1
|
Bellomo C, Furone F, Rotondo R, Ciscognetti I, Carpinelli M, Nicoletti M, D’Aniello G, Sepe L, Barone MV, Nanayakkara M. Role of Protein Tyrosine Phosphatases in Inflammatory Bowel Disease, Celiac Disease and Diabetes: Focus on the Intestinal Mucosa. Cells 2024; 13:1981. [PMID: 39682729 PMCID: PMC11640621 DOI: 10.3390/cells13231981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, such as cell growth, inflammation, differentiation, immune-mediated responses and oncogenic transformation. The aim of this review is to review the literature concerning the role of several PTPs-PTPN22, PTPN2, PTPN6, PTPN11, PTPσ, DUSP2, DUSP6 and PTPRK-at the level of the intestinal mucosa in inflammatory bowel disease (IBD), celiac disease (CeD) and type 1 diabetes (T1D) in both in vitro and in vivo models. The results revealed shared features, at the level of the intestinal mucosa, between these diseases characterized by alterations of different biological processes, such as proliferation, autoimmunity, cell death, autophagy and inflammation. PTPs are now actively studied to develop new drugs. Also considering the availability of organoids as models to test new drugs in personalized ways, it is very likely that soon these proteins will be the targets of useful drugs.
Collapse
Affiliation(s)
- Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Ilaria Ciscognetti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
| | - Martina Carpinelli
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
| | - Genoveffa D’Aniello
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.B.); (F.F.); (I.C.); (M.C.); (M.N.)
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | | |
Collapse
|
2
|
Mancuso C, Tremblay E, Gnodi E, Jean S, Beaulieu JF, Barisani D. The Combination of Gold and Silver Food Nanoparticles with Gluten Peptides Alters the Autophagic Pathway in Intestinal Crypt-like Cells. Int J Mol Sci 2023; 24:13040. [PMID: 37685847 PMCID: PMC10487529 DOI: 10.3390/ijms241713040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Metallic nanoparticles (mNPs) are widely used as food additives and can interact with gliadin triggering an immune response, but evaluation of the effects on crypts, hypertrophic in celiac subjects, is still lacking. This study evaluated the effects of gold and silver mNPs in combination with gliadin on crypt-like cells (HIEC-6). Transmission electron microscopy (TEM) was used to evaluate gliadin-mNP aggregates in cells. Western blot and immunofluorescence analysis assessed autophagy-related molecule levels (p62, LC3, beclin-1, EGFR). Lysosome functionality was tested with acridine orange (AO) and Magic Red assays. TEM identified an increase in autophagic vacuoles after exposure to gliadin + mNPs, as also detected by significant increments in LC3-II and p62 expression. Immunofluorescence confirmed the presence of mature autophagosomes, showing LC3 and p62 colocalization, indicating an altered autophagic flux, further assessed with EGFR degradation, AO and Magic Red assays. The results showed a significant reduction in lysosomal enzyme activity and a modest reduction in acidity. Thus, gliadin + mNPs can block the autophagic flux inducing a lysosomal defect. The alteration of this pathway, essential for cell function, can lead to cell damage and death. The potential effects of this copresence in food should be further characterized to avoid a negative impact on celiac disease subjects.
Collapse
Affiliation(s)
- Clara Mancuso
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (E.G.)
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada; (E.T.); (J.-F.B.)
| | - Eric Tremblay
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada; (E.T.); (J.-F.B.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (E.G.)
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada;
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada; (E.T.); (J.-F.B.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (E.G.)
| |
Collapse
|
3
|
Nanayakkara M, Bellomo C, Furone F, Maglio M, Marano A, Lania G, Porpora M, Nicoletti M, Auricchio S, Barone MV. PTPRK, an EGFR Phosphatase, Is Decreased in CeD Biopsies and Intestinal Organoids. Cells 2022; 12:cells12010115. [PMID: 36611909 PMCID: PMC9818839 DOI: 10.3390/cells12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & AIMS Celiac disease (CeD) is an immune-mediated enteropathy triggered in genetically susceptible (HLA-DQ2/8) individuals by a group of wheat proteins and related prolamins from cereals. The celiac intestine is characterized by an inversion of the differentiation/proliferation program of the enterocytes, with an increase in the proliferative compartment and crypt hyperplasia, which are the mechanisms that regulate the increased proliferation in CeD that arenot completely understood.The aim of this study is to understand the role of Protein Tyrosine Phosphatase Receptor Type K (PTPRK), a nodal phosphatase that regulates EGFR activation in the proliferation of the enterocytes from CeD biopsies and organoids. METHODS The levels of PTPRK were evaluated by RT PCR, western blot (WB) and immunofluorescence techniques in intestinal biopsies and organoids from CeD patients and controls. Additionally, pEGFR and pERK were evaluated by WB and proliferation by BrdU incorporation. PTPRK si-RNA was silenced in CTR organoids and was overexpressed in CeD organoids. RESULTS PTPRK was reduced in Gluten Containing Diet-Celiac Disease (GCD-CeD) and Potential-Celiac Disease(Pot-CeD) biopsies (p < 0.01-p < 0.05) whereas pEGFR (p < 0.01 p < 0.01), pERK (p < 0.01 p < 0.01) and proliferation were increased. (p < 0.05 p < 0.05) respect to the controls.The CeD organoids reproduced these same alterations. Silencing of PTPRK in CTR organoids increased pEGFR, pERK and proliferation. The overexpression of PTPRK in CeD organoids reduced pEGFR, pERK and proliferation. CONCLUSIONS modulation of PTPRK levels can reduce or increase pEGFR, pERK and proliferation in CeD or CTR organoids, respectively. The CeD organoids can be a good model to study the mechanisms of the disease.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonella Marano
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuliana Lania
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817464568; Fax: +39-0817463116
| |
Collapse
|
4
|
Barone MV, Auricchio R, Nanayakkara M, Greco L, Troncone R, Auricchio S. Pivotal Role of Inflammation in Celiac Disease. Int J Mol Sci 2022; 23:ijms23137177. [PMID: 35806180 PMCID: PMC9266393 DOI: 10.3390/ijms23137177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed. In vitro study on CD cells and organoids, shows that constant low-grade inflammation is present also in the absence of gluten. In vivo studies on a population at risk, show before the onset of the disease and before the introduction of gluten in the diet, cellular and metabolic alterations in the absence of a T cell-mediated response. Gluten exacerbates these constitutive alterations in vitro and in vivo. Inflammation, may have a main role in CD, adding this disease tout court to the big family of chronic inflammatory diseases. Nutrients can have pro-inflammatory or anti-inflammatory effects, also mediated by intestinal microbiota. The intestine function as a crossroad for the control of inflammation both locally and at distance. The aim of this review is to discuss the recent literature on the main role of inflammation in the natural history of CD, supported by cellular fragility with increased sensitivity to gluten and other pro-inflammatory agents.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence:
| | - Renata Auricchio
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Luigi Greco
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
5
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Gliadin proteolytical resistant peptides: the interplay between structure and self-assembly in gluten-related disorders. Biophys Rev 2022; 13:1147-1154. [PMID: 35047092 PMCID: PMC8724473 DOI: 10.1007/s12551-021-00856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
In recent years, the evaluation of the structural properties of food has become of crucial importance in the understanding of food-related disorders. One of the most exciting systems is gliadin, a protein in wheat gluten, that plays a protagonist role in gluten-related disorders with a worldwide prevalence of 5%, including autoimmune celiac disease (CeD) (1%) and non-celiac wheat sensitivity (0.5–13%). It is accepted that gliadin is not fully digested by humans, producing large peptides that reach the gut mucosa. The gliadin peptides cross the lamina propria eliciting different immune responses in susceptible patients. Many clinical and biomedical efforts aim to diagnose and understand gluten-related disorders; meanwhile, the early stages of the inflammatory events remain elusive. Interestingly, although the primary sequence of many gliadin peptides is well known, it was only recently revealed the self-assembly capability of two pathogenic gliadin fragments and their connection to the early stage of diseases. This review is dedicated to the most relevant biophysical characterization of the complex gliadin digest and the two most studied gliadin fragments, the immunodominant 33-mer peptide and the toxic p31-43 in connection with inflammation and innate immune response. Here, we want to emphasize that combining different biophysical methods with cellular and in vivo models is of key importance to get an integrative understanding of a complex biological problem, as discussed here.
Collapse
|
7
|
Lundin KE, Brottveit M, Skodje G. Noncoeliac gluten sensitivity. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:177-195. [DOI: 10.1016/b978-0-12-821571-5.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Pérez-Gregorio MR, Bessa Pereira C, Dias R, Mateus N, de Freitas V. New-Level Insights into the Effects of Grape Seed Polyphenols on the Intestinal Processing and Transport of a Celiac Disease Immunodominant Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13474-13486. [PMID: 34727499 DOI: 10.1021/acs.jafc.1c03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of three dietary tannins (procyanidin B3, B6, and T2) on the bioavailability of the 32-mer gliadin-derived immunogenic peptide was evaluated. An enterocyte-like Caco-2 cell line was used to mimic the epithelial transport of the 32-mer peptide, which was modeled by kinetic parameters with a mass spectrometry approach. The hydrolysis pattern on the enterocytes was analyzed, and the released peptides were quantified during the assay. The transport flux was dose-dependent. Along with procyanidin T2 and B6, procyanidin B3 promoted a significant inhibition mainly at the 100 μM peptide concentration. The hydrolysis efficiency was affected by procyanidins, while the cleavage pattern was suggested to be promoted by brush-border membranes at the apical compartment. The ability of procyanidins to molecularly bind to immunogenic peptides able to induce an adaptive response arose as a mechanism able to modulate their bioavailability, bioaccesibility, and further T CD4+ cell activation and expansion in a celiac disease (CD) model.
Collapse
Affiliation(s)
- Maria Rosa Pérez-Gregorio
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Catarina Bessa Pereira
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Ricardo Dias
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| |
Collapse
|
9
|
Conte M, Porpora M, Nigro F, Nigro R, Budelli AL, Barone MV, Nanayakkara M. Pro-Pre and Postbiotic in Celiac Disease. APPLIED SCIENCES 2021; 11:8185. [DOI: 10.3390/app11178185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. It presents in subjects with genetic susceptibility (HLA-DQ2/DQ8 positivity and non-HLA genes) and under the influence of environmental triggers, such as viral infections and intestinal microbiota dysbiosis. The only treatment currently available in CD is a gluten-free diet for life. Despite this, the intestinal dysbiosis that is recorded in celiac subjects persists, even with adherence to dietary therapy. In this review, we have analyzed the literature over the past several decades, which have focused on the use of pro-, pre- and post-biotics in vitro and in vivo in CD. The study of probiotics and their products in CD could be interesting for observing their various effects on several different pathways, including anti-inflammatory properties.
Collapse
Affiliation(s)
- Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Federica Nigro
- School of Engineering, Niccoló Cusano University, 00166 Rome, Italy
- I.T.P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy
| | - Roberto Nigro
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy
| | - Andrea Luigi Budelli
- School of Engineering, Niccoló Cusano University, 00166 Rome, Italy
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy
| | - M. Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Diós Á, Elek R, Szabó I, Horváth S, Gyimesi J, Király R, Werkstetter K, Koletzko S, Fésüs L, Korponay-Szabó IR. Gamma-gliadin specific celiac disease antibodies recognize p31-43 and p57-68 alpha gliadin peptides in deamidation related manner as a result of cross-reaction. Amino Acids 2021; 53:1051-1063. [PMID: 34059947 PMCID: PMC8241804 DOI: 10.1007/s00726-021-03006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Celiac disease (CeD) is a T-cell-dependent enteropathy with autoimmune features where tissue transglutaminase (TG2)-mediated posttranslational modification of gliadin peptides has a decisive role in the pathomechanism. The humoral immune response is reported to target mainly TG2-deamidated γ-gliadin peptides. However, α-gliadin peptides, like p57-68, playing a crucial role in the T-cell response, and p31-43, a major trigger of innate responses, also contain B-cell gliadin epitopes and γ-gliadin like motifs. We aimed to identify if there are anti-gliadin-specific antibodies in CeD patients targeting the p31-43 and p57-68 peptides and to examine whether deamidation of these peptides could increase their antigenicity. We explored TG2-mediated deamidation of the p31-43 and p57-68 peptides, and investigated serum antibody reactivity toward the native and deamidated α and γ-gliadin peptides in children with confirmed CeD and in prospectively followed infants at increased risk for developing CeD. We affinity-purified antibody populations utilizing different single peptide gliadin antigens and tested their binding preferences for cross-reactivity in real-time interaction assays based on bio-layer interferometry. Our results demonstrate that there is serum reactivity toward p31-43 and p57-68 peptides, which is due to cross-reactive γ-gliadin specific antibodies. These γ-gliadin specific antibodies represent the first appearing antibody population in infancy and they dominate the serum reactivity of CeD patients even later on and without preference for deamidation. However, for the homologous epitope sequences in α-gliadins shorter than the core QPEQPFP heptapeptide, deamidation facilitates antibody recognition. These findings reveal the presence of cross-reactive antibodies in CeD patients recognizing the disease-relevant α-gliadins.
Collapse
Affiliation(s)
- Ádám Diós
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rita Elek
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Horváth
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Gyimesi
- Coeliac Disease Center, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katharina Werkstetter
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilian's University Munich, Munich, Germany
| | - Sibylle Koletzko
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilian's University Munich, Munich, Germany.,Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilma R Korponay-Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. .,Coeliac Disease Center, Heim Pál National Pediatric Institute, Budapest, Hungary.
| |
Collapse
|
11
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
12
|
Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31-43 peptide: Inducer of multiple proinflammatory effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:165-205. [PMID: 33707054 DOI: 10.1016/bs.ircmb.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is the prototype of an inflammatory chronic disease induced by food. In this context, gliadin p31-43 peptide comes into the spotlight as an important player of the inflammatory/innate immune response to gliadin in CD. The p31-43 peptide is part of the p31-55 peptide from α-gliadins that remains undigested for a long time, and can be present in the small intestine after ingestion of a gluten-containing diet. Different biophysical methods and molecular dynamic simulations have shown that p31-43 spontaneously forms oligomeric nanostructures, whereas experimental approaches using in vitro assays, mouse models, and human duodenal tissues have shown that p31-43 is able to induce different forms of cellular stress by driving multiple inflammatory pathways. Increased proliferative activity of the epithelial cells in the crypts, enterocyte stress, activation of TG2, induction of Ca2+, IL-15, and NFκB signaling, inhibition of CFTR, alteration of vesicular trafficking, and activation of the inflammasome platform are some of the biological effects of p31-43, which, in the presence of appropriate genetic susceptibility and environmental factors, may act together to drive CD.
Collapse
Affiliation(s)
- Fernando Gabriel Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP (UNLP-CONICET), La Plata, Argentina.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| |
Collapse
|
13
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
14
|
Martucciello S, Sposito S, Esposito C, Paolella G, Caputo I. Interplay between Type 2 Transglutaminase (TG2), Gliadin Peptide 31-43 and Anti-TG2 Antibodies in Celiac Disease. Int J Mol Sci 2020; 21:ijms21103673. [PMID: 32456177 PMCID: PMC7279455 DOI: 10.3390/ijms21103673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) is a common intestinal inflammatory disease involving both a genetic background and environmental triggers. The ingestion of gluten, a proteic component of several cereals, represents the main hexogen factor implied in CD onset that involves concomitant innate and adaptive immune responses to gluten. Immunogenicity of some gluten sequences are strongly enhanced as the consequence of the deamidation of specific glutamine residues by type 2 transglutaminase (TG2), a ubiquitous enzyme whose expression is up-regulated in the intestine of CD patients. A short gluten sequence resistant to intestinal proteases, the α-gliadin peptide 31-43, seems to modulate TG2 function in the gut; on the other hand, the enzyme can affect the biological activity of this peptide. In addition, an intense auto-immune response towards TG2 is a hallmark of CD. Auto-antibodies exert a range of biological effects on several cells, effects that in part overlap with those induced by peptide 31-43. In this review, we delineate a scenario in which TG2, anti-TG2 antibodies and peptide 31-43 closely relate to each other, thus synergistically participating in CD starting and progression.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Silvia Sposito
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
- Correspondence: ; Tel.: +39-089-969592; Fax: +39-089-969603
| |
Collapse
|
15
|
Auricchio R, Galatola M, Cielo D, Amoresano A, Caterino M, De Vita E, Illiano A, Troncone R, Greco L, Ruoppolo M. A Phospholipid Profile at 4 Months Predicts the Onset of Celiac Disease in at-Risk Infants. Sci Rep 2019; 9:14303. [PMID: 31586100 PMCID: PMC6778072 DOI: 10.1038/s41598-019-50735-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) is a multifactorial disease influenced by both genetic and environmental risk factors. CeD genetic components are mainly due to HLA class II genes, which account for approximately 40% of the disease heritability. The environmental factor is linked to gliadin ingestion. Despite genetic and epigenetic studies, the pathological molecular mechanism remains unclarified. The strong genetic component does not explain more than half of the hereditability; we identified several epigenetic features that contribute to the understanding of the missing hereditability. The lipid profile of infants has been proposed as a potential biomarker of CeD metabolism that can be measured before they exhibit developmental disorders and clinical symptoms. We suggest that the state of the host is a main factor for the abnormal immune response to gluten. Long before any exposure to the offending agent or any production of specific antibodies, several molecular mechanisms are differentially expressed in infants who will develop CeD compared to their peers matched for the same genetic profile. The present study explored the serum phospholipid profile of a group of infants at risk for celiac disease, followed up to 8 years to monitor the onset of CeD. We compared 30 patients who developed the disease with 20 age- and sex-matched peers with similar genetic profiles who did not develop the disease within 8 years. Serum phospholipids were analysed at 4 months, before exposure to gluten, and at 12 months of age, when none showed any marker of disease. In the 30 CeD patients, we also analysed the serum at the time of diagnosis (>24 months). The serum phospholipid profile was fairly constant across 4 and 12 months of age and, in CeD, up to 24–36 months. The phospholipid signature was dramatically different in infants who developed CeD when compared to that of control NY-CeD (Not Yet developing Celiac Disease) peers. We identified a specific serum phospholipid signature that predicts the onset of celiac disease in HLA at-risk infants years before the appearance of antibodies specific for CeD in the serum and before any clinical symptoms, even before gluten introduction into the diet at 4 months. Specifically, lysophosphatidylcholine, phosphatidylcholine, alkylacyl-phosphatidylcholine, phosphoethanolamines, phosphatidylserines, phosphatidylglycerol and phosphatidylinositol were found to be differentially represented in CeD versus NY-CeD. A set constituted by a limited number of alkylacyl-phosphatidylcholine and lyso-phosphatidylcholine, together with the duration of breast-feeding, allows the discrimination of infants who develop celiac disease before 8 years of age from those at a similar genetic risk who do not develop the disease. In addition to recent discovery, our paper unveiled a specifc phopholipid profile, able to discriminate infants who eventually develop celiac disease years before antibodies or clinical symptoms ensue.
Collapse
Affiliation(s)
- R Auricchio
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Napoli, Italy
| | - M Galatola
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Napoli, Italy
| | - D Cielo
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Napoli, Italy
| | - A Amoresano
- Department of Chemical Sciences, University of Naples "Federico II", Napoli, Italy
| | - M Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Napoli, Italy.,CEINGE, Biotecnonologie Avanzate s.c.ar.l., Napoli, Italy
| | - E De Vita
- Department of Chemical Sciences, University of Naples "Federico II", Napoli, Italy
| | - A Illiano
- Department of Chemical Sciences, University of Naples "Federico II", Napoli, Italy
| | - R Troncone
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Napoli, Italy
| | - L Greco
- Department of Translational Medical Sciences, University of Naples "Federico II", Napoli, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Napoli, Italy
| | - M Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Napoli, Italy. .,CEINGE, Biotecnonologie Avanzate s.c.ar.l., Napoli, Italy.
| |
Collapse
|
16
|
Labruna G, Nanayakkara M, Pagliuca C, Nunziato M, Iaffaldano L, D'Argenio V, Colicchio R, Budelli AL, Nigro R, Salvatore P, Barone MV, Sacchetti L. Celiac disease-associated Neisseria flavescens decreases mitochondrial respiration in CaCo-2 epithelial cells: Impact of Lactobacillus paracasei CBA L74 on bacterial-induced cellular imbalance. Cell Microbiol 2019; 21:e13035. [PMID: 31042331 PMCID: PMC6618323 DOI: 10.1111/cmi.13035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
We previously identified a Neisseria flavescens strain in the duodenum of celiac disease (CD) patients that induced immune inflammation in ex vivo duodenal mucosal explants and in CaCo‐2 cells. We also found that vesicular trafficking was delayed after the CD‐immunogenic P31‐43 gliadin peptide‐entered CaCo‐2 cells and that Lactobacillus paracasei CBA L74 (L. paracasei‐CBA) supernatant reduced peptide entry. In this study, we evaluated if metabolism and trafficking was altered in CD‐N. flavescens‐infected CaCo‐2 cells and if any alteration could be mitigated by pretreating cells with L. paracasei‐CBA supernatant, despite the presence of P31‐43. We measured CaCo‐2 bioenergetics by an extracellular flux analyser, N. flavescens and P31‐43 intracellular trafficking by immunofluorescence, cellular stress by TBARS assay, and ATP by bioluminescence. We found that CD‐N. flavescens colocalised more than control N. flavescens with early endocytic vesicles and more escaped autophagy thereby surviving longer in infected cells. P31‐43 increased colocalisation of N. flavescens with early vesicles. Mitochondrial respiration was lower (P < .05) in CD‐N. flavescens‐infected cells versus not‐treated CaCo‐2 cells, whereas pretreatment with L. paracasei‐CBA reduced CD‐N. flavescens viability and improved cell bioenergetics and trafficking. In conclusion, CD‐N. flavescens induces metabolic imbalance in CaCo‐2 cells, and the L. paracasei‐CBA probiotic could be used to correct CD‐associated dysbiosis.
Collapse
Affiliation(s)
- Giuseppe Labruna
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) SDN, Naples, Italy
| | - Merlin Nanayakkara
- Dipartimento di Scienze Mediche Traslazionali and European Laboratory for the Investigation of Food Induced Disease (ELFID), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Chiara Pagliuca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Nunziato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | | | - Valeria D'Argenio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | - Roberta Colicchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Roberto Nigro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Naples, Italy
| | - Paola Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Dipartimento di Scienze Mediche Traslazionali and European Laboratory for the Investigation of Food Induced Disease (ELFID), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| |
Collapse
|
17
|
Lania G, Nanayakkara M, Maglio M, Auricchio R, Porpora M, Conte M, De Matteis MA, Rizzo R, Luini A, Discepolo V, Troncone R, Auricchio S, Barone MV. Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Commun Biol 2019; 2:190. [PMID: 31123714 PMCID: PMC6527696 DOI: 10.1038/s42003-019-0443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g., A-gliadin P57-68) induce an adaptive Th1 pro-inflammatory response. Other gliadin peptides (e.g., A-gliadin P31-43) induce a stress/innate immune response involving interleukin 15 (IL15) and interferon α (IFN-α). In the present study, we describe a stressed/inflamed celiac cellular phenotype in enterocytes and fibroblasts probably due to an alteration in the early-recycling endosomal system. Celiac cells are more sensitive to the gliadin peptide P31-43 and IL15 than controls. This phenotype is reproduced in control cells by inducing a delay in early vesicular trafficking. This constitutive lesion might mediate the stress/innate immune response to gliadin, which can be one of the triggers of the gliadin-specific T-cell response.
Collapse
Affiliation(s)
- Giuliana Lania
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Antonietta De Matteis
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
18
|
Rachmiel M, Ben-Yehudah G, Shirin H, Broide E. Simultaneous analyses of carbohydrate-mediated serum GLP-1 and GLP-2 and duodenal receptor expression in children with and without celiac disease. Therap Adv Gastroenterol 2019; 12:1756284819842756. [PMID: 31037120 PMCID: PMC6475832 DOI: 10.1177/1756284819842756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/26/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Variability in glucagon-like peptide (GLP)-1 and GLP-2 plasma concentrations has been suggested in Celiac disease (CD), with inconclusive results. We assessed the association between serum levels of GLP-1 and GLP-2 and their duodenal receptor expression in children with and without CD. METHODS This was a two-part, cross-sectional and prospective cohort study. Group assignment, performed after duodenal samples for mRNA expression of GLP-1 receptor (GLP1R) and GLP-2 receptor (GLP2R), were taken during esophagogastroduodenoscopy. The control group consisted of patients with normal endoscopy and negative serology. The CD group consisted of patients with positive serology and endoscopy suggestive of CD. All had an oral glucose-tolerance test (OGTT). CD patients underwent a second OGTT after 6 months of a gluten-free diet (GFD). RESULTS The CD group included 12 patients; 7 males with mean age 9.2 ± 2.5 years. The control group included 10 patients; 5 males with mean age 12 ± 4 years, (p = 0.14). No differences were detected in basal or peak levels of GLP-1 or GLP-2 between control, naïve CD (before GFD) and treated CD (after GFD) groups. Expression of GLP1R and GLP2R mRNA was similar. Significant positive correlations between glucose and C-peptide secretion (r = 0.9, p < 0.01) and GLP-1 and GLP-2 (r = 0.8, p = 0.01) were detected in the control group. Significant negative correlations were found in the naïve CD group between GLP2R expression and glucose secretion (r = -0.68, p = 0.015) and GLP1R expression and serum GLP-1 (r = -0.7, p = 0.016). CONCLUSIONS Although no significant differences were detected in secretion patterns or gut receptor expression of GLP-1 and GLP-2 in healthy versus CD pediatric patients, the detected discrepancy between the ligand levels and their tissue receptors requires additional study.
Collapse
Affiliation(s)
| | | | - Haim Shirin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Gastroenterology Unit, Assaf Harofeh Medical Center, Israel
| | - Efrat Broide
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Gastroenterology Unit, Assaf Harofeh Medical Center, Israel
| |
Collapse
|
19
|
Manai F, Azzalin A, Morandi M, Riccardi V, Zanoletti L, Dei Giudici M, Gabriele F, Martinelli C, Bozzola M, Comincini S. Trehalose Modulates Autophagy Process to Counteract Gliadin Cytotoxicity in an In Vitro Celiac Disease Model. Cells 2019; 8:cells8040348. [PMID: 31013754 PMCID: PMC6523171 DOI: 10.3390/cells8040348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a chronic systemic autoimmune disorder that is triggered by the ingestion of gliadin peptides, the alcohol-soluble fraction of wheat gluten. These peptides, which play a key role in the immune response that underlies CD, spontaneously form aggregates and exert a direct toxic action on cells due to the increase in the reactive oxygen species (ROS) levels. Furthermore, peptic-tryptic digested gliadin peptides (PT-gliadin) lead to an impairment in the autophagy pathway in an in vitro model based on Caco-2 cells. Considering these premises, in this study we have analyzed different mTOR-independent inducers, reporting that the disaccharide trehalose, a mTOR-independent autophagy activator, rescued the autophagy flux in Caco-2 cells treated with digested gliadin, as well as improved cell viability. Moreover, trehalose administration to Caco-2 cells in presence of digested gliadin reduced the intracellular levels of these toxic peptides. Altogether, these results showed the beneficial effects of trehalose in a CD in vitro model as well as underlining autophagy as a molecular pathway whose modulation might be promising in counteracting PT-gliadin cytotoxicity.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Martina Morandi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Veronica Riccardi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Lisa Zanoletti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Marco Dei Giudici
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Carolina Martinelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Mauro Bozzola
- Pediatrics and Adolescentology Units, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy.
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
20
|
Gallo M, Nigro F, Passannanti F, Nanayakkara M, Lania G, Parisi F, Salameh D, Budelli A, Barone MV, Nigro R. Effect of pH control during rice fermentation in preventing a gliadin P31-43 entrance in epithelial cells. Int J Food Sci Nutr 2019; 70:950-958. [PMID: 30969137 DOI: 10.1080/09637486.2019.1599827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease is an increasingly recognised pathology, induced by the ingestion of gluten in genetically predisposed patients. Undigested gliadin peptide can induce adaptive and innate immune response that unleash the typical intestinal mucosal alterations. A growing attention is paid to alternative therapeutic approaches to the gluten-free diet: one of these approaches is the use of probiotics and/or postbiotics. We performed lactic fermentation of rice flour with and without pH control, using Lactobacillus paracasei CBA L74 as fermenting strain. We evaluated bacterial growth, lactic acid production during fermentation and gliadin peptide P31-43 entrance in CaCo-2 cells with and without pH control. When pH control was applied no differences were observed in terms of bacterial growth; on the contrary, lactic acid production was greater, as expected. Both samples could inhibit the P31-43 entrance in CaCo-2 cells but the effect was significantly greater for samples obtained when the pH control was applied.
Collapse
Affiliation(s)
- Marianna Gallo
- DICMAPI, University of Naples Federico II , Naples , Italy.,Engineering Department, University of Rome Niccolò Cusano , Rome , Italy
| | - Federica Nigro
- Engineering Department, University of Rome Niccolò Cusano , Rome , Italy
| | | | - Merlin Nanayakkara
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | - Giuliana Lania
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | | | - Dana Salameh
- DICMAPI, University of Naples Federico II , Naples , Italy
| | | | - Maria Vittoria Barone
- Department of Translational Medical Science, DISMET, University of Naples Federico II , Naples , Italy.,European Laboratory for the Investigation of Food Induced Disease (ELFID) , Naples , Italy
| | - Roberto Nigro
- DICMAPI, University of Naples Federico II , Naples , Italy
| |
Collapse
|
21
|
Calvanese L, Nanayakkara M, Aitoro R, Sanseverino M, Tornesello AL, Falcigno L, D'Auria G, Barone MV. Structural insights on P31‐43, a gliadin peptide able to promote an innate but not an adaptive response in celiac disease. J Pept Sci 2019; 25:e3161. [DOI: 10.1002/psc.3161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Merlin Nanayakkara
- Department of Translational Medical Science (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Diseases)University Federico II 80131 Naples Italy
| | - Rosita Aitoro
- Department of Translational Medical Science (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Diseases)University Federico II 80131 Naples Italy
| | | | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology UnitIstituto Nazionale Tumori “Fondazione G. Pascale”—IRCCS Naples Italy
| | - Lucia Falcigno
- CIRPeBUniversity of Naples Federico II 80134 Naples Italy
- Department of PharmacyUniversity of Naples Federico II 80134 Naples Italy
| | - Gabriella D'Auria
- CIRPeBUniversity of Naples Federico II 80134 Naples Italy
- Department of PharmacyUniversity of Naples Federico II 80134 Naples Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Diseases)University Federico II 80131 Naples Italy
| |
Collapse
|
22
|
Gómez Castro MF, Miculán E, Herrera MG, Ruera C, Perez F, Prieto ED, Barrera E, Pantano S, Carasi P, Chirdo FG. p31-43 Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- Dependent Mucosal Damage in Small Intestine. Front Immunol 2019; 10:31. [PMID: 30761127 PMCID: PMC6363691 DOI: 10.3389/fimmu.2019.00031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Celiac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity. The receptors and mechanisms responsible for the induction of innate immunity by p31-43 are unknown and here we present evidence that this may reflect conformational changes in the peptide that allow it to activate the NLRP3 inflammasome. Administration of p31-43, but not scrambled or inverted peptides, to normal mice induced enteropathy in the proximal small intestine, associated with increased production of type I interferon and mature IL-1β. P31-43 showed a sequence-specific spontaneous ability to form structured oligomers and aggregates in vitro and induced activation of the ASC speck complex. In parallel, the enteropathy induced by p31-43 in vivo did not occur in the absence of NLRP3 or caspase 1 and was inhibited by administration of the caspase 1 inhibitor Ac-YVAD-cmk. Collectively, these findings show that p31-43 gliadin has an intrinsic propensity to form oligomers which trigger the NLRP3 inflammasome and that this pathway is required for intestinal inflammation and pathology when p31-43 is administered orally to mice. This innate activation of the inflammasome may have important implications in the initial stages of CD pathogenesis.
Collapse
Affiliation(s)
- María Florencia Gómez Castro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Emanuel Miculán
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - María Georgina Herrera
- Instituto de Fisicoquímica y Químicas Biológicas, Dr. Alejandro Paladini (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Ruera
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Eduardo Daniel Prieto
- Laboratorio de Nanoscopía y Fisicoquímica de Superficies (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Exequiel Barrera
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Carasi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
23
|
Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, Spinella MC, Oikonomou V, Renga G, Tosco A, Rossin F, Guido S, Silano M, Garaci E, Chao YK, Grimm C, Luciani A, Romani L, Piacentini M, Raia V, Kroemer G, Maiuri L. A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J 2018; 38:embj.2018100101. [PMID: 30498130 PMCID: PMC6331719 DOI: 10.15252/embj.2018100101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8‐restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the α‐gliadin‐derived LGQQQPFPPQQPY peptide (P31–43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell‐autonomous or environmental stress. P31–43 binds to, and reduces ATPase activity of, the nucleotide‐binding domain‐1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF‐κB nuclear translocation and IL‐15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX‐770 attenuates gliadin‐induced inflammation and promotes a tolerogenic response in gluten‐sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease.
Collapse
Affiliation(s)
- Valeria R Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Speranza Esposito
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Romina Monzani
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Mara C Spinella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonella Tosco
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, Federico II University Naples, Naples, Italy
| | - Marco Silano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enrico Garaci
- University San Raffaele and 21 IRCCS San Raffaele, Rome, Italy
| | - Yu-Kai Chao
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, Germany
| | | | - Luigina Romani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe11 labellisée Ligue Nationale Contrele Cancer, Paris, France .,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy .,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
24
|
Nanayakkara M, Lania G, Maglio M, Auricchio R, De Musis C, Discepolo V, Miele E, Jabri B, Troncone R, Auricchio S, Barone MV. P31-43, an undigested gliadin peptide, mimics and enhances the innate immune response to viruses and interferes with endocytic trafficking: a role in celiac disease. Sci Rep 2018; 8:10821. [PMID: 30018339 PMCID: PMC6050301 DOI: 10.1038/s41598-018-28830-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides are resistant to intestinal digestion (e.g., A-gliadin P31–43) and induce a stress/innate immune response, but the reason why they are dangerous in the intestines of patients with CD is unknown. In the present study, P31–43 activated IFN-α, a mediator of the innate immune response in CD, in the intestine of subjects with CD and an enterocyte cell line, CaCo-2. P31–43 cooperated with a viral ligand to activate the TLR7 pathway by interfering with endocytic trafficking. Based on these results, the vesicular pathway regulates the innate/inflammatory response to viral ligands and bioactive dietary peptides. Suggesting that together with viral infections, alimentary proteins able to mimic and potentiate the innate immune response to viruses, can trigger an autoimmune disease such as CD.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Giuliana Lania
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Cristiana De Musis
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Erasmo Miele
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois, 60637, USA
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Paediatrics) and ELFID (European Laboratory for the Investigation of Food-Induced Disease), University of Naples, Federico II, Naples, 80131, Italy.
| |
Collapse
|
25
|
Abstract
Gluten‐related disorders are a complex group of diseases that involve the activation of the immune system triggered by the ingestion of gluten. Among these, celiac disease, with a prevalence of 1 %, is the most investigated, but recently, a new pathology, named nonceliac gluten sensitivity, was reported with a general prevalence of 7 %. Finally, there other less‐prevalent gluten‐related diseases such as wheat allergy, gluten ataxia, and dermatitis herpetiformis (with an overall prevalence of less than 0.1 %). As mentioned, the common molecular trigger is gluten, a complex mixture of storage proteins present in wheat, barley, and a variety of oats that are not fully degraded by humans. The most‐studied protein related to disease is gliadin, present in wheat, which possesses in its sequence many pathological fragments. Despite a lot of effort to treat these disorders, the only effective method is a long‐life gluten‐free diet. This Review summarizes the actual knowledge of gluten‐related disorders from a translational chemistry point of view. We discuss what is currently known from the literature about the interaction of gluten with the gut and the critical host responses it evokes and, finally, connect them to our current and novel molecular understanding of the supramolecular organization of gliadin and the 33‐mer gliadin peptide fragment under physiological conditions.
Collapse
Affiliation(s)
- Karen M Lammers
- Laboratory Immunogenetics, Department of Medical Microbiology and Infection Control VU University Medical Center 1081 Amsterdam Netherlands
| | - Maria G Herrera
- Faculty of Pharmacy and Biochemistry Institute of biological chemistry and Physicochemical CONICET-University of Buenos Aires Junín 956 C1113AAD Buenos Aires Argentina
| | - Veronica I Dodero
- Department of Chemistry, Organic Chemistry III Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
26
|
Paolella G, Lepretti M, Martucciello S, Nanayakkara M, Auricchio S, Esposito C, Barone MV, Caputo I. The toxic alpha-gliadin peptide 31-43 enters cells without a surface membrane receptor. Cell Biol Int 2017; 42:112-120. [PMID: 28914468 DOI: 10.1002/cbin.10874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022]
Abstract
Alpha-gliadin peptide 31-43 is considered to be the main peptide responsible for the innate immune response in celiac disease patients. Recent evidence indicates that peptide 31-43 rapidly enters cells and interacts with the early endocytic vesicular compartment. However, the mechanism of its uptake is not completely understood. Our aim is to characterize, isolate and identify possible cell surface proteins involved in peptide 31-43 internalization by Caco-2 cells. In this study, we used a chemical cross-linker to block peptide 31-43 on cell surface proteins, and pulled-down peptide-proteins complexes using antibodies raised against peptide 31-43. Through this experimental approach, we did not observe any specific complex between cell proteins and peptide 31-43 in Coomassie-stained denaturating gels or by Western blotting. We also found that type 2 transglutaminase was not necessary for peptide 31-43 internalization, even though it had a regulatory role in the process. Finally, we demonstrated that peptide 31-43 did not behave as a classical ligand, indeed the labeled peptide did not displace the unlabeled peptide in a competitive binding assay. On the basis of these findings and of previous evidence demonstrating that peptide 31-43 is able to interact with a membrane-like environment in vitro, we conclude that membrane composition and organization, rather than a specific receptor protein, may have a major role in peptide 31-43 internalization by cells.
Collapse
Affiliation(s)
| | | | | | - Merlin Nanayakkara
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples & University of Salerno, Fisciano, Italy.,Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples & University of Salerno, Fisciano, Italy.,Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Carla Esposito
- Chemistry and Biology, University of Salerno, Fisciano, Italy.,European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples & University of Salerno, Fisciano, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples & University of Salerno, Fisciano, Italy.,Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Ivana Caputo
- Chemistry and Biology, University of Salerno, Fisciano, Italy.,European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Naples & University of Salerno, Fisciano, Italy
| |
Collapse
|
27
|
Neuman T, David K, Cooper D, Strair R. The enteric toxicity of gluten enhances graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Med Hypotheses 2017; 104:174-177. [PMID: 28673580 DOI: 10.1016/j.mehy.2017.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory peptides present in wheat and related grains are associated with celiac disease and non-celiac gluten sensitivity. We hypothesize that these peptides induce enteric responses that may exacerbate the gastrointestinal manifestations of graft-versus-host disease after an allogeneic hematopoietic stem cell transplant. Therefore, we propose that a gluten free diet should be tested as a prophylactic and/or therapeutic intervention against gastrointestinal graft-versus-host disease for patients undergoing an allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Taylor Neuman
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Kevin David
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Dennis Cooper
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States
| | - Roger Strair
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, United States.
| |
Collapse
|
28
|
Frossi B, Tripodo C, Guarnotta C, Carroccio A, De Carli M, De Carli S, Marino M, Calabrò A, Pucillo CE. Mast cells are associated with the onset and progression of celiac disease. J Allergy Clin Immunol 2017; 139:1266-1274.e1. [DOI: 10.1016/j.jaci.2016.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
|
29
|
Agarwal S, Kovilam O, Zach TL, Agrawal DK. Immunopathogenesis and therapeutic approaches in pediatric celiac disease. Expert Rev Clin Immunol 2016; 12:857-69. [PMID: 26999328 PMCID: PMC4975578 DOI: 10.1586/1744666x.2016.1168294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
Celiac Disease is an autoimmune enteropathy with increasing incidence worldwide in both adults and children. It occurs as an inflammatory condition with destruction of the normal architecture of villi on consumption of gluten and related protein products found in wheat, barley and rye. However, the exact pathogenesis is not yet fully understood. A gluten-free diet remains the main modality of therapy to date. While some patients continue to have symptoms even on a gluten-free diet, adherence to this diet is also difficult, especially for the children. Hence, there is continued interest in novel methods of therapy and the current research focus is on the promising novel non-dietary modalities of treatment. Here, we critically reviewed the existing literature regarding the pathogenesis of celiac disease in children including the role of in-utero exposure leading to neonatal and infant sensitization and its application for the development of new therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Shreya Agarwal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Oormila Kovilam
- Department of Obstetrics and Gynecology, Creighton University School of Medicine, Omaha, NE, USA
| | - Terence L. Zach
- Department of Pediatrics, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
30
|
Endocytosis in enterocytes. Wien Med Wochenschr 2016; 166:205-10. [DOI: 10.1007/s10354-016-0448-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
31
|
Barone MV, Zimmer KP. Endocytosis and transcytosis of gliadin peptides. Mol Cell Pediatr 2016; 3:8. [PMID: 26883352 PMCID: PMC4755952 DOI: 10.1186/s40348-015-0029-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
Background Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Some gliadin peptides are not digested by intestinal proteases and can have different biological effects. Gliadin peptides can induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptides 31–43 and 31–55) is the cytokine interleukin-15 (IL-15). Other peptides such as the 33 mer containing the P57–68 sequence, after tissue transglutaminase deamidation, are well presented to T cell in the intestine and can induce an adaptive immune response. Findings In this paper, we review the recent studies on the digestion of gliadin and the peptides released by the digestion process. We will also discuss the mechanisms responsible for the internalization and transcytosis of indigested gliadin peptides in the intestinal epithelium. Conclusions Gliadin is not completely digested by the intestinal proteases producing bioactive peptides that have different biological effects. These peptides are internalized in the cells by an active process of endocytosis and can traverse the intestinal mucosa with different kinetics and immunological effects. In vivo findings will also be discussed.
Collapse
Affiliation(s)
- M Vittoria Barone
- Department of Translational Medical Science, University of Naples, Federico II, Via S. Pansini 5, 80131, Naples, Italy. .,ELFID (European Laboratory For the Investigation of Food Induced Disease), University of Naples, Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| | - K Peter Zimmer
- Children's Hospital, Justus Liebig University, Feulgenstr. 12, 35392, Gießen, Germany
| |
Collapse
|
32
|
Gujral N, Suh JW, Sunwoo HH. Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin. BMC Immunol 2015; 16:41. [PMID: 26156219 PMCID: PMC4495697 DOI: 10.1186/s12865-015-0104-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pepsin-trypsin resistant gliadin (PT-gliadin) promotes intestinal tissue inflammation and increases paracellular permeability of immunogenic gliadin peptides into the lamina propria. This leads to the complications seen in the pathogenesis of celiac disease (CD). In this study, specific anti-gliadin IgY antibody was produced and evaluated for its efficacy on gliadin induced intestinal integrity impairment and proinflammatory effects on intestinal epithelial (Caco-2) cell culture model for CD. METHODS Caco-2 (passages 20-24) monolayers were subjected to 7 experimental conditions (n=3 each): phosphate buffered saline (PBS; control), pancreatic digested-casein (PD-casein; negative control), PT-gliadin (positive control), non-specific IgY with PT-gliadin, and anti-wheat gliadin IgY with PT-gliadin at a ratio of 1:6,000, 1:3,000 and 1:1,500. Caco-2 monolayers were then evaluated for effects of gliadin and/or anti-wheat gliadin IgY after 24 h exposure. Enzyme-linked immunosorbent assay (ELISA) was used to quantify anti-inflammatory markers (TNF-α and IL-1β) 5 days after cells were exposed to PT-gliadin and/or anti-wheat gliadin IgY. RESULTS Among other conditions, anti-wheat gliadin IgY at a ratio of 1:3,000 (anti-gliadin IgY: PT-gliadin) significantly prevented gliadin toxicity on Caco-2 by maintaining intestinal integrity, inhibiting phenol red permeation, and inhibiting gliadin absorption and production of proinflammatory cytokines (TNF-α and IL-1β) as compared to PT-gliadin stimulated cultures (P < 0.05). CONCLUSION The anti-wheat gliadin IgY antibody produced in this study has proved to inhibit absorption of gliadin and gliadin-induced inflammatory response in Caco2 cell culture model of CD. Anti-gliadin IgY, therefore has potential to be used as an oral passive antibody therapy to treat CD.
Collapse
Affiliation(s)
- Naiyana Gujral
- 3142G Katz Group Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361 - 87 Ave, Edmonton, AB, T6G 2E1, Canada.
| | - Ju Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 449-728, Korea.
| | - Hoon H Sunwoo
- 3142G Katz Group Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361 - 87 Ave, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
33
|
Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP. Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS One 2014; 9:e113932. [PMID: 25415429 PMCID: PMC4240668 DOI: 10.1371/journal.pone.0113932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022] Open
Abstract
Scope Celiac disease is an autoimmune disorder caused by failure of oral tolerance against gluten in genetically predisposed individuals. The epithelial translocation of gluten-derived gliadin peptides is an important pathogenetic step; the underlying mechanisms, however, are poorly understood. Thus, we investigated the degradation and epithelial translocation of two different gliadin peptides, the toxic P31–43 and the immunogenic P56–68. As the size, and hence, the molecular weight of peptides might have an effect on the transport efficiency we chose two peptides of the same, rather short chain length. Methods and Results Fluorescence labeled P31–43 and P56–68 were synthesized and studied in a transwell system with human enterocytes. Fluorometric measurements were done to reveal antigen translocation and flow cytometry as well as confocal microscopy were used to investigate cellular uptake of peptides. Structural changes of these peptides were analysed by MALDI-TOF-MS. According to fluorescence intensities, significantly more P31–43 compared to P56–68 was transported through the enterocyte layer after 24 h incubation. In contrast to previous reports, however, mass spectrometric data do not only show a time-dependent cleavage of the immunogenic P56–68, but we observed for the first time the degradation of the toxic peptide P31–43 at the apical side of epithelial cells. Conclusion Considering the degradation of gliadin peptides by enterocytes, measurement of fluorescence signals do not completely represent translocated intact gliadin peptides. From our experiments it is obvious that even short peptides can be digested prior to the translocation across the epithelial barrier. Thus, the chain length and the sensibility to degradations of gliadin peptides as well as the integrity of the epithelial barrier seem to be critical for the uptake of gliadin peptides and the subsequent inflammatory immune response.
Collapse
Affiliation(s)
- Christian Zimmermann
- Department of Pediatrics, Justus Liebig University Giessen, Feulgenstr. 12, D-35392, Giessen, Germany
- * E-mail:
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, Feulgenstr. 12, D-35392, Giessen, Germany
- Institute of Nutritional Science, Justus Liebig University Giessen, Wilhelmstr. 20, D-35392, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Medical Faculty, Justus Liebig University Giessen, Friedrichstr. 24, D-35392, Giessen, Germany
| | - Sevgi Arampatzi
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Wolfgang Maison
- Pharmaceutical and Medicinal Chemistry, Universität Hamburg, Bundesstr. 45, D-20146, Hamburg, Germany
| | - Klaus-Peter Zimmer
- Department of Pediatrics, Justus Liebig University Giessen, Feulgenstr. 12, D-35392, Giessen, Germany
| |
Collapse
|
34
|
Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014. [PMID: 25387079 DOI: 10.3390/ijms151120518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31-43, P31-43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31-43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31-43 in controls, mimicking the celiac cellular phenotype.
Collapse
|
35
|
Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014; 15:20518-37. [PMID: 25387079 PMCID: PMC4264181 DOI: 10.3390/ijms151120518] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
36
|
Sarno M, Lania G, Cuomo M, Nigro F, Passannanti F, Budelli A, Fasano F, Troncone R, Auricchio S, Barone MV, Nigro R, Nanayakkara M. Lactobacillus paracaseiCBA L74 interferes with gliadin peptides entrance in Caco-2 cells. Int J Food Sci Nutr 2014; 65:953-9. [DOI: 10.3109/09637486.2014.940283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 2013; 8:e79763. [PMID: 24278174 PMCID: PMC3838353 DOI: 10.1371/journal.pone.0079763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marco Sarno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marialaura Cuomo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
38
|
Celiac Disease Resolution After Allogeneic Bone Marrow Transplantation is Associated with Absence of Gliadin-Specific Memory Response by Donor-Derived Intestinal T-cells. J Clin Immunol 2013; 33:1395-402. [DOI: 10.1007/s10875-013-9943-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
39
|
Nanayakkara M, Lania G, Maglio M, Kosova R, Sarno M, Gaito A, Discepolo V, Troncone R, Auricchio S, Auricchio R, Barone MV. Enterocyte proliferation and signaling are constitutively altered in celiac disease. PLoS One 2013; 8:e76006. [PMID: 24204586 PMCID: PMC3799793 DOI: 10.1371/journal.pone.0076006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/16/2013] [Indexed: 01/22/2023] Open
Abstract
Celiac disease (CD) occurs frequently, and is caused by ingestion of prolamins from cereals in subjects with a genetic predisposition. The small intestinal damage depends on an intestinal stress/innate immune response to certain gliadin peptides (e.g., A-gliadin P31-43) in association with an adaptive immune response to other gliadin peptides (e.g., A-gliadin P57-68). Gliadin and peptide P31-43 affect epithelial growth factor receptor (EGFR) signaling and CD enterocyte proliferation. The reason why the stress/innate immune and proliferative responses to certain gliadin peptides are present in CD and not in control intestine is so far unknown. The aim of this work is to investigate if, in CD, a constitutive alteration of enterocyte proliferation and signaling exists that may represent a predisposing condition to the damaging effects of gliadin. Immunofluorescence and immunohistochemistry were used to study signaling in CD fibroblasts and intestinal biopsies. Western blot (WB) analysis, immunoprecipitation, and quantitative PCR were also used. We found in CD enterocytes enhancement of both proliferation and Epidermal Growth Factor Receptor (EGFR)/ligand system. In CD enterocytes and fibroblasts we found increase of the phosphorylated downstream signaling molecule Extracellular Signal Regulated Kinase (ERK); block of the ERK activation normalizes enterocytes proliferation in CD mucosa. In conclusion the same pathway, which gliadin and gliadin peptide P31-43 can interfere with, is constitutively altered in CD cells. This observation potentially explains the specificity of the damaging effects of certain gliadin peptides on CD intestine.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Mariantonia Maglio
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Marco Sarno
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Valentina Discepolo
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Riccardo Troncone
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Traslational Medicine (section of Pediatrics) and ELFID (European Laboratory for the Investigation of Food Induced Disease), University of Naples, Federico II, Naples, Italy
| |
Collapse
|
40
|
Nanayakkara M, Lania G, Maglio M, Discepolo V, Sarno M, Gaito A, Troncone R, Auricchio S, Auricchio R, Barone MV. An undigested gliadin peptide activates innate immunity and proliferative signaling in enterocytes: the role in celiac disease. Am J Clin Nutr 2013; 98:1123-35. [PMID: 23966426 DOI: 10.3945/ajcn.112.054544] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND On ingestion of gliadin, the major protein component of wheat and other cereals, the celiac intestine is characterized by the proliferation of crypt enterocytes with an inversion of the differentiation/proliferation program. Gliadins and A-gliadin peptide P31-43, in particular, act as growth factors for crypt enterocytes in patients with celiac disease (CD). The effects of gliadin on crypt enterocyte proliferation and activation of innate immunity are mediated by epidermal growth factors (EGFs) and innate immunity mediators [interleukin 15 (IL15)]. OBJECTIVE The aim of this study was to determine the molecular basis of proliferation and innate immune response to gliadin peptides in enterocytes. DESIGN The CaCo-2 cell line was used to study EGF-, IL15-, and P31-43-induced proliferation. Silencing messenger RNAs and blocking EGF receptor and IL15 antibodies have been used to study proliferation in CaCo-2 cells and intestinal biopsy samples from patients with CD and control subjects. RESULTS In the CaCo-2 cell model, IL15 and EGF cooperated to induce proliferation in intestinal epithelial cells at both the transcriptional and posttranscriptional levels, and the respective receptors interacted to activate each other's signaling. In addition, the effects of the P31-43 peptide on CaCo-2 cell proliferation and downstream signaling were mediated by cooperation between EGF and IL15. The increased crypt enterocyte proliferation in intestinal biopsy samples from patients with CD was reduced by EGF receptor and IL15 blocking antibodies only when used in combination. CONCLUSIONS EGF receptor/IL15R-α cooperation regulates intestinal epithelial cell proliferation induced by EGF, IL15, and the gliadin peptide P31-43. Increased proliferation of crypt enterocytes in the intestine of CD patients is mediated by EGF/IL15 cooperation.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Pediatrics and European Laboratory for the Investigation of Food Induced Disease, University of Naples, Federico II, Naples, Italy, and the Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: A comprehensive review. J Autoimmun 2013; 46:97-111. [DOI: 10.1016/j.jaut.2013.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
|
42
|
Parmar A, Greco D, Venäläinen J, Gentile M, Dukes E, Saavalainen P. Gene Expression Profiling of Gliadin Effects on Intestinal Epithelial Cells Suggests Novel Non-Enzymatic Functions of Pepsin and Trypsin. PLoS One 2013; 8:e66307. [PMID: 23824913 PMCID: PMC3688875 DOI: 10.1371/journal.pone.0066307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023] Open
Abstract
Gliadin triggers T-cell mediated immunity in celiac disease, and has cytotoxic effects on enterocytes mediated through obscure mechanisms. In addition, gliadin transport mechanisms, potential cell surface receptors and gliadin-activated downstream signaling pathways are not completely understood. In order to screen for novel downstream gliadin target genes we performed a systematic whole genome expression study on intestinal epithelial cells. Undifferentiated Caco-2 cells were exposed to pepsin- and trypsin- digested gliadin (PT-G), a blank pepsin-trypsin control (PT) and to a synthetic peptide corresponding to gliadin p31-43 peptide for six hours. RNA from four different experiments was used for hybridization on Agilent one color human whole genome DNA microarray chips. The microarray data were analyzed using the Bioconductor package LIMMA. Genes with nominal p<0.01 were considered statistically significant. Compared to the untreated cells 1705, 1755 and 211 probes were affected by PT-G, PT and p31-43 respectively. 46 probes were significantly different between PT and PT-G treated cells. Among the p31-43 peptide affected probes, 10 and 21 probes were affected by PT-G and PT respectively. Only PT-G affected genes could be validated by quantitative real-time polymerase chain reaction. All the genes were, nonetheless, also affected to a comparable level by PT treated negative controls. In conclusion, we could not replicate previously reported direct effects of gliadin peptides on enterocytes. The results rather suggest that certain epitopes derived from pepsin and trypsin may also affect epithelial cell gene transcription. Our study suggests novel non-enzymatic effects of pepsin and trypsin on cells and calls for proper controls in pepsin and trypsin digested gliadin experiments. It is conceivable that gliadin effects on enterocytes are secondary mediated through oxidative stress, NFkB activation and IL-15 up-regulation.
Collapse
Affiliation(s)
- Amarjit Parmar
- Research Programs Unit, Immunobiology, and Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jarkko Venäläinen
- Department of Pharmacology and Toxicology, University of Eastern Finland, Kuopio, Finland
| | | | - Emma Dukes
- Research Programs Unit, Immunobiology, and Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, and Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
43
|
The versatile role of gliadin peptides in celiac disease. Clin Biochem 2013; 46:552-60. [DOI: 10.1016/j.clinbiochem.2012.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/24/2022]
|
44
|
Iacomino G, Fierro O, D'Auria S, Picariello G, Ferranti P, Liguori C, Addeo F, Mamone G. Structural analysis and Caco-2 cell permeability of the celiac-toxic A-gliadin peptide 31-55. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1088-1096. [PMID: 23298305 DOI: 10.1021/jf3045523] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Celiac disease is a chronic enteropathy caused by the ingestion of wheat gliadin and other cereal prolamines. The synthetic peptides 31-43 (P31-43) and 31-49 (P31-49) from A-gliadin are considered to be model peptides for studying innate immunity in celiac disease. Our previous study demonstrated that P31-43 and P31-49 are encrypted within peptide 31-55 (P31-55), which is naturally released from gastropancreatic digestion and is not susceptible to hydrolysis by brush border membrane enzymes. Here, we analyzed the permeability of P31-55 through the epithelial cell layer of confluent Caco-2 cells using high-performance liquid chromatography, mass spectrometry, and fluorescence-activated cell sorting. Twenty-three percent of the P31-55 added to the apical chamber was transported to the basolateral chamber after 4 h of incubation without being degraded by hydrolysis. Treatment of Caco-2 cells with whole gliadin digests extracted from a common wheat cultivar increased the epithelial P31-55 translocation by approximately 35%. Moreover, we observed an atypical chromatographic profile consisting of a double peak. Chromatography using different column temperatures and circular dichroism highlighted the presence of more conformational structures around the amide bond of the two adjacent prolines 38 and 39. These findings confirm that P31-55 is gastrointestinally resistant and is permeable across a Caco-2 monolayer. Moreover, we hypothesize that the various conformations of P31-55 may play a role in the activation of innate immunity.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stoven S, Murray JA, Marietta EV. Latest in vitro and in vivo models of celiac disease. Expert Opin Drug Discov 2013; 8:445-57. [PMID: 23293929 DOI: 10.1517/17460441.2013.761203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Currently, the only treatment for celiac disease is a gluten-free diet, and there is an increased desire for alternative therapies. In vitro and in vivo models of celiac disease have been generated in order to better understand the pathogenesis of celiac disease, and this review will discuss these models as well as the testing of alternative therapies using these models. AREAS COVERED The research discussed describes the different in vitro and in vivo models of celiac disease that currently exist and how they have contributed to our understanding of how gluten can stimulate both innate and adaptive immune responses in celiac patients. We also provide a summary on the alternative therapies that have been tested with these models and discuss whether subsequent clinical trials were done based on these tests done with these models of celiac disease. EXPERT OPINION Only a few of the alternative therapies that have been tested with animal models have gone on to clinical trials; however, those that did go on to clinical trial have provided promising results from a safety standpoint. Further trials are required to determine if some of these therapies may serve as an effective adjunct to a gluten-free diet to alleviate the adverse affects associated with accidental gluten exposure. A "magic-bullet" approach may not be the answer to celiac disease, but possibly a future cocktail of these different therapeutics may allow celiac patients to consume an unrestricted diet.
Collapse
Affiliation(s)
- Samantha Stoven
- Mayo Clinic, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|
46
|
Caputo I, Secondo A, Lepretti M, Paolella G, Auricchio S, Barone MV, Esposito C. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells. PLoS One 2012; 7:e45209. [PMID: 23049776 PMCID: PMC3458012 DOI: 10.1371/journal.pone.0045209] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG) seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+) homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS We studied Ca(2+) homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+) from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+) from the endoplasmic reticulum (ER) and mitochondria, whereas peptide 57-68 mobilized Ca(2+) only from mitochondria. We also found that gliadin peptide-induced Ca(2+) mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS By inducing Ca(2+) mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.
Collapse
Affiliation(s)
- Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Intes L, Bahut M, Nicole P, Couvineau A, Guette C, Calenda A. Intestinal cell targeting of a stable recombinant Cu-Zn SOD from Cucumis melo fused to a gliadin peptide. J Biotechnol 2012; 159:99-107. [PMID: 22426094 DOI: 10.1016/j.jbiotec.2012.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/09/2012] [Accepted: 02/26/2012] [Indexed: 02/05/2023]
Abstract
The mRNA encoding full length chloroplastic Cu-Zn SOD (superoxide dismutase) of Cucumis melo (Cantaloupe melon) was cloned. This sequence was then used to generate a mature recombinant SOD by deleting the first 64 codons expected to encode a chloroplastic peptide signal. A second hybrid SOD was created by inserting ten codons to encode a gliadin peptide at the N-terminal end of the mature SOD. Taking account of codon bias, both recombinant proteins were successfully expressed and produced in Escherichia coli. Both recombinant SODs display an enzymatic activity of ~5000U mg(-1) and were shown to be stable for at least 4h at 37°C in biological fluids mimicking the conditions of intestinal transit. These recombinant proteins were capable in vitro, albeit at different levels, of reducing ROS-induced-apoptosis of human epithelial cells. They also stimulated production and release in a time-dependent manner of an autologous SOD activity from cells located into jejunum biopsies. Nevertheless, the fused gliadin peptide enable the recombinant Cu-Zn SOD to maintain a sufficiently sustained interaction with the intestinal cells membrane in vivo rather than being eliminated with the flow. According to these observations, the new hybrid Cu-Zn SOD should show promise in applications for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Laurent Intes
- ISOCELL Pharma-53bd du General Martial Valin, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Silano M, Vincentini O, Luciani A, Felli C, Caserta S, Esposito S, Villella VR, Pettoello-Mantovani M, Guido S, Maiuri L. Early tissue transglutaminase-mediated response underlies K562(S)-cell gliadin-dependent agglutination. Pediatr Res 2012; 71:532-8. [PMID: 22314661 DOI: 10.1038/pr.2012.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION [corrected] K562(S) agglutination has been used as a rapid and economic tool for the in vitro screening of the toxicity of cereal fractions and prolamins in celiac disease (CD). A strict correlation has been reported between the toxicity of cereals and cereal fractions for celiac patients and their ability to agglutinate K562(S) cells. Whether this specificity of K562(S)-cell agglutination is caused by the activation of the same pathogenic events triggered by toxic cereal fractions in CD intestine or simply represents a bystander event of gluten toxicity is, however, unknown. METHODS K562(S) cells were incubated in vitro with the peptic-tryptic digest of wheat gliadin. RESULTS The agglutination of K562(S) cells by wheat gliadin peptides is orchestrated by a cascade of very early events occurring at the K562(S)-cell surface similar to those occurring at the intestinal epithelial surface. They involve a rapid increase in intracellular calcium levels that activate tissue transglutaminase (TG2), leading to a rapid actin reorganization that is pivotal in driving cell agglutination. These specific effects of toxic cereals are phenocopied by the gliadin-derived peptide p31-43, which orchestrates the activation of innate response to gliadin in CD. DISCUSSION Our study provides the rationale for the extensive use of K562(S)-cell agglutination as a valuable tool for screening cereal toxicity.
Collapse
Affiliation(s)
- Marco Silano
- Unit of Human Nutrition and Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mena MC, Lombardía M, Hernando A, Méndez E, Albar JP. Comprehensive analysis of gluten in processed foods using a new extraction method and a competitive ELISA based on the R5 antibody. Talanta 2012; 91:33-40. [DOI: 10.1016/j.talanta.2011.12.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 12/16/2022]
|
50
|
Abstract
PURPOSE OF REVIEW This article critically summarizes the recent scientific and clinical advances in coeliac disease. RECENT FINDINGS Epidemiological studies have shown that coeliac disease is as common in parts of Asia, Africa and Eastern Europe as in the western world. Genome-wide association studies continue to identify genetic susceptibilities that are both unique to coeliac disease and overlap with other autoimmune diseases. Human leukocyte antigen genotyping offers additional sensitivity in detecting coeliac disease in individuals who have self-prescribed gluten-free diets (GFD) or have atypical presentations. Immunological advances have highlighted the potential proinflammatory pitfalls of vitamin A supplementation in active coeliac disease and have enabled identification of oat and barley subsets that may be safely incorporated into coeliac diets. Large population-based studies have expanded our knowledge of the long-term risks of coeliac disease, in addition to excluding infertility as a cause for concern once a GFD has been established. SUMMARY The long-term implications of active coeliac disease emphasize the need for early detection and strict adherence to GFD, which remains the cornerstone of management. Technological advances in food modulation and immuno-therapies offer promise, but remain in the translational phases of clinical trials at present.
Collapse
|