Yin X, Zheng Y, Fan C, Wang X. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:268-82. [PMID: 23978559 DOI: 10.1016/j.plaphy.2013.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 05/01/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.
Collapse
Affiliation(s)
- Xiaoqin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2013; 4:269. [PMID: 23888162 PMCID: PMC3719019 DOI: 10.3389/fpls.2013.00269] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.
Collapse
Affiliation(s)
| | - Abdelbagi M. Ismail
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
34
|
Rasaputra KS, Liyanage R, Lay, Jr JO, Slavik MF, Rath NC. Effect of thiram on avian growth plate chondrocytes in culture. J Toxicol Sci 2013; 38:93-101. [DOI: 10.2131/jts.38.93] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Komal Singh Rasaputra
- Department of Poultry Science, University of Arkansas
- Agricultural Research Service/ USDA, Poultry Science Center, University of Arkansa
| | - Rohana Liyanage
- State Wide Mass Spectrometry Facility, University of Arkansas
| | | | | | - Narayan C. Rath
- Agricultural Research Service/ USDA, Poultry Science Center, University of Arkansa
| |
Collapse
|
35
|
Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. PLANTA 2013; 237:189-210. [PMID: 23007552 PMCID: PMC3536936 DOI: 10.1007/s00425-012-1749-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melpomene Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yucheng Zhang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Xiping Wang
- Key Laboratory of Horticultural Plant Biology and Germplasm, Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Simeon O. Kotchoni
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, Carbondale, IL 62901, USA
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - David Kopečný
- Faculty of Science, Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palackyý University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Daniel W. Nebert
- Department of Environmental Health, University of Cincinnati, Medical Center, Cincinnati, OH 45267, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Asiimwe T, Krause K, Schlunk I, Kothe E. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. MYCORRHIZA 2012; 22:471-484. [PMID: 22159964 DOI: 10.1007/s00572-011-0424-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/25/2011] [Indexed: 05/28/2023]
Abstract
We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats.
Collapse
Affiliation(s)
- Theodore Asiimwe
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | | | |
Collapse
|
37
|
Kotchoni SO, Jimenez-Lopez JC, Kayodé APP, Gachomo EW, Baba-Moussa L. The soybean aldehyde dehydrogenase (ALDH) protein superfamily. Gene 2012; 495:128-33. [PMID: 22226812 DOI: 10.1016/j.gene.2011.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions.
Collapse
|
38
|
Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PLoS One 2012; 7:e32153. [PMID: 22355416 PMCID: PMC3280228 DOI: 10.1371/journal.pone.0032153] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background The completion of the grape genome sequencing project has paved the way for novel gene discovery and functional analysis. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of endogenous and exogenous aromatic and aliphatic aldehydes. Although ALDHs have been systematically investigated in several plant species including Arabidopsis and rice, our knowledge concerning the ALDH genes, their evolutionary relationship and expression patterns in grape has been limited. Methodology/Principal Findings A total of 23 ALDH genes were identified in the grape genome and grouped into ten families according to the unified nomenclature system developed by the ALDH Gene Nomenclature Committee (AGNC). Members within the same grape ALDH families possess nearly identical exon-intron structures. Evolutionary analysis indicates that both segmental and tandem duplication events have contributed significantly to the expansion of grape ALDH genes. Phylogenetic analysis of ALDH protein sequences from seven plant species indicates that grape ALDHs are more closely related to those of Arabidopsis. In addition, synteny analysis between grape and Arabidopsis shows that homologs of a number of grape ALDHs are found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the speciation of the grape and Arabidopsis. Microarray gene expression analysis revealed large number of grape ALDH genes responsive to drought or salt stress. Furthermore, we found a number of ALDH genes showed significantly changed expressions in responses to infection with different pathogens and during grape berry development, suggesting novel roles of ALDH genes in plant-pathogen interactions and berry development. Conclusion The genome-wide identification, evolutionary and expression analysis of grape ALDH genes should facilitate research in this gene family and provide new insights regarding their evolution history and functional roles in plant stress tolerance.
Collapse
|
39
|
Stiti N, Missihoun TD, Kotchoni SO, Kirch HH, Bartels D. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. FRONTIERS IN PLANT SCIENCE 2011; 2:65. [PMID: 22639603 PMCID: PMC3355590 DOI: 10.3389/fpls.2011.00065] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 05/02/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.
Collapse
Affiliation(s)
- Naim Stiti
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Tagnon D. Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Simeon O. Kotchoni
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| |
Collapse
|
40
|
Structural characterization of plant defensin protein superfamily. Mol Biol Rep 2011; 39:4461-9. [DOI: 10.1007/s11033-011-1235-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
41
|
Molecular cloning of a stress-responsive aldehyde dehydrogenase gene ScALDH21 from the desiccation-tolerant moss Syntrichia caninervis and its responses to different stresses. Mol Biol Rep 2011; 39:2645-52. [PMID: 21687975 DOI: 10.1007/s11033-011-1017-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are key enzymes of abiotic stress-tolerance in a variety of organisms. The ALDH gene superfamily in eukaryotes has identified 22 protein families based upon sequence identity. ALDH21 is unique to mosses and represented by a single transcript gene in the desiccation-tolerant moss Tortula ruralis. We describe the cloning and characterization of an ALDH21 homologue from Syntrichia caninervis (ScALDH21), an extremely desiccation-tolerant moss found in deserts of Central Asia. The ScALDH21 cDNA is 1,452 bp and encodes a deduced polypeptide of 483 amino acids (53 kDa), approximately 97% identical to T. ruralis ALDH21 (TrALDH21A). The ScALDH21 gene was subcloned into pET26b(+) and expressed in Escherichia coli (Rosetta) to determine the peptides function in response to desiccation and salinity. Quantitative RT-PCR was used to analyze steady-state mRNA amounts in response to Abscisic acid (ABA) and desiccation. ScALDH21 transcript levels increased significantly in response to both desiccation and ABA. In the transgenic E. coli, ScALDH21 protein could be induced under the salinity and desiccation stress and was more abundant within salt-treated gametophores relative to control tissue. The data suggest that ScALDH21 participates in the stress-resistant pathways and plays an important role in response to desiccation and salinity stresses.
Collapse
|
42
|
Jimenez-Lopez JC, Gachomo EW, Ariyo OA, Baba-Moussa L, Kotchoni SO. Specific conformational epitope features of pathogenesis-related proteins mediating cross-reactivity between pollen and food allergens. Mol Biol Rep 2011; 39:123-30. [PMID: 21598115 DOI: 10.1007/s11033-011-0717-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/23/2011] [Indexed: 11/25/2022]
Abstract
Selected members of plant pathogenesis-related and seed storage proteins represent specific groups of proteins with potential characteristics of allergens. Efforts to understand the mechanism by which pathogenesis-related proteins mediate a broad cross-reactivity in pollen-plant food allergens are still limited. In this study, computational biology approach was used to reveal specific structural implications and conservation of different epitopes from members of Bet v 1 and nsLTP protein families mediating cross-reactivity between pollen and food (fruits, vegetables, legumes, and nut/seeds) allergens. A commonly shared epitope conservation was found among all pollen and food Bet v 1 and nsLTP protein families, respectively. However, other allergenic epitopes were also specifically detected in each family. The implication of these conserved epitopes in a broad cross-reactivity for allergy clinical trials is here discussed.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, E-18008, Granada, Spain
| | | | | | | | | |
Collapse
|
43
|
Jimenez-Lopez JC, Gachomo EW, Seufferheld MJ, Kotchoni SO. The maize ALDH protein superfamily: linking structural features to functional specificities. BMC STRUCTURAL BIOLOGY 2010; 10:43. [PMID: 21190582 PMCID: PMC3022562 DOI: 10.1186/1472-6807-10-43] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 12/29/2010] [Indexed: 02/08/2023]
Abstract
Background The completion of maize genome sequencing has resulted in the identification of a large number of uncharacterized genes. Gene annotation and functional characterization of gene products are important to uncover novel protein functionality. Results In this paper, we identify, and annotate members of all the maize aldehyde dehydrogenase (ALDH) gene superfamily according to the revised nomenclature criteria developed by ALDH Gene Nomenclature Committee (AGNC). The maize genome contains 24 unique ALDH sequences encoding members of ten ALDH protein families including the previously identified male fertility restoration RF2A gene, which encodes a member of mitochondrial class 2 ALDHs. Using computational modeling analysis we report here the identification, the physico-chemical properties, and the amino acid residue analysis of a novel tunnel like cavity exclusively found in the maize sterility restorer protein, RF2A/ALDH2B2 by which this protein is suggested to bind variably long chain molecular ligands and/or potentially harmful molecules. Conclusions Our finding indicates that maize ALDH superfamily is the most expanded of plant ALDHs ever characterized, and the mitochondrial maize RF2A/ALDH2B2 is the only plant ALDH that harbors a newly defined pocket/cavity with suggested functional specificity.
Collapse
|
44
|
Kotchoni SO, Jimenez-Lopez JC, Gachomo EW, Seufferheld MJ. A new and unified nomenclature for male fertility restorer (RF) proteins in higher plants. PLoS One 2010; 5:e15906. [PMID: 21203394 PMCID: PMC3011004 DOI: 10.1371/journal.pone.0015906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022] Open
Abstract
The male fertility restorer (RF) proteins belong to extended protein families associated with the cytoplasmic male sterility in higher plants. Up till now, there is no devised nomenclature for naming the RF proteins. The systematic sequencing of new plant species in recent years has uncovered the existence of several novel RF genes and their encoded proteins. Their naming has been simply arbitrary and could not be adequately handled in the context of comparative functional genomics. We propose in this study a unified nomenclature for the RF extended protein families across all plant species. This new and unified nomenclature relies upon previously developed nomenclature for the first ever characterized RF gene, RF2A/ALDH2B2, a member of ALDH gene superfamily, and adheres to the guidelines issued by the ALDH Genome Nomenclature Committees. The proposed nomenclature reveals that RF gene superfamily encodes currently members of 51 families. This unified nomenclature accommodates functional RF genes and pseudogenes, and offers the flexibility needed to incorporate additional RFs as they become available in future. In addition, we provide a phylogenetic relationship between the RF extended families and use computational protein modeling to demonstrate the high divergence of RF functional specializations through specific structural features of selected members of RF superfamily.
Collapse
Affiliation(s)
- Simeon O Kotchoni
- Department of Agronomy, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America.
| | | | | | | |
Collapse
|