1
|
Shao X, Le Fur S, Cheung W, Belot MP, Perge K, Bouhours-Nouet N, Bensignor C, Levaillant L, Ge B, Kwan T, Lathrop M, Pastinen T, Bougnères P. CpG methylation changes associated with hyperglycemia in type 1 diabetes occur at angiogenic glomerular and retinal gene loci. Sci Rep 2025; 15:15999. [PMID: 40341532 DOI: 10.1038/s41598-024-82698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/09/2024] [Indexed: 05/10/2025] Open
Abstract
Chronic hyperglycemia is a major risk factor for glomerular or retinal microangiopathy and cardiovascular complications of type 1 diabetes (T1D). At the interface of genetics and environment, dynamic epigenetic changes associated with hyperglycemia may unravel some of the mechanisms contributing to these T1D complications. In this study, blood samples were collected from 112 young patients at T1D diagnosis and 3 years later in average. Whole genome-wide bisulfite sequencing was used to measure blood DNA methylation changes of about 28 million CpGs at single base resolution over this time. Chronic hyperglycemia was estimated every 3-4 months by HbA1c measurement. Linear regressions with adjustment to age, sex, treatment duration, blood proportions and batch effects were employed to characterize the relationships between the dynamic changes of DNA methylation and average HbA1c levels. We identified that longitudinal DNA methylation changes at 815 CpGs (with suggestive p-value threshold of 1e-4) were associated with average HbA1c. Most of them (> 98%) were located outside of the promoter regions and were enriched in CpG island shores and multiple immune cell type specific accessible chromatin regions. Among the 36 more strongly associated loci (p-value < 5e-6), 16 were harbouring genes or non-coding sequences involved in angiogenesis regulation, glomerular and retinal vascularization or development, or coronary disease. Our findings support the identification of new genomic sites where CpG methylation associated with hyperglycemia may contribute to long-term complications of T1D, shedding light on potential mechanisms for further exploration.
Collapse
Affiliation(s)
- Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sophie Le Fur
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Warren Cheung
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Marie-Pierre Belot
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Kevin Perge
- Endocrinologie Pédiatrique, Hôpital Mère Enfant, 69677, Lyon, Bron, France
| | - Natacha Bouhours-Nouet
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | | | - Lucie Levaillant
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | - Bing Ge
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Pierre Bougnères
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France.
| |
Collapse
|
2
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2025; 42:e15447. [PMID: 39460977 PMCID: PMC11733670 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Laura J. Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| |
Collapse
|
3
|
Oda K, Katayama K, Zang L, Toda M, Tanoue A, Saiki R, Yasuma T, D’Alessandro-Gabazza CN, Shimada Y, Mori M, Suzuki Y, Murata T, Hirai T, Tryggvason K, Gabazza EC, Dohi K. The Protective Role of KANK1 in Podocyte Injury. Int J Mol Sci 2024; 25:5808. [PMID: 38891998 PMCID: PMC11172089 DOI: 10.3390/ijms25115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 30% of steroid-resistant nephrotic syndromes are attributed to monogenic disorders that involve 27 genes. Mutations in KANK family members have also been linked to nephrotic syndrome; however, the precise mechanism remains elusive. To investigate this, podocyte-specific Kank1 knockout mice were generated to examine phenotypic changes. In the initial assessment under normal conditions, Kank1 knockout mice showed no significant differences in the urinary albumin-creatinine ratio, blood urea nitrogen, serum creatinine levels, or histological features compared to controls. However, following kidney injury with adriamycin, podocyte-specific Kank1 knockout mice exhibited a significantly higher albumin-creatinine ratio and a significantly greater sclerotic index than control mice. Electron microscopy revealed more extensive foot process effacement in the knockout mice than in control mice. In addition, KANK1-deficient human podocytes showed increased detachment and apoptosis following adriamycin exposure. These findings suggest that KANK1 may play a protective role in mitigating podocyte damage under pathological conditions.
Collapse
Affiliation(s)
- Keiko Oda
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
| | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Akiko Tanoue
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Yasuhito Shimada
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Mutsuki Mori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Yasuo Suzuki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Toshinori Hirai
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| |
Collapse
|
4
|
Lu W, Guo Y, Liu H, Zhang T, Zhang M, Li X, Li Z, Shi M, Jiang Z, Zhao Z, Yang S, Li Z. The Inhibition of Fibrosis and Inflammation in Obstructive Kidney Injury via the miR-122-5p/SOX2 Axis Using USC-Exos. Biomater Res 2024; 28:0013. [PMID: 38617751 PMCID: PMC11014086 DOI: 10.34133/bmr.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Background: Fibrosis and inflammation due to ureteropelvic junction obstruction substantially contributes to poor renal function. Urine-derived stem-cell-derived exosomes (USC-Exos) have therapeutic effects through paracrine. Methods: In vitro, the effects of USC-Exos on the biological functions of HK-2 and human umbilical vein endothelial cells were tested. Cell inflammation and fibrosis were induced by transforming growth factor-β1 and interleukin-1β, and their anti-inflammatory and antifibrotic effects were observed after exogenous addition of USC-Exos. Through high-throughput sequencing of microRNA in USC-Exos, the pathways and key microRNAs were selected. Then, the antifibrotic and anti-inflammatory effects of exosomal miR-122-5p and target genes were verified. The role of the miR-122-5p/SOX2 axis in anti-inflammatory and antifibrotic effects was verified. In vivo, a rabbit model of partial unilateral ureteral obstruction (PUUO) was established. Magnetic resonance imaging recorded the volume of the renal pelvis after modeling, and renal tissue was pathologically analyzed. Results: We examined the role of USC-Exos and their miR-122-5p content in obstructive kidney injury. These Exos exhibit antifibrotic and anti-inflammatory activities. SOX2 is the hub gene in PUUO and negatively related to renal function. We confirmed the binding relationship between miR-122-5p and SOX2. The anti-inflammatory and antifibrotic effects of miR-122-5p were inhibited, indicating that miR-122-5p has anti-inflammatory and antifibrotic effects by inhibiting SOX2 expression. In vivo, the PUUO group showed typical obstructive kidney injury after modeling. After USC-Exo treatment, the shape of the renal pelvis shown a remarkable improvement, and inflammation and fibrosis decreased. Conclusions: We confirmed that miR-122-5p from USC-Exos targeting SOX2 is a new molecular target for postoperative recovery treatment of obstructive kidney injury.
Collapse
Affiliation(s)
- Wenjun Lu
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
School of Life Sciences, Westlake University,Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research,
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology,
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yujun Guo
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Hengchen Liu
- Department of General Surgery,
The Second Hospital Affiliated to Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou 310022, Zhejiang, China
| | - Tingting Zhang
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Mingzhao Zhang
- Department of General Surgery,
The Second Hospital Affiliated to Anhui Medical University, No. 678 Furong Road, Hefei 230031, Anhui, China
| | - Xiangqi Li
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Zhou Li
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Manyu Shi
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Zhitao Jiang
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Zheng Zhao
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Shulong Yang
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| | - Zhaozhu Li
- Department of Pediatric Surgery,
The Sixth Hospital Affiliated to Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin 150027, Heilongjiang, China
| |
Collapse
|
5
|
Liu J, Wang H, Liu Q, Long S, Wu Y, Wang N, Lin W, Chen G, Lin M, Wen J. Klotho exerts protection in chronic kidney disease associated with regulating inflammatory response and lipid metabolism. Cell Biosci 2024; 14:46. [PMID: 38584258 PMCID: PMC11000353 DOI: 10.1186/s13578-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho plays a protective role in kidney disease, but its potential as a biomarker for chronic kidney disease (CKD) is controversial. Additionally, the main pathways through which Klotho exerts its effects on CKD remain unclear. Therefore, we used bioinformatics and clinical data analysis to determine its role in CKD. RESULTS We analyzed the transcriptomic and clinical data from the Nephroseq v5 database and found that the Klotho gene was mainly expressed in the tubulointerstitium, and its expression was significantly positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with blood urea nitrogen (BUN) in CKD. We further found that Klotho gene expression was mainly negatively associated with inflammatory response and positively associated with lipid metabolism in CKD tubulointerstitium by analyzing two large sample-size CKD tubulointerstitial transcriptome datasets. By analyzing 10-year clinical data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016, we also found that Klotho negatively correlated with inflammatory biomarkers and triglyceride and positively correlated with eGFR in the CKD population. Mediation analysis showed that Klotho could improve renal function in the general population by modulating the inflammatory response and lipid metabolism, while in the CKD population, it primarily manifested by mediating the inflammatory response. Restricted cubic spline (RCS) analysis showed that the optimal concentration range for Klotho to exert its biological function was around 1000 pg/ml. Kaplan-Meier curves showed that lower cumulative hazards of all-cause mortality in participants with higher levels of Klotho. We also demonstrated that Klotho could reduce cellular inflammatory response and improve cellular lipid metabolism by establishing an in vitro model similar to CKD. CONCLUSIONS Our results suggest that Klotho exerts protection in CKD, which may be mainly related to the regulation of inflammatory response and lipid metabolism, and it can serve as a potential biomarker for CKD.
Collapse
Affiliation(s)
- Junhui Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaicheng Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanfang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Nengying Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Miao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Nephrology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537039. [PMID: 37090653 PMCID: PMC10120741 DOI: 10.1101/2023.04.15.537039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
|
8
|
Liu Y, Wang Y, Chen S, Bai L, Li F, Wu Y, Zhang L, Wang X. Glutamate ionotropic receptor NMDA type subunit 1: A novel potential protein target of dapagliflozin against renal interstitial fibrosis. Eur J Pharmacol 2023; 943:175556. [PMID: 36736528 DOI: 10.1016/j.ejphar.2023.175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Renal interstitial fibrosis (RIF) is the final pathway for chronic kidney diseases (CKD) to end-stage renal disease, with no ideal therapy at present. Previous studies indicated that sodium glucose co-transporter-2 inhibitor (SGLT2i) dapagliflozin had the effect of anti-RIF, but the mechanism remains elusive and the renal protective effect could not be fully explained by singly targeting SGLT2. In this study, we aimed to explore the mechanism of dapagliflozin against RIF and identify novel potential targets. Firstly, dapagliflozin treatment improved pro-fibrotic indicators in unilateral ureteral obstruction mice and transforming growth factor beta 1 induced human proximal tubular epithelial cells. Then, transcriptomics and bioinformatics analysis were performed, and results revealed that dapagliflozin against RIF by regulating inflammation and oxidative stress related signals. Subsequently, targets prediction and analysis demonstrated that glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) was a novel potential target of dapagliflozin, which was related to inflammation and oxidative stress related signals. Moreover, molecular dynamics simulation revealed that dapagliflozin could stably bind to GRIN1 protein and change its spatial conformation. Furthermore, human renal samples and Nephroseq data were used for GRIN1 expression evaluation, and the results showed that GRIN1 expression were increased in renal tissues of CKD and RIF patients than controls. Additionally, further studies demonstrated that dapagliflozin could reduce intracellular calcium influx in renal tubular cells, which depended on regulating GRIN1 protein but not gene. In conclusion, GRIN1 is probably a novel target of dapagliflozin against RIF.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215002, China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610073, China.
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Liu J, Nair V, Zhao YY, Chang DY, Limonte C, Bansal N, Fermin D, Eichinger F, Tanner EC, Bellovich KA, Steigerwalt S, Bhat Z, Hawkins JJ, Subramanian L, Rosas SE, Sedor JR, Vasquez MA, Waikar SS, Bitzer M, Pennathur S, Brosius FC, De Boer I, Chen M, Kretzler M, Ju W. Multi-Scalar Data Integration Links Glomerular Angiopoietin-Tie Signaling Pathway Activation With Progression of Diabetic Kidney Disease. Diabetes 2022; 71:2664-2676. [PMID: 36331122 PMCID: PMC9750948 DOI: 10.2337/db22-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD). Prognostic biomarkers reflective of underlying molecular mechanisms are critically needed for effective management of DKD. A three-marker panel was derived from a proteomics analysis of plasma samples by an unbiased machine learning approach from participants (N = 58) in the Clinical Phenotyping and Resource Biobank study. In combination with standard clinical parameters, this panel improved prediction of the composite outcome of ESKD or a 40% decline in glomerular filtration rate. The panel was validated in an independent group (N = 68), who also had kidney transcriptomic profiles. One marker, plasma angiopoietin 2 (ANGPT2), was significantly associated with outcomes in cohorts from the Cardiovascular Health Study (N = 3,183) and the Chinese Cohort Study of Chronic Kidney Disease (N = 210). Glomerular transcriptional angiopoietin/Tie (ANG-TIE) pathway scores, derived from the expression of 154 ANG-TIE signaling mediators, correlated positively with plasma ANGPT2 levels and kidney outcomes. Higher receptor expression in glomeruli and higher ANG-TIE pathway scores in endothelial cells corroborated potential functional effects in the kidney from elevated plasma ANGPT2 levels. Our work suggests that ANGPT2 is a promising prognostic endothelial biomarker with likely functional impact on glomerular pathogenesis in DKD.
Collapse
Affiliation(s)
- Jiahao Liu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Yi-yang Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Dong-yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | | | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, WA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Emily C. Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Susan Steigerwalt
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Zeenat Bhat
- Department of Nephrology and Hypertension, Department of Medicine, Wayne State University, Detroit, MI
| | - Jennifer J. Hawkins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - John R. Sedor
- Department of Medicine, Cleveland Clinic, Cleveland, OH
| | - Miguel A. Vasquez
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Brookline, MA
| | - Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Nephrology, Department of Medicine, University of Arizona, Tucson, AZ
| | - Ian De Boer
- Division of Nephrology, University of Washington, Seattle, WA
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
10
|
Madhavan SM, Konieczkowski M, Bruggeman LA, DeWalt M, Nguyen JK, O'Toole JF, Sedor JR. Essential role of Wtip in mouse development and maintenance of the glomerular filtration barrier. Am J Physiol Renal Physiol 2022; 323:F272-F287. [PMID: 35862649 PMCID: PMC9394782 DOI: 10.1152/ajprenal.00051.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Wilms' tumor interacting protein (Wtip) has been implicated in cell junction assembly and cell differentiation and interacts with proteins in the podocyte slit diaphragm, where it regulates podocyte phenotype. To define Wtip expression and function in the kidney, we created a Wtip-deleted mouse model using β-galactosidase-neomycin (β-geo) gene trap technology. Wtip gene trap mice were embryonic lethal, suggesting additional developmental roles outside kidney function. Using β-geo heterozygous and normal mice, Wtip expression was identified in the developing kidneys, heart, and eyes. In the kidney, expression was restricted to podocytes, which appeared initially at the capillary loop stage coinciding with terminal podocyte differentiation. Heterozygous mice had an expected lifespan and showed no evidence of proteinuria or glomerular pathology. However, heterozygous mice were more susceptible to glomerular injury than wild-type littermates and developed more significant and prolonged proteinuria in response to lipopolysaccharide or adriamycin. In normal human kidneys, WTIP expression patterns were consistent with observations in mice and were lost in glomeruli concurrent with loss of synaptopodin expression in disease. Mechanistically, we identified the Rho guanine nucleotide exchange factor 12 (ARHGEF12) as a binding partner for WTIP. ARHGEF12 was expressed in human podocytes and formed high-affinity interactions through their LIM- and PDZ-binding domains. Our findings suggest that Wtip is essential for early murine embryonic development and maintaining normal glomerular filtration barrier function, potentially regulating slit diaphragm and foot process function through Rho effector proteins.NEW & NOTEWORTHY This study characterized dynamic expression patterns of Wilms' tumor interacting protein (Wtip) and demonstrates the novel role of Wtip in murine development and maintenance of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Sethu M Madhavan
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Leslie A Bruggeman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - Megan DeWalt
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jane K Nguyen
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - John F O'Toole
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - John R Sedor
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
11
|
Mahesaniya A, Williamson CR, Keyvani Chahi A, Martin CE, Mitro AE, Lu P, New LA, Watson KL, Moorehead RA, Jones N. Sex Differences in Glomerular Protein Expression and Effects of Soy-Based Diet on Podocyte Signaling. Can J Kidney Health Dis 2022; 9:20543581221121636. [PMID: 36199279 PMCID: PMC9528100 DOI: 10.1177/20543581221121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Kidney disease is a major public health issue arising from loss of glomerular podocyte function, and there are considerable sex differences in its prognosis. Evidence suggests a renoprotective effect of estrogen and soy diet-derived phytoestrogens, although the molecular basis for this is poorly understood. Objective: Here, we aim to assess sex differences in expression of key proteins associated with podocyte survival and determine the effects of dietary soy on glomerular and podocyte signaling. Methods: Male and female FVB mice were fed control, low (1%), and high (20%) doses of isolated soy protein (ISP) in utero and until 100 days of age. Spot urine was collected to measure proteinuria and isolated glomeruli were used to quantify activated and total levels of nephrin, Akt, and ERK1/2. To investigate protective effects of specific soy phytoestrogens, cultured podocytes were treated with or without daidzein and subject to control or high glucose as a model of podocyte injury. Results: Nephrin and Akt were elevated at baseline in glomeruli from females compared to males. Both sexes that were fed 1% and 20% ISP displayed robust increases in total glomerular Akt compared to controls, and these effects were more prominent in females. A similar trend at both doses in both sexes was observed with activated Akt and total nephrin. Notably, males exclusively showed increased phosphorylation of nephrin and extracellular signal-regulated kinase (ERK) at the 1% ISP dose; however, no overt changes in urinary albumin excretion or podocin levels were observed, suggesting that the soy diets did not impair podocyte function. Finally, in cultured male and female podocytes, daidzein treatment suppressed high glucose-induced ERK activation. Conclusions: Together, our findings reveal a putative mechanism to explain the protective influence of sex on kidney disease progression, and they provide further evidence to support a beneficial role for dietary soy in preserving glomerular function.
Collapse
Affiliation(s)
- Afreeda Mahesaniya
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Casey R. Williamson
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alexander E. Mitro
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Laura A. New
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| |
Collapse
|
12
|
Caza TN, Al-Rabadi LF, Beck LH. How Times Have Changed! A Cornucopia of Antigens for Membranous Nephropathy. Front Immunol 2021; 12:800242. [PMID: 34899763 PMCID: PMC8662735 DOI: 10.3389/fimmu.2021.800242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the majority of primary (idiopathic) cases of membranous nephropathy (MN) has been followed by the rapid identification of numerous minor antigens that appear to define phenotypically distinct forms of disease. This article serves to review all the known antigens that have been shown to localize to subepithelial deposits in MN, as well as the distinctive characteristics associated with each subtype of MN. We will also shed light on the novel proteomic approaches that have allowed identification of the most recent antigens. The paradigm of an antigen normally expressed on the podocyte cell surface leading to in-situ immune complex formation, complement activation, and subsequent podocyte injury will be discussed and challenged in light of the current repertoire of multiple MN antigens. Since disease phenotypes associated with each individual target antigens can often blur the distinction between primary and secondary disease, we encourage the use of antigen-based classification of membranous nephropathy.
Collapse
Affiliation(s)
| | - Laith F. Al-Rabadi
- Department of Internal Medicine (Nephrology & Hypertension), University of Utah, Salt Lake City, UT, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
13
|
Li Z, Shen H, Liu Y, Zhou X, Yan M, He H, Zhao T, Zhang H, Li P. Subproteomic profiling from renal cortices in OLETF rats reveals mutations of multiple novel genes in diabetic nephropathy. Genes Genomics 2021; 44:109-122. [PMID: 34643893 DOI: 10.1007/s13258-021-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious threat to human health, but its pathogenesis is not fully understood. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are very similar to human DN in many aspects such as pathological changes and processes, and are deemed to be an ideal rodent model. OBJECTIVE This study was aimed to explore the pathogenesis of DN by analyzing the protein expression profile from renal cortices in OLETF rats. METHODS Thirty-six-week-old diabetic OLETF rats and normal control Long-Evans Tokushima Otsuka (LETO) rats were nephrectomized, and the renal cortices were isolated. The proteins were separated by soluble and insoluble high-resolution subproteomics methods for the analysis and identification of differential proteins. RESULTS Thirty-six differentially expressed proteins were found. Among them, 11 proteins had different isoelectric points and molecular weights between OLETF and LETO rats. Further sequencing identified point mutations in genes encoding eight of these proteins, which are involved in many biological processes closely related to DN, including oxidative stress and inflammation. Five of these eight proteins have not been reported in DN. CONCLUSION This study reveals mutations of multiple novel genes in diabetic OLETF rats, providing some new potential targets for the pathogenesis of DN and helping to better understand the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for chronic disease, North China University of Science and Technology, Tangshan, 063000, China
| | - Hong Shen
- Department of Modern Technology and Education, North China University of Science and Technology, Tangshan, 063000, China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuefeng Zhou
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hailan He
- School of Graduate Studies, North China University of Science and Technology, Tangshan, 063000, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
14
|
Greiten JK, Kliewe F, Schnarre A, Artelt N, Schröder S, Rogge H, Amann K, Daniel C, Lindenmeyer MT, Cohen CD, Endlich K, Endlich N. The role of filamins in mechanically stressed podocytes. FASEB J 2021; 35:e21560. [PMID: 33860543 DOI: 10.1096/fj.202001179rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Collapse
Affiliation(s)
- Jonas K Greiten
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Annabel Schnarre
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sindy Schröder
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Lay AC, Hale LJ, Stowell-Connolly H, Pope RJP, Nair V, Ju W, Marquez E, Rollason R, Hurcombe JA, Hayes B, Roberts T, Gillam L, Allington J, Nelson RG, Kretzler M, Holly JMP, Perks CM, McArdle CA, Welsh GI, Coward RJM. IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia 2021; 64:1690-1702. [PMID: 33758952 PMCID: PMC8187213 DOI: 10.1007/s00125-021-05427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease (DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes. METHODS IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1 expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging. RESULTS Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and controlled by phosphoinositide 3-kinase (PI3K)-forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via β1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion, electrical resistance across the adhesive cell layer and cell viability. CONCLUSIONS/INTERPRETATION This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the glomerular expression of IGFBP-1 is reduced in the early stages of type 2 DKD, via reduced FoxO1 activity. Thus, we hypothesise that strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lorna J Hale
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Robert J P Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Eva Marquez
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jenny A Hurcombe
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lawrence Gillam
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jonathan Allington
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeff M P Holly
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Craig A McArdle
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Matías-García PR, Wilson R, Guo Q, Zaghlool SB, Eales JM, Xu X, Charchar FJ, Dormer J, Maalmi H, Schlosser P, Elhadad MA, Nano J, Sharma S, Peters A, Fornoni A, Mook-Kanamori DO, Winkelmann J, Danesh J, Di Angelantonio E, Ouwehand WH, Watkins NA, Roberts DJ, Petrera A, Graumann J, Koenig W, Hveem K, Jonasson C, Köttgen A, Butterworth A, Prunotto M, Hauck SM, Herder C, Suhre K, Gieger C, Tomaszewski M, Teumer A, Waldenberger M. Plasma Proteomics of Renal Function: A Transethnic Meta-Analysis and Mendelian Randomization Study. J Am Soc Nephrol 2021; 32:1747-1763. [PMID: 34135082 PMCID: PMC8425654 DOI: 10.1681/asn.2020071070] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.
Collapse
Affiliation(s)
- Pamela R. Matías-García
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research, Munich, Germany
| | - Rory Wilson
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
| | - Qi Guo
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Shaza B. Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - James M. Eales
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Fadi J. Charchar
- School of Health and Life Sciences, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - John Dormer
- Department of Cellular Pathology, University Hospitals of Leicester National Health Service Trust, Leicester, United Kingdom
| | - Haifa Maalmi
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Pascal Schlosser
- Department of Data-Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mohamed A. Elhadad
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Munich, Germany
| | - Jana Nano
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sapna Sharma
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Munich, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alessia Fornoni
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Juliane Winkelmann
- Institute of Neurogenomics, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurogenetics and Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Emanuele Di Angelantonio
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Nicholas A. Watkins
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, United Kingdom
| | - David J. Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant Oxford Centre, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Wolfgang Koenig
- German Center for Cardiovascular Research, Munich, Germany
- Klinik für Herz-Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University of Munich, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Kristian Hveem
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Nord-Trøndelag Health Study HUNT Research Centre, Faculty of Medicine, Norwegian University of Science and Technology, Levanger, Norway
| | - Christian Jonasson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Nord-Trøndelag Health Study HUNT Research Centre, Faculty of Medicine, Norwegian University of Science and Technology, Levanger, Norway
| | - Anna Köttgen
- Department of Data-Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Stefanie M. Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Munich, Germany
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research, partner site Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Munich, Germany
| | | |
Collapse
|
17
|
Yao X, Shen H, Cao F, He H, Li B, Zhang H, Zhang X, Li Z. Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:657918. [PMID: 34249963 PMCID: PMC8264258 DOI: 10.3389/fmed.2021.657918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end stage renal disease (ESRD). Glomerulus damage is one of the primary pathological changes in DN. To reveal the gene expression alteration in the glomerulus involved in DN development, we screened the Gene Expression Omnibus (GEO) database up to December 2020. Eleven gene expression datasets about gene expression of the human DN glomerulus and its control were downloaded for further bioinformatics analysis. By using R language, all expression data were extracted and were further cross-platform normalized by Shambhala. Differentially expressed genes (DEGs) were identified by Student's t-test coupled with false discovery rate (FDR) (P < 0.05) and fold change (FC) ≥1.5. DEGs were further analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to enrich the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We further constructed a protein-protein interaction (PPI) network of DEGs to identify the core genes. We used digital cytometry software CIBERSORTx to analyze the infiltration of immune cells in DN. A total of 578 genes were identified as DEGs in this study. Thirteen were identified as core genes, in which LYZ, LUM, and THBS2 were seldom linked with DN. Based on the result of GO, KEGG enrichment, and CIBERSORTx immune cells infiltration analysis, we hypothesize that positive feedback may form among the glomerulus, platelets, and immune cells. This vicious cycle may damage the glomerulus persistently even after the initial high glucose damage was removed. Studying the genes and pathway reported in this study may shed light on new knowledge of DN pathogenesis.
Collapse
Affiliation(s)
- Xinyue Yao
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, China
| | - Fukai Cao
- Department of Jitang College, North China University of Science and Technology, Tangshan, China
| | - Hailan He
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Boyu Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xinduo Zhang
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
18
|
Tesch F, Siegerist F, Hay E, Artelt N, Daniel C, Amann K, Zimmermann U, Kavvadas P, Grisk O, Chadjichristos C, Endlich K, Chatziantoniou C, Endlich N. Super-resolved local recruitment of CLDN5 to filtration slits implicates a direct relationship with podocyte foot process effacement. J Cell Mol Med 2021; 25:7631-7641. [PMID: 34156149 PMCID: PMC8358871 DOI: 10.1111/jcmm.16519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Under healthy conditions, foot processes of neighbouring podocytes are interdigitating and connected by an electron‐dense slit diaphragm. Besides slit diaphragm proteins, typical adherens junction proteins are also found to be expressed at this cell‐cell junction. It is therefore considered as a highly specialized type of adherens junction. During podocyte injury, podocyte foot processes lose their characteristic 3D structure and the filtration slits typical meandering structure gets linearized. It is still under debate how this change of structure leads to the phenomenon of proteinuria. Using super‐resolution 3D‐structured illumination microscopy, we observed a spatially restricted up‐regulation of the tight junction protein claudin‐5 (CLDN5) in areas where podocyte processes of patients suffering from minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) as well as in murine nephrotoxic serum (NTS) nephritis and uninephrectomy DOCA‐salt hypertension models, were locally injured. CLDN5/nephrin ratios in human glomerulopathies and NTS‐treated mice were significantly higher compared to controls. In patients, the CLDN5/nephrin ratio is significantly correlated with the filtration slit density as a foot process effacement marker, confirming a direct association of local CLDN5 up‐regulation in injured foot processes. Moreover, CLDN5 up‐regulation was observed in some areas of high filtration slit density, suggesting that CLND5 up‐regulation preceded the changes of foot processes. Therefore, CLDN5 could serve as a biomarker predicting early foot process effacement.
Collapse
Affiliation(s)
- Florian Tesch
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Eleonora Hay
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | | | - Olaf Grisk
- Institute for Physiology, Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | | | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Zhou LT, Zhang ZJ, Cao JY, Chen H, Zhu YS, Wu X, Nawabi AQ, Liu X, Shan W, Zhang Y, Zhang XR, Xue J, Hu L, Wang SS, Wang L, Sun ZX. The unique molecular mechanism of diabetic nephropathy: a bioinformatics analysis of over 250 microarray datasets. Clin Kidney J 2021; 14:1626-1638. [PMID: 34084458 PMCID: PMC8162860 DOI: 10.1093/ckj/sfaa190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Diabetic nephropathy (DN) is one of the main causes of end-stage kidney disease worldwide. Emerging studies have suggested that its pathogenesis is distinct from nondiabetic renal diseases in many aspects. However, it still lacks a comprehensive understanding of the unique molecular mechanism of DN. Methods A total of 255 Affymetrix U133 microarray datasets (Affymetrix, Santa Calra, CA, USA) of human glomerular and tubulointerstitial tissues were collected. The 22 215 Affymetrix identifiers shared by the Human Genome U133 Plus 2.0 and U133A Array were extracted to facilitate dataset pooling. Next, a linear model was constructed and the empirical Bayes method was used to select the differentially expressed genes (DEGs) of each kidney disease. Based on these DEG sets, the unique DEGs of DN were identified and further analyzed using gene ontology and pathway enrichment analysis. Finally, the protein–protein interaction networks (PINs) were constructed and hub genes were selected to further refine the results. Results A total of 129 and 1251 unique DEGs were identified in the diabetic glomerulus (upregulated n = 83 and downregulated n = 203) and the diabetic tubulointerstitium (upregulated n = 399 and downregulated n = 874), respectively. Enrichment analysis revealed that the DEGs in the diabetic glomerulus were significantly associated with the extracellular matrix, cell growth, regulation of blood coagulation, cholesterol homeostasis, intrinsic apoptotic signaling pathway and renal filtration cell differentiation. In the diabetic tubulointerstitium, the significantly enriched biological processes and pathways included metabolism, the advanced glycation end products–receptor for advanced glycation end products signaling pathway in diabetic complications, the epidermal growth factor receptor (EGFR) signaling pathway, the FoxO signaling pathway, autophagy and ferroptosis. By constructing PINs, several nodes, such as AGR2, CSNK2A1, EGFR and HSPD1, were identified as hub genes, which might play key roles in regulating the development of DN. Conclusions Our study not only reveals the unique molecular mechanism of DN but also provides a valuable resource for biomarker and therapeutic target discovery. Some of our findings are promising and should be explored in future work.
Collapse
Affiliation(s)
- Le-Ting Zhou
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Zhi-Jian Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Jing-Yuan Cao
- Nephrology Department, Taizhou People's Hospital, Fifth Affiliated Hospital to Nantong University, Taizhou, Jiangsu, China
| | - Hanzhi Chen
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yu-Shan Zhu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Xi Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Abdul Qadir Nawabi
- School of Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xiaobin Liu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Weiwei Shan
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yue Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Xi-Ran Zhang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Jing Xue
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Ling Hu
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Si-Si Wang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Liang Wang
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Zhu-Xing Sun
- Department of Nephrology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Smyth LJ, Patterson CC, Swan EJ, Maxwell AP, McKnight AJ. DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Front Cell Dev Biol 2020; 8:561907. [PMID: 33178681 PMCID: PMC7593403 DOI: 10.3389/fcell.2020.561907] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10–8), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease.
Collapse
Affiliation(s)
- Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | | | - Elizabeth J Swan
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
21
|
Matsuda J, Asano-Matsuda K, Kitzler TM, Takano T. Rho GTPase regulatory proteins in podocytes. Kidney Int 2020; 99:336-345. [PMID: 33122025 DOI: 10.1016/j.kint.2020.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The Rho family of small GTPases (Rho GTPases) are the master regulators of the actin cytoskeleton and consist of 22 members. Previous studies implicated dysregulation of Rho GTPases in podocytes in the pathogenesis of proteinuric glomerular diseases. Rho GTPases are primarily regulated by the three families of proteins; guanine nucleotide exchange factors (GEFs; 82 members), GTPase-activating proteins (GAPs; 69 members), and GDP dissociation inhibitors (GDIs; 3 members). Since the regulatory proteins far outnumber their substrate Rho GTPases and act in concert in a cell/context-dependent manner, the upstream regulatory mechanism directing Rho GTPases in podocytes is largely unknown. In this review, we summarize recent advances in the understanding of the role of Rho GTPase regulatory proteins in podocytes, including the known mutations of these proteins that cause proteinuria in humans. We also provide critical appraisal of the in vivo and in vitro studies and identify the knowledge gap in the field that will require further studies.
Collapse
Affiliation(s)
- Jun Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kana Asano-Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Thomas M Kitzler
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Menon R, Otto EA, Hoover P, Eddy S, Mariani L, Godfrey B, Berthier CC, Eichinger F, Subramanian L, Harder J, Ju W, Nair V, Larkina M, Naik AS, Luo J, Jain S, Sealfon R, Troyanskaya O, Hacohen N, Hodgin JB, Kretzler M, Kpmp KPMP. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 2020; 5:133267. [PMID: 32107344 PMCID: PMC7213795 DOI: 10.1172/jci.insight.133267] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.
Collapse
Affiliation(s)
| | | | - Paul Hoover
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Sean Eddy
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | - Wenjun Ju
- Michigan Medicine, Ann Arbor, Michigan, USA
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | | | - Sanjay Jain
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rachel Sealfon
- Flatiron Institute, Simons Foundation, New York, New York, USA
| | | | - Nir Hacohen
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
23
|
Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney Int 2019; 96:1195-1204. [DOI: 10.1016/j.kint.2019.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
|
24
|
Perco P, Ju W, Kerschbaum J, Leierer J, Menon R, Zhu C, Kretzler M, Mayer G, Rudnicki M. Identification of dicarbonyl and L-xylulose reductase as a therapeutic target in human chronic kidney disease. JCI Insight 2019; 4:128120. [PMID: 31217356 PMCID: PMC6629103 DOI: 10.1172/jci.insight.128120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
An imbalance of nephroprotective factors and renal damaging molecules contributes to development and progression of chronic kidney disease (CKD). We investigated associations of renoprotective factor gene expression patterns with CKD severity and outcome. Gene expression profiles of 197 previously reported renoprotective factors were analyzed in a discovery cohort in renal biopsies of 63 CKD patients. Downregulation of dicarbonyl and L-xylulose reductase (DCXR) showed the strongest association with disease progression. This significant association was validated in an independent set of 225 patients with nephrotic syndrome from the multicenter NEPTUNE cohort. Reduced expression of DCXR was significantly associated with degree of histological damage as well as with lower estimated glomerular filtration rate and increased urinary protein levels. DCXR downregulation in CKD was confirmed in 3 publicly available transcriptomics data sets in the context of CKD. Expression of DCXR showed positive correlations to enzymes that are involved in dicarbonyl stress detoxification based on transcriptomics profiles. The sodium glucose cotransporter-2 (SGLT2) inhibitors canagliflozin and empagliflozin showed a beneficial effect on renal proximal tubular cells under diabetic stimuli-enhanced DCXR gene expression. In summary, lower expression of the renoprotective factor DCXR in renal tissue is associated with more severe disease and worse outcome in human CKD.
Collapse
Affiliation(s)
- Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Wenjun Ju
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Kerschbaum
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Rajasree Menon
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine Zhu
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
25
|
Hay A, Lapointe JM, Lewis A, Moreno Quinn C, Miranda E. Optimization of RNA extraction from laser captured microdissected glomeruli from formalin-fixed paraffin-embedded mouse kidney samples for Nanostring analysis. Histol Histopathol 2019; 35:57-68. [PMID: 31184368 DOI: 10.14670/hh-18-135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Optimized protocols for the microdissection of specific areas from archival tissues and the subsequent RNA analysis are needed but challenging due to RNA degradation and chemical modifications. The aim of this study was to present the most appropriate protocol for utilizing mouse FFPE kidney for laser capture microdissection and Nanostring gene expression analysis. We evaluated different section thicknesses (3, 5, 10 μm), 2 RNA extraction kits (Qiagen and Roche) and different H&E staining methods to optimize microdissection and RNA extraction from glomeruli and cortical tubules samples from FFPE mouse kidney. RNA quality and quantity were assessed via Nanodrop and Qubit. The protocol providing the best results consisted of 5 μm sections, a shorter protocol for H&E staining, and RNA extracted with the Roche kit. Higher Nanostring gene counts and lower qPCR cT significantly correlated with RNA concentrations measured with the Qubit, but not with measures obtained with the Nanodrop. The Nanostring data showed that none of the genes included in the panel was differentially expressed in the cortical tubule compartment compared to the whole kidney. However, 25 genes were differentially expressed in the glomerular compartment compared to the whole kidney. Our data showed that sufficient RNA can be extracted from small compartments like mouse renal glomeruli from archival FFPE tissue, and that whole kidney analysis does not accurately represent the transcriptome state of the glomeruli, which comprise only a small proportion of the overall kidney volume.
Collapse
Affiliation(s)
- Abigail Hay
- Pathology, MedImmune, Cambridge, United Kingdom
| | | | | | - Carol Moreno Quinn
- Cardiovascular and Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | | |
Collapse
|
26
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
27
|
Zhou LT, Lv LL, Qiu S, Yin Q, Li ZL, Tang TT, Ni LH, Feng Y, Wang B, Ma KL, Liu BC. Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. J Transl Med 2019; 17:59. [PMID: 30819181 PMCID: PMC6394064 DOI: 10.1186/s12967-019-1818-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD) in the world. Emerging evidence has shown that urinary mRNAs may serve as early diagnostic and prognostic biomarkers of DKD. In this article, we aimed to first establish a novel bioinformatics-based methodology for analyzing the “urinary kidney-specific mRNAs” and verify their potential clinical utility in DKD. Methods To select candidate mRNAs, a total of 127 Affymetrix microarray datasets of diabetic kidney tissues and other tissues from humans were compiled and analyzed using an integrative bioinformatics approach. Then, the urinary expression of candidate mRNAs in stage 1 study (n = 82) was verified, and the one with best performance moved on to stage 2 study (n = 80) for validation. To avoid potential detection bias, a one-step Taqman PCR assay was developed for quantification of the interested mRNA in stage 2 study. Lastly, the in situ expression of the selected mRNA was further confirmed using fluorescent in situ hybridization (FISH) assay and bioinformatics analysis. Results Our bioinformatics analysis identified sixteen mRNAs as candidates, of which urinary BBOX1 (uBBOX1) levels were significantly upregulated in the urine of patients with DKD. The expression of uBBOX1 was also increased in normoalbuminuric diabetes subjects, while remained unchanged in patients with urinary tract infection or bladder cancer. Besides, uBBOX1 levels correlated with glycemic control, albuminuria and urinary tubular injury marker levels. Similar results were obtained in stage 2 study. FISH assay further demonstrated that BBOX1 mRNA was predominantly located in renal tubular epithelial cells, while its expression in podocytes and urothelium was weak. Further bioinformatics analysis also suggested that tubular BBOX1 mRNA expression was quite stable in various types of kidney diseases. Conclusions Our study provided a novel methodology to identify and analyze urinary kidney-specific mRNAs. uBBOX1 might serve as a promising biomarker of DKD. The performance of the selected urinary mRNAs in monitoring disease progression needs further validation. Electronic supplementary material The online version of this article (10.1186/s12967-019-1818-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le-Ting Zhou
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China.,Wuxi People's Hospital Affiliated To Nanjing Medical University, Wuxi, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Shen Qiu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Li-Hua Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat Commun 2018; 9:5167. [PMID: 30514835 PMCID: PMC6279764 DOI: 10.1038/s41467-018-07594-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
The podocytes within the glomeruli of the kidney maintain the filtration barrier by forming interdigitating foot processes with intervening slit diaphragms, disruption in which results in proteinuria. Studies into human podocytopathies to date have employed primary or immortalised podocyte cell lines cultured in 2D. Here we compare 3D human glomeruli sieved from induced pluripotent stem cell-derived kidney organoids with conditionally immortalised human podocyte cell lines, revealing improved podocyte-specific gene expression, maintenance in vitro of polarised protein localisation and an improved glomerular basement membrane matrisome compared to 2D cultures. Organoid-derived glomeruli retain marker expression in culture for 96 h, proving amenable to toxicity screening. In addition, 3D organoid glomeruli from a congenital nephrotic syndrome patient with compound heterozygous NPHS1 mutations reveal reduced protein levels of both NEPHRIN and PODOCIN. Hence, human iPSC-derived organoid glomeruli represent an accessible approach to the in vitro modelling of human podocytopathies and screening for podocyte toxicity. Studies examining human podocytopathies have utilised 2D cultured primary or immortalised podocyte cell lines. Here, the authors demonstrate that 3D human glomeruli sieved from induced pluripotent stem cell-derived kidney organoids retain an improved podocyte identity in vitro facilitating disease modelling and toxicity testing.
Collapse
|
29
|
Zhou LT, Qiu S, Lv LL, Li ZL, Liu H, Tang RN, Ma KL, Liu BC. Integrative Bioinformatics Analysis Provides Insight into the Molecular Mechanisms of Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:568-581. [PMID: 29642064 DOI: 10.1159/000488830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Chronic kidney disease (CKD) is a worldwide public health problem. Regardless of the underlying primary disease, CKD tends to progress to end-stage kidney disease, resulting in unsatisfactory and costly treatment. Its common pathogenesis, however, remains unclear. The aim of this study was to provide an unbiased catalog of common gene-expression changes of CKD and reveal the underlying molecular mechanism using an integrative bioinformatics approach. METHODS We systematically collected over 250 Affymetrix microarray datasets from the glomerular and tubulointerstitial compartments of healthy renal tissues and those with various types of established CKD (diabetic kidney disease, hypertensive nephropathy, and glomerular nephropathy). Then, using stringent bioinformatics analysis, shared differentially expressed genes (DEGs) of CKD were obtained. These shared DEGs were further analyzed by the gene ontology (GO) and pathway enrichment analysis. Finally, the protein-protein interaction networks(PINs) were constructed to further refine our results. RESULTS Our analysis identified 176 and 50 shared DEGs in diseased glomeruli and tubules, respectively, including many transcripts that have not been previously reported to be involved in kidney disease. Enrichment analysis also showed that the glomerular and tubulointerstitial compartments underwent a wide range of unique pathological changes during chronic injury. As revealed by the GO enrichment analysis, shared DEGs in glomeruli were significantly enriched in exosomes. By constructing PINs, we identified several hub genes (e.g. OAS1, JUN, and FOS) and clusters that might play key roles in regulating the development of CKD. CONCLUSION Our study not only further reveals the unifying molecular mechanism of CKD pathogenesis but also provides a valuable resource of potential biomarkers and therapeutic targets.
Collapse
|
30
|
Brennan EP, Mohan M, McClelland A, Tikellis C, Ziemann M, Kaspi A, Gray SP, Pickering R, Tan SM, Ali-Shah ST, Guiry PJ, El-Osta A, Jandeleit-Dahm K, Cooper ME, Godson C, Kantharidis P. Lipoxins Regulate the Early Growth Response-1 Network and Reverse Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:1437-1448. [PMID: 29490938 DOI: 10.1681/asn.2017101112] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE-/- mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1β, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-β1, PDGF, TNF-α, NF-κB) and novel (early growth response-1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α-driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-β1 and TNF-αConclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Eoin P Brennan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,University College Dublin Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Sciences, and
| | - Muthukumar Mohan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Aaron McClelland
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Christos Tikellis
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Mark Ziemann
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Antony Kaspi
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Stephen P Gray
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Raelene Pickering
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Sih Min Tan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland; and
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland; and
| | - Assam El-Osta
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Mark E Cooper
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Catherine Godson
- University College Dublin Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Sciences, and
| | - Phillip Kantharidis
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; .,Department of Diabetes and
| |
Collapse
|
31
|
Zeng B, Chen GL, Garcia-Vaz E, Bhandari S, Daskoulidou N, Berglund LM, Jiang H, Hallett T, Zhou LP, Huang L, Xu ZH, Nair V, Nelson RG, Ju W, Kretzler M, Atkin SL, Gomez MF, Xu SZ. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat Commun 2017; 8:1920. [PMID: 29203863 PMCID: PMC5714946 DOI: 10.1038/s41467-017-02094-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Impaired albumin reabsorption by proximal tubular epithelial cells (PTECs) has been highlighted in diabetic nephropathy (DN), but little is known about the underlying molecular mechanisms. Here we find that ORAI1-3, are preferentially expressed in PTECs and downregulated in patients with DN. Hyperglycemia or blockade of insulin signaling reduces the expression of ORAI1-3. Inhibition of ORAI channels by BTP2 and diethylstilbestrol or silencing of ORAI expression impairs albumin uptake. Transgenic mice expressing a dominant-negative Orai1 mutant (E108Q) increases albuminuria, and in vivo injection of BTP2 exacerbates albuminuria in streptozotocin-induced and Akita diabetic mice. The albumin endocytosis is Ca2+-dependent and accompanied by ORAI1 internalization. Amnionless (AMN) associates with ORAIs and forms STIM/ORAI/AMN complexes after Ca2+ store depletion. STIM1/ORAI1 colocalizes with clathrin, but not with caveolin, at the apical membrane of PTECs, which determines clathrin-mediated endocytosis. These findings provide insights into the mechanisms of protein reabsorption and potential targets for treating diabetic proteinuria. Patients with diabetic nephropathy suffer from impaired albumin reabsorption by proximal tubular epithelial cells. Here authors use diabetic and transgenic mouse models and in vitro models to show the cause for this lies in the down regulation and internalization of the ion channels, ORAI1-3.
Collapse
Affiliation(s)
- Bo Zeng
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Eliana Garcia-Vaz
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull and East Yorkshire Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Nikoleta Daskoulidou
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Lisa M Berglund
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Hongni Jiang
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Thomas Hallett
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Lu-Ping Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Li Huang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Zi-Hao Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Viji Nair
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85014, USA
| | - Wenjun Ju
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen L Atkin
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.,Weill Cornell Medical College Qatar, PO Box, 24144, Doha, Qatar
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
32
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
33
|
Bhreathnach U, Griffin B, Brennan E, Ewart L, Higgins D, Murphy M. Profibrotic IHG-1 complexes with renal disease associated HSPA5 and TRAP1 in mitochondria. Biochim Biophys Acta Mol Basis Dis 2017; 1863:896-906. [PMID: 28115289 DOI: 10.1016/j.bbadis.2017.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/01/2023]
Abstract
The highly conserved mitochondrial protein induced in high glucose-1 (IHG-1) functions to maintain mitochondrial quality and is associated with the development of fibrosis in diabetic nephropathy. Towards identifying novel approaches to treating diabetic kidney disease, IHG-1-protein-protein interactions were investigated using epitope-tagged immunoprecipitation analyses followed by mass spectrometry. Here we show that IHG-1 is solely expressed in mitochondria and localised to the inner mitochondrial membrane, the region where mitochondrial reactive oxygen species are generated. Chaperones HSPA5 and TRAP1 and cold shock protein YBX1 were identified as IHG-1 binding partners. All three proteins are important in the cellular response to oxidative stress and play important roles in mitochondrial transcription and DNA repair. Both redox imbalance and IHG-1 stimulate TGF-β signalling. IHG-1, HSPA5 and YBX1 all show increased expression in diabetic nephropathy, chronic kidney disease and in the Unilateral Ureteral Obstruction model of kidney fibrosis. Increased IHG-1 expression in UUO correlated with loss of TRAP1 expression. IHG-1 may target TRAP1 for degradation. When IHG-1 is no longer localised to mitochondria, it retains the ability to interact with the cold shock protein YBX1, facilitating anti-fibrotic actions in the nucleus. Targeting these proteins may offer alternative treatments for fibrotic kidney disease.
Collapse
Affiliation(s)
- Una Bhreathnach
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brenda Griffin
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Brennan
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Leah Ewart
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Debra Higgins
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Madeline Murphy
- Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Mirfazeli ES, Marashi SA, Kalantari S. In silico prediction of specific pathways that regulate mesangial cell proliferation in IgA nephropathy. Med Hypotheses 2016; 97:38-45. [PMID: 27876127 DOI: 10.1016/j.mehy.2016.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
IgA nephropathy is one of the most common forms of primary glomerulonephritis worldwide leading to end-stage renal disease. Proliferation of mesangial cells, i.e., the multifunctional cells located in the intracapillary region of glomeruli, after IgA- dominant immune deposition is the major histologic feature in IgA nephropathy. In spite of several studies on molecular basis of proliferation in these cells, specific pathways responsible for regulation of proliferation are still to be discovered. In this study, we predicted a specific signaling pathway started from transferrin receptor (TFRC), a specific IgA1 receptor on mesangial cells, toward a set of proliferation-related proteins. The final constructed subnetwork was presented after filtration and evaluation. The results suggest that estrogen receptor (ESR1) as a hub protein in the significant subnetwork has an important role in the mesangial cell proliferation and is a potential target for IgA nephropathy therapy. In conclusion, this study suggests a novel hypothesis for the mechanism of pathogenesis in IgA nephropathy and is a reasonable start point for the future experimental studies on mesangial proliferation process in this disease.
Collapse
Affiliation(s)
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shiva Kalantari
- Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Cybulsky AV, Guillemette J, Papillon J. Ste20-like kinase, SLK, activates the heat shock factor 1 - Hsp70 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2147-55. [PMID: 27216364 DOI: 10.1016/j.bbamcr.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Expression and activation of SLK increases during renal ischemia-reperfusion injury. When highly expressed, SLK signals via c-Jun N-terminal kinase and p38 to induce apoptosis, and it exacerbates apoptosis induced by ischemia-reperfusion injury. Overexpression of SLK in glomerular epithelial cells (GECs)/podocytes in vivo induces injury and proteinuria. In response to various stresses, cells enhance expression of chaperones or heat shock proteins (e.g. Hsp70), which are involved in the folding and maturation of newly synthesized proteins, and can refold denatured or misfolded proteins. We address the interaction of SLK with the heat shock factor 1 (HSF1)-Hsp70 pathway. Increased expression of SLK in GECs (following transfection) induced HSF1 transcriptional activity. Moreover, HSF1 transcriptional activity was increased by in vitro ischemia-reperfusion injury (chemical anoxia/recovery) and heat shock, and in both instances was amplified further by SLK overexpression. HSF1 binds to promoters of target genes, such as Hsp70 and induces their transcription. By analogy to HSF1, SLK stimulated Hsp70 expression. Hsp70 was also enhanced by anoxia/recovery and was further amplified by SLK overexpression. Induction of HSF1 and Hsp70 was dependent on the kinase activity of SLK, and was mediated via polo-like kinase-1. Transfection of constitutively active HSF1 enhanced Hsp70 expression and inhibited SLK-induced apoptosis. Conversely, the proapoptotic action of SLK was augmented by HSF1 shRNA, or the Hsp70 inhibitor, pifithrin-μ. In conclusion, increased expression/activity of SLK activates the HSF1-Hsp70 pathway. Hsp70 attenuates the primary proapoptotic effect of SLK. Modulation of chaperone expression may potentially be harnessed as cytoprotective therapy in renal cell injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Ding F, Tan A, Ju W, Li X, Li S, Ding J. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network. PLoS One 2016; 11:e0156024. [PMID: 27227331 PMCID: PMC4882061 DOI: 10.1371/journal.pone.0156024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/09/2016] [Indexed: 01/10/2023] Open
Abstract
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.
Collapse
Affiliation(s)
- Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Aidi Tan
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Yu H, Artomov M, Brähler S, Stander MC, Shamsan G, Sampson MG, White JM, Kretzler M, Miner JH, Jain S, Winkler CA, Mitra RD, Kopp JB, Daly MJ, Shaw AS. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. J Clin Invest 2016; 126:1067-78. [PMID: 26901816 DOI: 10.1172/jci82592] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes.
Collapse
|
38
|
Simmonds MJ. Using Genetic Variation to Predict and Extend Long-term Kidney Transplant Function. Transplantation 2016; 99:2038-48. [PMID: 26262502 DOI: 10.1097/tp.0000000000000836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal transplantation has transformed the life of patients with end-stage renal disease and other chronic kidney disorders by returning endogenous kidney function and enabling patients to cease dialysis. Several clinical indicators of graft outcome and long-term function have been established. Although rising creatinine levels and graft biopsy can be used to determine graft loss, identifying early predictors of graft function will not only improve our ability to predict long-term graft outcome but importantly provide a window of opportunity to therapeutically intervene to preserve graft function before graft failure has occurred. Since understanding the importance of matching genetic variation at the HLA region between donors and recipients and translating this into clinical practise to improve transplant outcome, much focus has been placed on trying to identify additional genetic predictors of transplant outcome/function. This review will focus on how candidate gene studies have identified variants within immunosuppression, immune response, fibrotic pathways, and specific ethnic groups, which correlate with graft outcome. We will also discuss the challenges faced by candidate gene studies, such as differences in donor and recipient selection criteria and use of small data sets, which have led to many genes failing to be consistently associated with transplant outcome. This review will also look at how recent advances in our understanding of and ability to screen the genome are starting to provide new insights into the mechanisms behind long-term graft loss and with it the opportunity to target these pathways therapeutically to ultimately increase graft lifespan and the associated benefits to patients.
Collapse
Affiliation(s)
- Matthew J Simmonds
- 1 Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
39
|
Conserva F, Gesualdo L, Papale M. A Systems Biology Overview on Human Diabetic Nephropathy: From Genetic Susceptibility to Post-Transcriptional and Post-Translational Modifications. J Diabetes Res 2016; 2016:7934504. [PMID: 26798653 PMCID: PMC4698547 DOI: 10.1155/2016/7934504] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication occurring in approximately 20-40% of patients with type 2 diabetes mellitus (T2DM), is characterized by the progressive impairment of glomerular filtration and the development of Kimmelstiel-Wilson lesions leading to end-stage renal failure (ESRD). The causes and molecular mechanisms mediating the onset of T2DM chronic complications are yet sketchy and it is not clear why disease progression occurs only in some patients. We performed a systematic analysis of the most relevant studies investigating genetic susceptibility and specific transcriptomic, epigenetic, proteomic, and metabolomic patterns in order to summarize the most significant traits associated with the disease onset and progression. The picture that emerges is complex and fascinating as it includes the regulation/dysregulation of numerous biological processes, converging toward the activation of inflammatory processes, oxidative stress, remodeling of cellular function and morphology, and disturbance of metabolic pathways. The growing interest in the characterization of protein post-translational modifications and the importance of handling large datasets using a systems biology approach are also discussed.
Collapse
Affiliation(s)
- Francesca Conserva
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- Division of Cardiology and Cardiac Rehabilitation, “S. Maugeri” Foundation, IRCCS, Institute of Cassano Murge, 70020 Cassano delle Murge, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- *Loreto Gesualdo:
| | - Massimo Papale
- Molecular Medicine Center, Section of Nephrology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
40
|
Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol 2015; 27:1778-91. [PMID: 26586691 DOI: 10.1681/asn.2015010096] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases.
Collapse
Affiliation(s)
- Sazia Sharmin
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yusuke Kaku
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Hidetake Kurihara
- Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Japan Science and Technology Agency, CREST, Kumamoto, Japan
| |
Collapse
|
41
|
Kumar Vr S, Darisipudi MN, Steiger S, Devarapu SK, Tato M, Kukarni OP, Mulay SR, Thomasova D, Popper B, Demleitner J, Zuchtriegel G, Reichel C, Cohen CD, Lindenmeyer MT, Liapis H, Moll S, Reid E, Stitt AW, Schott B, Gruner S, Haap W, Ebeling M, Hartmann G, Anders HJ. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications. J Am Soc Nephrol 2015; 27:1635-49. [PMID: 26567242 DOI: 10.1681/asn.2015020208] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/25/2015] [Indexed: 01/13/2023] Open
Abstract
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Collapse
Affiliation(s)
- Santhosh Kumar Vr
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Murthy N Darisipudi
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Stefanie Steiger
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Satish Kumar Devarapu
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maia Tato
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Onkar P Kukarni
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Shrikant R Mulay
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Dana Thomasova
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Ludwig-Maximilians Universität, Munich, Germany
| | | | - Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine, and Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, Munich, Germany
| | - Christoph Reichel
- Walter Brendel Centre of Experimental Medicine, and Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Division of Nephrology, Krankenhaus Harlaching, Munich, Germany; Division of Nephrology and Institute of Physiology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Helen Liapis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Solange Moll
- Institute of Clinical Pathology, University Hospital Geneva, Geneva, Switzerland
| | - Emma Reid
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Ireland; and
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Ireland; and
| | - Brigitte Schott
- Cardiovascular and Metabolism, Pharma Research and Early Development, Hoffmann La Roche, Basel, Switzerland
| | - Sabine Gruner
- Cardiovascular and Metabolism, Pharma Research and Early Development, Hoffmann La Roche, Basel, Switzerland
| | - Wolfgang Haap
- Cardiovascular and Metabolism, Pharma Research and Early Development, Hoffmann La Roche, Basel, Switzerland
| | - Martin Ebeling
- Cardiovascular and Metabolism, Pharma Research and Early Development, Hoffmann La Roche, Basel, Switzerland
| | - Guido Hartmann
- Cardiovascular and Metabolism, Pharma Research and Early Development, Hoffmann La Roche, Basel, Switzerland
| | - Hans-Joachim Anders
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, Munich, Germany;
| |
Collapse
|
42
|
Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, Herrmann BG, van de Hoek G, Renkema KY, Schell C, Huber TB, Reutter HM, Soliman NA, Stajic N, Bogdanovic R, Kehinde EO, Lifton RP, Tasic V, Lu W, Hildebrandt F. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 2015; 134:905-16. [PMID: 26026792 PMCID: PMC4497857 DOI: 10.1007/s00439-015-1570-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 12/26/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.
Collapse
Affiliation(s)
- Daw-Yang Hwang
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Asaf Vivante
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Gabriel C Dworschak
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Julian Schulz
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Albertien M van Eerde
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracie Pennimpede
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Glenn van de Hoek
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Schell
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Germany
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Neonatology, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Neveen A Soliman
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
- Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Natasa Stajic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | - Radovan Bogdanovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children’s Hospital, Skopje, Macedonia
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
43
|
Sugano Y, Lindenmeyer MT, Auberger I, Ziegler U, Segerer S, Cohen CD, Neuhauss SCF, Loffing J. The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney Int 2015; 88:1047-56. [PMID: 26154927 DOI: 10.1038/ki.2015.197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Podocyte dysfunction impairs the size selectivity of the glomerular filter, leading to proteinuria, hypoalbuminuria, and edema, clinically defined as nephrotic syndrome. Hereditary forms of nephrotic syndrome are linked to mutations in podocyte-specific genes. To identify genes contributing to podocyte dysfunction in acquired nephrotic syndrome, we studied human glomerular gene expression data sets for glomerular-enriched gene transcripts differentially regulated between pretransplant biopsy samples and biopsies from patients with nephrotic syndrome. Candidate genes were screened by in situ hybridization for expression in the zebrafish pronephros, an easy-to-use in vivo assay system to assess podocyte function. One glomerulus-enriched product was the Rho-GTPase binding protein, IQGAP2. Immunohistochemistry found a strong presence of IQGAP2 in normal human and zebrafish podocytes. In zebrafish larvae, morpholino-based knockdown of iqgap2 caused a mild foot process effacement of zebrafish podocytes and a cystic dilation of the urinary space of Bowman's capsule upon onset of urinary filtration. Moreover, the glomerulus of zebrafish morphants showed a glomerular permeability for injected high-molecular-weight dextrans, indicating an impaired size selectivity of the glomerular filter. Thus, IQGAP2 is a Rho-GTPase binding protein, highly abundant in human and zebrafish podocytes, which controls normal podocyte structure and function as evidenced in the zebrafish pronephros.
Collapse
Affiliation(s)
- Yuya Sugano
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Ines Auberger
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Stephan Segerer
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, University Hospital, Zurich, Switzerland
| | - Clemens D Cohen
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, Klinikum Harlaching, Munich, Germany
| | - Stephan C F Neuhauss
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Johannes Loffing
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Tomaszewski M, Eales J, Denniff M, Myers S, Chew GS, Nelson CP, Christofidou P, Desai A, Büsst C, Wojnar L, Musialik K, Jozwiak J, Debiec R, Dominiczak AF, Navis G, van Gilst WH, van der Harst P, Samani NJ, Harrap S, Bogdanski P, Zukowska-Szczechowska E, Charchar FJ. Renal Mechanisms of Association between Fibroblast Growth Factor 1 and Blood Pressure. J Am Soc Nephrol 2015; 26:3151-60. [PMID: 25918036 DOI: 10.1681/asn.2014121211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 11/03/2022] Open
Abstract
The fibroblast growth factor 1 (FGF1) gene is expressed primarily in the kidney and may contribute to hypertension. However, the biologic mechanisms underlying the association between FGF1 and BP regulation remain unknown. We report that the major allele of FGF1 single nucleotide polymorphism rs152524 was associated in a dose-dependent manner with systolic BP (P = 9.65 × 10(-5)) and diastolic BP (P = 7.61 × 10(-3)) in a meta-analysis of 14,364 individuals and with renal expression of FGF1 mRNA in 126 human kidneys (P=9.0 × 10(-3)). Next-generation RNA sequencing revealed that upregulated renal expression of FGF1 or of each of the three FGF1 mRNA isoforms individually was associated with higher BP. FGF1-stratified coexpression analysis in two separate collections of human kidneys identified 126 FGF1 partner mRNAs, of which 71 and 63 showed at least nominal association with systolic and diastolic BP, respectively. Of those mRNAs, seven mRNAs in five genes (MME, PTPRO, REN, SLC12A3, and WNK1) had strong prior annotation to BP or hypertension. MME, which encodes an enzyme that degrades circulating natriuretic peptides, showed the strongest differential coexpression with FGF1 between hypertensive and normotensive kidneys. Furthermore, higher level of renal FGF1 expression was associated with lower circulating levels of atrial and brain natriuretic peptides. These findings indicate that FGF1 expression in the kidney is at least under partial genetic control and that renal expression of several FGF1 partner genes involved in the natriuretic peptide catabolism pathway, renin-angiotensin cascade, and sodium handling network may explain the association between FGF1 and BP.
Collapse
Affiliation(s)
- Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester, United Kingdom;
| | - James Eales
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Stephen Myers
- Faculty of Science and Technology, Federation University Australia, Ballarat, Australia
| | - Guat Siew Chew
- Faculty of Science and Technology, Federation University Australia, Ballarat, Australia
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester, United Kingdom
| | - Paraskevi Christofidou
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Aishwarya Desai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Cara Büsst
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | | | - Katarzyna Musialik
- Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Jozwiak
- Department of Public Health, Czestochowa University of Technology, Czestochowa, Poland
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Wiek H van Gilst
- Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands; and
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester, United Kingdom
| | - Stephen Harrap
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Pawel Bogdanski
- Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Zukowska-Szczechowska
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Faculty of Science and Technology, Federation University Australia, Ballarat, Australia
| |
Collapse
|
45
|
Perisic L, Rodriguez PQ, Hultenby K, Sun Y, Lal M, Betsholtz C, Uhlén M, Wernerson A, Hedin U, Pikkarainen T, Tryggvason K, Patrakka J. Schip1 is a novel podocyte foot process protein that mediates actin cytoskeleton rearrangements and forms a complex with Nherf2 and ezrin. PLoS One 2015; 10:e0122067. [PMID: 25807495 PMCID: PMC4373682 DOI: 10.1371/journal.pone.0122067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/18/2015] [Indexed: 01/28/2023] Open
Abstract
Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGFβ signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated.
Collapse
Affiliation(s)
- Ljubica Perisic
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Patricia Q. Rodriguez
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kjell Hultenby
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ying Sun
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mark Lal
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christer Betsholtz
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Timo Pikkarainen
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
46
|
Sampson MG, Hodgin JB, Kretzler M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr Nephrol 2015; 30:51-63; quiz 59. [PMID: 24890338 PMCID: PMC4241380 DOI: 10.1007/s00467-014-2857-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Abstract
Nephrotic syndrome (NS) is a clinical condition with a high degree of morbidity and mortality, caused by failure of the glomerular filtration barrier, resulting in massive proteinuria. Our current diagnostic, prognostic and therapeutic decisions in NS are largely based upon clinical or histological patterns such as "focal segmental glomerulosclerosis" or "steroid sensitive". Yet these descriptive classifications lack the precision to explain the physiologic origins and clinical heterogeneity observed in this syndrome. A more precise definition of NS is required to identify mechanisms of disease and capture various clinical trajectories. An integrative genomics approach to NS applies bioinformatics and computational methods to comprehensive experimental, molecular and clinical data for holistic disease definition. A unique aspect is analysis of data together to discover NS-associated molecules, pathways, and networks. Integrating multidimensional datasets from the outset highlights how molecular lesions impact the entire individual. Data sets integrated range from genetic variation to gene expression, to histologic changes, to progression of chronic kidney disease (CKD). This review will introduce the tenets of integrative genomics and suggest how it can increase our understanding of NS from molecular and pathophysiological perspectives. A diverse group of genome-scale experiments are presented that have sought to define molecular signatures of NS. Finally, the Nephrotic Syndrome Study Network (NEPTUNE) will be introduced as an international, prospective cohort study of patients with NS that utilizes an integrated systems genomics approach from the outset. A major NEPTUNE goal is to achieve comprehensive disease definition from a genomics perspective and identify shared molecular drivers of disease.
Collapse
Affiliation(s)
- Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Segmental glomerulosclerosis is the end-point of a series of processes with have podocyte damage as a common denominator. This review summarizes the important advances that have been made in the past 2 years leading to the comprehension of several molecular mechanisms of regulation of podocyte physiology and pathology. RECENT FINDINGS From recent studies it has become clear that the dynamic cytoskeleton of podocyte foot processes has to be highly regulated to maintain cell shape and function. The importance of intracellular calcium in this process has started to be revealed, together with the channels and the organelles appointed to calcium entry and buffering.Novel data highlight the centrality and the complexity of the mammalian target of rapamycin pathways, which are implicated in the regulation of autophagy. Similarities between podocytes and neuronal cells have been extended to the process of dynamin-regulated endocytosis, and further data in mice and humans provide support to the idea that podocytes can be directly targeted by old and new drugs. SUMMARY Research is bringing numerous advances regarding the role of podocytes in the development of glomerulosclerosis, which can lead to novel and specific therapeutic approaches, as well as to a more rational use of drugs already in use. Consequently, renal biopsy becomes the indispensable instrument not only for diagnosis but also to precisely detect molecular therapeutic targets and guide personalized therapy.
Collapse
|
48
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
49
|
Abstract
As recently as 2002, most cases of primary membranous nephropathy (MN), a relatively common cause of nephrotic syndrome in adults, were considered idiopathic. We now recognize that MN is an organ-specific autoimmune disease in which circulating autoantibodies bind to an intrinsic antigen on glomerular podocytes and form deposits of immune complexes in situ in the glomerular capillary walls. Here we define the clinical and pathological features of MN and describe the experimental models that enabled the discovery of the major target antigen, the M-type phospholipase A2 receptor 1 (PLA2R). We review the pathophysiology of experimental MN and compare and contrast it with the human disease. We discuss the diagnostic value of serological testing for anti-PLA2R and tissue staining for the redistributed antigen, and their utility for differentiating between primary and secondary MN, and between recurrent MN after kidney transplant and de novo MN. We end with consideration of how knowledge of the antigen might direct future therapeutic strategies.
Collapse
|
50
|
Witasp A, Ekstrom TJ, Schalling M, Lindholm B, Stenvinkel P, Nordfors L. How can genetics and epigenetics help the nephrologist improve the diagnosis and treatment of chronic kidney disease patients? Nephrol Dial Transplant 2014; 29:972-80. [DOI: 10.1093/ndt/gfu021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|