1
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Zhou W, Qu H, Fu XX, Xu MM, Li Q, Jiang Y, Han S. Neuroprotective effects of a novel peptide through the Rho-integrin-Tie2 and PI3K/Akt pathways in experimental autoimmune encephalomyelitis model. Front Pharmacol 2024; 15:1290128. [PMID: 38384299 PMCID: PMC10880193 DOI: 10.3389/fphar.2024.1290128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose: The interaction between inflammatory cells and integrin in the endothelium plays a key role during infiltration. Previous evidence has shown that synthetic C16 peptide selectively binds to integrins αvβ3 and α5β1 and exhibits a neuroprotective effect. It has also been reported to inhibit the differentiation of microglia into the M1 (pro-inflammatory) phenotype while promoting its differentiation to the M2 (anti-inflammatory) phenotype. This study aimed to investigate the mechanisms of action of the C16 peptide in multiple sclerosis using a rodent model. Methods: Molecular, morphological, and neurophysiological assays were used to investigate the neuroprotective effects of C16 peptide and related signaling pathways in a model of EAE. Results: The results showed that C16 significantly improved the clinical score and cortical somatosensory/motor evoked potential. It also alleviated inflammatory responses, including microglial activation and leukocyte infiltration, relieved the impairment of the brain blood barrier and edema, and reduced neuronal apoptosis, axonal loss, and demyelination induced by EAE. The C16 peptide increased the expressions of pTie-2 and Tie-2, integrin αvβ3, and α5β1 and activated the PI3K/Akt signal pathway but decreased the expression of Rho. Co-treatment of C16 with Tie-2 inhibitor and PI3K inhibitor LY294002 attenuated these effects of C16. Conclusion: The C16 peptide demonstrated neuroprotection in the EAE model through the integrin, Tie-2, and PI3K/Akt signaling pathways, and it could be a potential strategy for treating inflammation-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Han Qu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Fu
- Institute of Human Anatomy, Histology and Embryology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miao-Miao Xu
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Jiang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Vainchtein ID, Alsema AM, Dubbelaar ML, Grit C, Vinet J, van Weering HRJ, Al‐Izki S, Biagini G, Brouwer N, Amor S, Baker D, Eggen BJL, Boddeke EWGM, Kooistra SM. Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis. Glia 2023; 71:588-601. [PMID: 36377669 PMCID: PMC10100411 DOI: 10.1002/glia.24297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.
Collapse
Affiliation(s)
- Ilia D. Vainchtein
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Astrid M. Alsema
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Corien Grit
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jonathan Vinet
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Al‐Izki
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sandra Amor
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
- Department of PathologyVUMCAmsterdamThe Netherlands
| | - David Baker
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cellular and Molecular MedicineCenter for Healthy Ageing, University of CopenhagenCopenhagenDenmark
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
5
|
Zeinali H, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates cellular and molecular changes in multiple sclerosis in C57BL/6 mice. Mult Scler Relat Disord 2021; 55:103211. [PMID: 34425463 DOI: 10.1016/j.msard.2021.103211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is especially known as a demyelinating disease of the central nervous system. Current treatments for MS are mostly based on controlling neuroinflammation and there are no treatments to promote the remyelination process at present. Diosgenin is a known herbal anti-inflammatory and antioxidant agent, which has also been shown to stimulate the growth of myelin in vitro. However, there is no or little evidence about diosgenin effects; specially on myelination, neuroprotection and its corresponding mechanisms in vivo in experimental autoimmune encephalomyelitis (EAE) as the most valid experimental model of MS. In this study, the therapeutic effect of diosgenin on clinical signs of EAE, and the corresponding cellular and molecular mechanisms have been examined with emphasis on myelination and neuroprotection mechanisms. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) antigen in C57BL/6 mice. Diosgenin was gavaged (100 mg/kg) daily with the onset of paralysis signs (half tail paralysis) until the 18th post-immunization day in the treatment group. Blood and spinal cord tissue sampling was performed on post-immunization day 18. Lumbar spinal cord inflammation, demyelination, and axonal degeneration were assessed using Hematoxylin and Eosin (H & E), Luxol Fast Blue (LFB), and Bielschowsky's silver staining methods, respectively. Serum and spinal cord tissue level of tumor necrosis factor alpha (TNFα) and tissue levels of matrix metalloproteinase 9 (MMP-9) and interleukin 17 (IL-17) as inflammatory markers, microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A), and activity dependent neuroprotector homeobox (ADNP) as neuroprotective markers were assayed using enzyme linked immunosorbent assay (ELISA) method. The clinical score of EAE in the diosgenin treatment group was significantly reduced compared to the EAE group on days 15 to 18 after induction of the EAE (p < 0.001). Inflammation, demyelination and axonal loss scores also decreased significantly in the diosgenin treatment group compared to the EAE group (p < 0.05). Serum and spinal cord tissue level of TNFα and tissue level of MMP-9 considerably decreased in the diosgenin treatment group in comparison with the EAE group (p < 0.01). Diosgenin treatment had no significant effects on the tissue levels of IL-17, ADNP and MAP1LC3A. Therefore, diosgenin improved the clinical signs of EAE through lowering neuroinflammation, demyelination and axonal degeneration, but did not significantly affect the neuroprotective factors in this study. As a result, diosgenin could be a good candidate for new MS treatment strategies that, in addition to their anti-inflammatory effects, also enhance myelination.
Collapse
Affiliation(s)
- Hossein Zeinali
- Department of Physiology, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity. Toxins (Basel) 2021; 13:toxins13080565. [PMID: 34437436 PMCID: PMC8402560 DOI: 10.3390/toxins13080565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and resulting in the accumulation of cAMP. Apart from this classical model, PTx also activates some receptors and can affect various ADP ribosylation- and adenylate cyclase-independent signalling pathways. Due to its potent ADP-ribosylation properties, PTx has been used in many research areas. Initially the research primarily focussed on the in vivo effects of the toxin, including histamine sensitization, insulin secretion and leukocytosis. Nowadays, PTx is also used in toxicology research, cell signalling, research involving the blood–brain barrier, and testing of neutralizing antibodies. However, the most important area of use is testing of acellular pertussis vaccines for the presence of residual PTx. In vivo models and in vitro assays for PTx often reflect one of the toxin’s properties or details of its mechanism. Here, the established and novel in vivo and in vitro methods used to evaluate PTx are reviewed, their mechanisms, characteristics and limitations are described, and their application for regulatory and research purposes are considered.
Collapse
|
7
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Esmaeil-Jamaat E, Fahanik-Babaei J, Fakour M, Fereidouni F, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Sanaierad A, Zahedi E, Roghani M. Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. J Chem Neuroanat 2020; 111:101891. [PMID: 33217488 DOI: 10.1016/j.jchemneu.2020.101891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is presented as the most common autoimmune and demyelinating neurological disorder with incapacitating complications and with no definite therapy. Most treatments for MS mainly focus on attenuation of its severity and recurrence. To model MS reliably to study pathogenesis and efficacy of possible chemicals, experimental autoimmune encephalomyelitis (EAE) condition is induced in rodents. Ellagic acid is a neuroprotective polyphenol that can protect against demyelination. This study was planned and conducted to assess its possible beneficial effect in MOG-induced EAE model of MS with emphasis on uncovering its modes of action. Ellagic acid was given p.o. (at doses of 10 or 50 mg/kg/day) after development of clinical signs of MS to C57BL/6 mice immunized with MOG35-55. Results showed that ellagic acid can ameliorate severity of the disease and partially restore tissue level of TNFα, IL-6, IL-17A and IL-10. Besides, ellagic acid lowered tissue levels of NLRP3 and caspase 1 in addition to its mitigation of neuroinflammation, demyelination and axonal damage in spinal cord specimens of EAE group. As well, ellagic acid treatment prevented reduction of MBP and decreased GFAP and Iba1 immunoreactivity. Taken together, ellagic acid can decrease severity of EAE via amelioration of astrogliosis, astrocyte activation, demyelination, neuroinflammation and axonal damage that is partly related to its effects on NLRP3 inflammasome and pyroptotic pathway.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | | | - Javad Fahanik-Babaei
- School of Medicine, Iran University of Medical Sciences and Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Ashkan Sanaierad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
8
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Fakour M, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Tashakori-Miyanroudi M, Roghani M. Sinomenine Alleviates Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis through Inhibiting NLRP3 Inflammasome. J Mol Neurosci 2020; 71:215-224. [PMID: 32812186 DOI: 10.1007/s12031-020-01637-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is known as a chronic neuroinflammatory disorder typified by an immune-mediated demyelination process with ensuing axonal damage and loss. Sinomenine is a natural alkaloid with different therapeutic benefits, including anti-inflammatory and immunosuppressive activities. In this study, possible beneficial effects of sinomenine in an MOG-induced model of MS were determined. Sinomenine was given to MOG35-55-immunized C57BL/6 mice at doses of 25 or 100 mg/kg/day after onset of MS clinical signs till day 30 post-immunization. Analyzed data showed that sinomenine reduces severity of the clinical signs and to some extent decreases tissue level of pro-inflammatory cytokines IL-1β, IL-6, IL-18, TNFα, IL-17A, and increases level of anti-inflammatory IL-10. In addition, sinomenine successfully attenuated tissue levels of inflammasome NLRP3, ASC, and caspase 1 besides its reduction of intensity of neuroinflammation, demyelination, and axonal damage and loss in lumbar spinal cord specimens. Furthermore, immunoreactivity for MBP decreased and increased for GFAP and Iba1 after MOG-immunization, which was in part reversed upon sinomenine administration. Overall, sinomenine decreases EAE severity, which is attributed to its alleviation of microglial and astrocytic mobilization, demyelination, and axonal damage along with its suppression of neuroinflammation, and its beneficial effect is also associated with its inhibitory effects on inflammasome and pyroptotic pathways; this may be of potential benefit for the primary progressive phenotype of MS.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Body Weight
- Cytokines/analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammasomes/antagonists & inhibitors
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Morphinans/administration & dosage
- Morphinans/pharmacology
- Morphinans/therapeutic use
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Pyroptosis/drug effects
- Random Allocation
- Specific Pathogen-Free Organisms
- Spinal Cord/chemistry
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
9
|
Zhou F, Liu R, Han P, Zhang X, Li Z, Zhang S, Liu C, Xia Y, Tang Z. Pertussis Toxin Ameliorates Microglial Activation Associated With Ischemic Stroke. Front Cell Neurosci 2020; 14:152. [PMID: 32676009 PMCID: PMC7333375 DOI: 10.3389/fncel.2020.00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the effect and the underlying mechanism of Pertussis toxin (PTX) on microglia in the setting of cerebral ischemia. Methods: We tested the effect of PTX 400 ng/days on middle cerebral artery occlusion stroke model by evaluating the neurologic function, infarct size, microglial distribution, and activation. In parallel, we also tested the effect of PTX on primary cultured microglia by evaluating microglial proliferation, activation, cytokine release, and CX3CR1 expression. Results: PTX reduced the poststroke infarct size, improved the neurologic function as evaluated by Longa score, and reduced microglial aggregation and activation in the infarcted area. Further, PTX significantly decreased lipopolysaccharide-stimulated microglial proliferation, the release of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), and the expression of CX3CR1. Interpretation: PTX treatment in stroke reduced microglial accumulation and activation in the infarct zone, resulting in a better functional outcome. The benefits of PTX treatment may be attributed to the reduced production of proinflammatory cytokine such as IL-1β and TNF-α and reduced expression of chemokine CX3CR1.
Collapse
Affiliation(s)
- Feihui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pengcheng Han
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xingkui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Xia
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, Record MJ, Urban JH, Rosenkranz JA. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun 2020; 84:180-199. [PMID: 31785394 PMCID: PMC7010555 DOI: 10.1016/j.bbi.2019.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
A link exists between immune function and psychiatric conditions, particularly depressive and anxiety disorders. Psychological stress is a powerful trigger for these disorders and stress influences immune state. However, the nature of peripheral immune changes after stress conflicts across studies, perhaps due to the focus on few measures of pro-inflammatory or anti-inflammatory processes. The basolateral amygdala (BLA) is critical for emotion, and plays an important role in the effects of stress on anxiety. As such, it may be a primary central nervous system (CNS) mediator for the effects of peripheral immune changes on anxiety after stress. Therefore, this study aimed to delineate the influence of stress on peripheral pro-inflammatory and anti-inflammatory aspects, BLA immune activation, and its impact on BLA neuronal activity. To produce a more encompassing view of peripheral immune changes, this study used a less restrictive approach to categorize and group peripheral immune changes. We found that repeated social defeat stress in adult male Sprague-Dawley rats increased the frequencies of mature T-cells positive for intracellular type 2-like cytokine and serum pro-inflammatory cytokines. Principal component analysis and hierarchical clustering was used to guide grouping of T-cells and cytokines, producing unique profiles. Stress shifted the balance towards a specific set that included mostly type 2-like T-cells and pro-inflammatory cytokines. Within the CNS component, repeated stress caused an increase of activated microglia in the BLA, increased anxiety-like behaviors across several assays, and increased BLA neuronal firing in vivo that was prevented by blockade of microglia activation. Because repeated stress can trigger anxiety states by actions in the BLA, and altered immune function can trigger anxiety, these results suggest that repeated stress may trigger anxiety-like behaviors by inducing a pro-inflammatory state in the periphery and the BLA. These results begin to uncover how stress may recruit the immune system to alter the function of brain regions critical to emotion.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Maxine K. Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Nicole Ferrara
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - M. Regina DeJoseph
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alexandra Ritger
- Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Matthew J. Record
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Janice H. Urban
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Corresponding Author: J. Amiel Rosenkranz, Ph.D., Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA., Telephone: 847-578-8680; Fax: 847-578-3268,
| |
Collapse
|
11
|
Chen H, Fu X, Jiang J, Han S. C16 Peptide Promotes Vascular Growth and Reduces Inflammation in a Neuromyelitis Optica Model. Front Pharmacol 2019; 10:1373. [PMID: 31849648 PMCID: PMC6902286 DOI: 10.3389/fphar.2019.01373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
The goal of this study was to elucidate the mechanism of action of C16, a laminin-1 peptide that competes with αvβ3 for integrin binding, in treating neuromyelitis optica (NMO). A NMO rat model was established and specific inhibitors were used to investigate the effect of Tie2 kinase, integrin, and PI3K/Akt signaling pathways on C16 function in NMO using histological, immunohistochemical, immunofluorescence, Western blot, and ELISA assays. A total of 150 rats were divided into five groups: a control untreated group (n = 18) and four test groups (n = 33 per group) including vehicle-treated control, C16, Tie2 kinase inhibitor + C16, and PI3K/Akt inhibitor LY294002 + C16. We found that inhibiting Tie2 kinase resulted in partial loss of C16 peptide-mediated effects, while suppressing PI3K/Akt signaling reduced C16 peptide-mediated effects. In addition, activation of the αvβ3 integrin axis and Tie2 kinase promoted PI3K/Akt signaling. Our study showed that the Tie2-PI3K/Akt, Tie2 integrin, and integrin-PI3K/Akt signaling pathways regulate C16 peptide function in vascular growth and stabilization as well as inflammation in NMO.
Collapse
Affiliation(s)
- Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xiaoxiao Fu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Jinzhan Jiang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Huang Y, Hu S, Li Y, Xue D, Wu X. Dexmedetomidine, an Alpha 2a Adrenergic Receptor Agonist, Mitigates Experimental Autoimmune Encephalomyelitis by Desensitization of CXCR7 in Microglia. Biochemistry 2018; 57:4197-4205. [PMID: 29897736 DOI: 10.1021/acs.biochem.8b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Ruian, Zhejiang 325200, China
| | - Shite Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Ruian, Zhejiang 325200, China
| | - Yongliang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Ruian, Zhejiang 325200, China
| | - Dan Xue
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xiuguo Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Ruian, Zhejiang 325200, China
| |
Collapse
|
13
|
Tian KW, Zhang YY, Jiang H, Han S. Intravenous C16 and angiopoietin-1 improve the efficacy of placenta-derived mesenchymal stem cell therapy for EAE. Sci Rep 2018; 8:4649. [PMID: 29545630 PMCID: PMC5854598 DOI: 10.1038/s41598-018-22867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
The placenta has emerged as an attractive source of mesenchymal stem cells (MSCs) because of the absence of ethical issues, non-invasive access, and abundant yield. However, inflammatory cell invasion into grafts negatively impacts the survival and efficacy of transplanted cells. Previous studies have shown that synthetic C16 peptide can competitively block the transmigration of leukocytes into the central nerve system, while angiopoietin-1 (Ang-1) can inhibit inflammation-induced blood vessel leakage and inflammatory cell infiltration in rats with experimental allergic encephalomyelitis (EAE). In this study, we investigated the effects of intravenous administration of C16 and Ang-1 on the efficacy of placenta-derived MSC (PMSC) transplantation in a rat model of EAE. We found that, compared with PMSCs alone, treatment with PMSCs along with intravenously administered C16 and Ang-1 was more effective at ameliorating demyelination/neuronal loss and neurological dysfunction, reducing inflammatory cell infiltration, perivascular edema, and reactive astrogliosis (p < 0.05). Mechanistic studies revealed that intravenous C16 and Ang-1 increased PMSC engraftment in the central nervous system and promoted expression of the neurotropic proteins brain-derived neurotrophic factor, growth-associated protein 43, and p75 neurotrophin receptor as well as the neuronal-glial lineage markers neurofilament protein 200 and myelin basic protein in the engrafted PMSCs.
Collapse
Affiliation(s)
- Ke-Wei Tian
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Yuan-Yuan Zhang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Hong Jiang
- Department of Electrophysiology, SirRunRunShaw Hospital, Medical College, Zhejiang University, 310016, Hangzhou, Zhejiang Province, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
| |
Collapse
|
14
|
S-allyl cysteine improves clinical and neuropathological features of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed Pharmacother 2018; 97:557-563. [DOI: 10.1016/j.biopha.2017.10.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
|
15
|
Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep 2017; 7:41837. [PMID: 28186117 PMCID: PMC5301256 DOI: 10.1038/srep41837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022] Open
Abstract
Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy.
Collapse
|
16
|
Tian K, Zhang F, Jiang H, Wang B, Han S. Role of C16, angiopoietin-1 and regeneration gene protein 2 in attenuating inflammation in an experimental rat model of autoimmune encephalomyelitis. J Anat 2017; 230:30-46. [PMID: 27757964 PMCID: PMC5192791 DOI: 10.1111/joa.12541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disorder that affects the central nervous system (CNS), and results in CNS inflammation and damage to myelin. In this study, we examined the possible synergistic effects of C16, angiopoietin-1 (Ang-1) and regeneration gene protein 2 (Reg-2) in alleviating inflammation in an acute experimental autoimmune encephalomyelitis (EAE) model. We employed multiple histological, morphological and iconographic assays to examine the effect of those drugs on disease onset, clinical scores and behavioral deficits. Our results demonstrated that triple combination therapy was more efficient than the monotherapy in EAE treatment. The triple therapy significantly delayed the onset of motor symptoms, reduced disease severity, attenuated inflammatory cell infiltration and suppressed the secretion of proinflammatory cytokines. Additionally, treatment increased anti-inflammatory cytokines expression, inhibited reactive astrocytes proliferation, reduced demyelination and axonal loss, and finally reduced the neural death. Specifically, Reg-2 administration rescued oligodendrocytes and neuronal axons mainly by direct neurotrophic effects, while C16+Ang-1 (C+A) mainly improved the inflammatory milieu. In conclusion, our study suggests a possible synergistic effect through targeting a variety of pathways in relieving the clinical symptoms of inflammation in acute EAE model. Therefore, using molecules that target different molecular pathways can be beneficial for exploring novel therapeutic approaches for MS treatment.
Collapse
MESH Headings
- Angiopoietin-1/administration & dosage
- Animals
- Antigens, Neoplasm/administration & dosage
- Biomarkers, Tumor/administration & dosage
- Disease Models, Animal
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Inflammation/pathology
- Inflammation/prevention & control
- Lectins, C-Type/administration & dosage
- Male
- Pancreatitis-Associated Proteins
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Rats
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Ke‐Wei Tian
- Institute of Anatomy and Cell BiologyMedical CollegeZhejiang UniversityHangzhouChina
| | - Fan Zhang
- Institute of Anatomy and Cell BiologyMedical CollegeZhejiang UniversityHangzhouChina
| | - Hong Jiang
- Department of ElectrophysiologySir Run Run Shaw HospitalMedical CollegeZhejiang UniversityHangzhouChina
| | - Beibei Wang
- Core FacilitiesZhejiang University, School of MedicineHangzhouChina
| | - Shu Han
- Institute of Anatomy and Cell BiologyMedical CollegeZhejiang UniversityHangzhouChina
| |
Collapse
|
17
|
Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1 gfp/gfp mice. Amino Acids 2016; 49:643-658. [PMID: 27826792 PMCID: PMC5332504 DOI: 10.1007/s00726-016-2359-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Leukocyte infiltration into the central nervous system (CNS) is a key pathological feature in multiple sclerosis (MS) and the MS animal model experimental autoimmune encephalomyelitis (EAE). Recently, preventing leukocyte influx into the CNS of MS patients is the main target of MS therapies and insight into cell behaviour in the circulation is needed for further elucidation of such therapies. In this study, we aimed at in vivo visualization of monocytes in a time-dependent manner during EAE. Using intravital two-photon microscopy (IVM), we imaged CX3CR1gfp/gfp mice during EAE, visualizing CX3CR1-GFP+ monocytes and their dynamics in the spinal cord vasculature. Our observations showed that intraluminal crawling of CX3CR1-GFP+ monocytes increased even before the clinical onset of EAE due to immunization of the animals. Furthermore, intraluminal crawling remained elevated during ongoing clinical disease. Besides, the displacement of these cells was larger during the peak of EAE compared to the control animals. In addition, we showed that the enzyme tissue transglutaminase (TG2), which is present in CNS-infiltrated cells in MS patients, is likewise found in CX3CR1-GFP+ monocytes in the spinal cord lesions and at the luminal side of the vasculature during EAE. It might thereby contribute to adhesion and crawling of monocytes, facilitating extravasation into the CNS. Thus, we put forward that interference with monocyte adhesion, by e.g. inhibition of TG2, should be applied at a very early stage of EAE and possibly MS, to effectively combat subsequent pathology.
Collapse
|
18
|
Jiang H, Tian KW, Zhang F, Wang B, Han S. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis. Front Neuroanat 2016; 10:50. [PMID: 27242448 PMCID: PMC4860402 DOI: 10.3389/fnana.2016.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Hong Jiang
- Department of Electrophysiology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University Hangzhou, China
| | - Ke-Wei Tian
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| | - Fan Zhang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| | - Beibei Wang
- Core Facilities, Zhejiang University School of Medicine Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| |
Collapse
|
19
|
Bao J, Zhu J, Luo S, Cheng Y, Zhou S. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis. Biochem Biophys Res Commun 2016; 469:1-7. [DOI: 10.1016/j.bbrc.2015.11.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022]
|
20
|
Tang Z, Li S, Han P, Yin J, Gan Y, Liu Q, Wang J, Wang C, Li Y, Shi J. Pertussis toxin reduces calcium influx to protect ischemic stroke in a middle cerebral artery occlusion model. J Neurochem 2015; 135:998-1006. [PMID: 26365274 DOI: 10.1111/jnc.13359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiwei Tang
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Shiping Li
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
- Department of Neurology; No.2 Hospital of Hebei Medical University; Shijiazhuang China
| | - Pengcheng Han
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Junxiang Yin
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Yan Gan
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Qingwei Liu
- Department of Radiology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Jinkun Wang
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Chongqian Wang
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Yu Li
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Jiong Shi
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| |
Collapse
|
21
|
Kilic AK, Esendagli G, Sayat G, Talim B, Karabudak R, Kurne AT. Promotion of experimental autoimmune encephalomyelitis upon neutrophil granulocytes’ stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) peptide. Autoimmunity 2015; 48:423-8. [DOI: 10.3109/08916934.2015.1030615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Angiopoietin-1 ameliorates inflammation-induced vascular leakage and improves functional impairment in a rat model of acute experimental autoimmune encephalomyelitis. Exp Neurol 2014; 261:245-57. [DOI: 10.1016/j.expneurol.2014.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/08/2023]
|
23
|
Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 2014; 11:50. [PMID: 24645669 PMCID: PMC4000131 DOI: 10.1186/1742-2094-11-50] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.
Collapse
Affiliation(s)
| | | | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | |
Collapse
|
24
|
An ανβ3 Integrin-Binding Peptide Ameliorates Symptoms of Chronic Progressive Experimental Autoimmune Encephalomyelitis by Alleviating Neuroinflammatory Responses in Mice. J Neuroimmune Pharmacol 2014; 9:399-412. [DOI: 10.1007/s11481-014-9532-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/12/2014] [Indexed: 11/30/2022]
|
25
|
Renal biopsy: use of biomarkers as a tool for the diagnosis of focal segmental glomerulosclerosis. DISEASE MARKERS 2014; 2014:192836. [PMID: 24719498 PMCID: PMC3955602 DOI: 10.1155/2014/192836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a glomerulopathy associated with nephrotic syndrome and podocyte injury. FSGS occurs both in children and adults and it is considered the main idiopathic nephrotic syndrome nowadays. It is extremely difficult to establish a morphological diagnosis, since some biopsies lack a considerable quantifiable number of sclerotic glomeruli, given their focal aspect and the fact that FSGS occurs in less than half of the glomeruli. Therefore, many biological molecules have been evaluated as potential markers that would enhance the diagnosis of FSGS. Some of these molecules and receptors are associated with the pathogenesis of FSGS and have potential use in diagnosis.
Collapse
|
26
|
Yin JX, Tang Z, Gan Y, Li L, Shi F, Coons S, Shi J. Pertussis toxin modulates microglia and T cell profile to protect experimental autoimmune encephalomyelitis. Neuropharmacology 2014; 81:1-5. [PMID: 24486709 DOI: 10.1016/j.neuropharm.2014.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/10/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Pertussis toxin (PTx) has various effects in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). This study was designed to explore the protective effects of PTx of different doses and subunits. EAE model was induced with myelin oligodendrocyte glycoprotein (MOG35-55, 200 ug) plus complete Freund's adjuvant in 6-7 week-old female C57BL/6 mice. PTx reduced clinical deficits of EAE by 91.3%. This reduction in clinical deficits was achieved by attenuating demyelination by 75.5%. Furthermore, PTx reduced the lymphocyte infiltration, deactivated microglia activation and changed T cell profile by increasing T helper (type 1 and 2) and T regulatory cells.
Collapse
Affiliation(s)
- Jun-Xiang Yin
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Zhiwei Tang
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Yan Gan
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Lejun Li
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Fudong Shi
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Stephen Coons
- Department of Neuropathology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA
| | - Jiong Shi
- Department of Neurology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
27
|
Fang M, He D, Zhang F, Hu Z, Yang J, Jiang H, Han S. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model. Front Neuroanat 2013; 7:44. [PMID: 24416000 PMCID: PMC3874474 DOI: 10.3389/fnana.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
Experimentalallergic encephalomyelitis (EAE) is an animal model for inflammatory demyelinating autoimmune disease, i.e., multiple sclerosis (MS). In the present study, we investigated the antineuroinflammatory/neuroprotective effects of C16, an ανβ3 integrin-binding peptide, and recombinant rat ciliary neurotrophic factor (CNTF), a cytokine that was originally identified as a survival factor for neurons, in an acute rodent EAE model. In this model, C16 peptide was injected intravenously every day for 2 weeks, and CNTF was delivered into the cerebral ventricles with Alzet miniosmotic pumps. Disease severity was assessed weekly using a scale ranging from 0 to 5. Multiple histological and molecular biological assays were employed to assess inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and gliosis in the brain and spinal cord of different groups. Our results showed that the EAE induced rats revealed a significant increase in inflammatory cells infiltration, while C16 treatment could inhibit the infiltration of leukocytes and macrophages down to 2/3–1/3 of vehicle treated EAE control (P < 0.05). The delayed onset of disease, reduced clinical score (P < 0.01) in peak stage and more rapid recovery also were achieved in C16 treated group. Besides impairing inflammation, CNTF treatment also exerted direct neuroprotective effects, decreasing demyelination and axon loss score (P < 0.05 versus vehicle treated EAE control), and reducing the neuronal death from 40 to 50% to 10 to 20% (P < 0.05). Both treatments suppressed the expression of cytokine tumor necrosis factor-α and interferon-γ when compared with the vehicle control (P < 0.05). Combined treatment with C16 and CNTF produced more obvious functional recovery and neuroprotective effects than individually treatment (P < 0.05). These results suggested that combination treatment with C16 and CNTF, which target different neuroprotection pathways, may be an effective therapeutic alternative to traditional therapy.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Daqiang He
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Fan Zhang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gyneocology, Hangzhou Red Cross Hospital Hangzhou, China
| | - Jing Yang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Hong Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Shu Han
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| |
Collapse
|
28
|
Pertussis toxin attenuates experimental autoimmune encephalomyelitis by upregulating neuronal vascular endothelial growth factor. Neuroreport 2013; 24:469-75. [PMID: 23660634 DOI: 10.1097/wnr.0b013e3283619fc8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported earlier that pertussis toxin (PTx) attenuates the motor deficits in experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. PTx protects neurons from inflammatory insults. Vascular endothelial growth factor (VEGF) is also neuroprotective. However, the effect of PTx on VEGF has never been studied. We investigated whether PTx modulates neuronal VEGF expression and how it affects the pathogenesis of EAE. EAE was induced by injecting myelin oligodendrocyte glycoprotein 35-55 peptides with adjuvants into C57BL/6 mice. Clinical scores of EAE were evaluated daily for 19 days. Brain and spinal cord samples were collected and assessed for inflammation and demyelination. VEGF, NeuN for neurons, and Caspase-3 for apoptosis were stained for localization using immunohistochemistry techniques, followed by western blot analysis for quantification. Primary neurons were cultured to assess the direct effect of PTx on neuronal VEGF expression. PTx treatment increases neuronal VEGF expression by up to ∼75% in vitro and ∼60% in vivo, preventing neurons from apoptosis. This leads to resolution in inflammation and remyelination and amendment in motor deficits. Our findings suggest that upregulation of endogenous neuronal VEGF by PTx protects motor deficits in EAE and it is a potential therapeutic option for multiple sclerosis.
Collapse
|
29
|
Han S, Zhang F, Hu Z, Sun Y, Yang J, Davies H, Yew DTW, Fang M. Dose-dependent anti-inflammatory and neuroprotective effects of an ανβ3 integrin-binding peptide. Mediators Inflamm 2013; 2013:268486. [PMID: 24347822 PMCID: PMC3855988 DOI: 10.1155/2013/268486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that prevention of leukocyte infiltration by targeting integrins involved in transendothelial migration may suppress the clinical and pathological features of neuroinflammatory disease. This study was designed to investigate the effects of C16, an ανβ3 integrin-binding peptide, in an acute experimental allergic encephalomyelitis (EAE) rat model. Multiple histological and immunohistochemical staining, electron microscopy observation, ELISA assay, Western blot, and magnetic resonance imaging (MRI) were employed to assess the degree of inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and extent of gliosis in the brain and spinal cord of differently treated EAE models. The results showed that C16 treatment could inhibit extensive leukocyte and macrophage accumulation and infiltration and reduce cytokine tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) expression levels. A significantly lower clinical score at the peak time of disease was also demonstrated in the C16 treated group. Moreover, astrogliosis, demyelination, neuronal death, and axonal loss were all alleviated in C16 treated EAE animals, which may be attributed to the improvement of microenvironment. The data suggests that C16 peptide may act as a protective agent by attenuating inflammatory progression and thus affecting the expression of some proinflammatory cytokines during neuroinflammatory disease.
Collapse
Affiliation(s)
- Shu Han
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Zhang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, China
| | - Yayi Sun
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Henry Davies
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - David T. W. Yew
- Brain Research Center, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
30
|
Fang M, Sun Y, Hu Z, Yang J, Davies H, Wang B, Ling S, Han S. C16 peptide shown to prevent leukocyte infiltration and alleviate detrimental inflammation in acute allergic encephalomyelitis model. Neuropharmacology 2013; 70:83-99. [PMID: 23352465 DOI: 10.1016/j.neuropharm.2013.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/30/2012] [Accepted: 01/10/2013] [Indexed: 01/25/2023]
Abstract
Integrins are important adhesion receptors for leukocytes binding to endothelial cellular adhesion molecules. Previous studies have suggested that blocking relevant integrins might prevent leukocyte infiltration and suppress clinical and pathological features of neuroinflammatory disease. Experimental autoimmune encephalomyelitis (EAE), a rodent model of Multiple sclerosis (MS), is characterized by chronic inflammatory disorder of the central nervous system in which circulating leukocytes enter the brain and spinal cord leading to inflammation, myelin damage and subsequent paralysis. To prove this hypothesis and explore a promising application for MS treatment, the effects of C16, an ανβ3 integrin-binding peptide, were tested in vitro and in vivo by transendothelial assay, electron microscopy observation, multiple histological and immunohistochemical staining. The results showed C16 inhibited transendothelial migration of the C8166-CD4 lymphoblast cells, and alleviated extensive spinal cord and brain infiltration of leukocytes and macrophages in the EAE model. Furthermore, a significant amelioration of astrogliosis and a dramatic decrease in demyelination and axonal loss were observed in C16 treated animals. The attenuating inflammatory progression may improve the regional environment and trigger further neuroprotective effects on myelin and axons, all this suggests that C16 peptide may be a promising therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pásztói M, Misják P, György B, Aradi B, Szabó TG, Szántó B, Holub MC, Nagy G, Falus A, Buzás EI. Infection and autoimmunity: Lessons of animal models. Eur J Microbiol Immunol (Bp) 2011; 1:198-207. [PMID: 24516725 DOI: 10.1556/eujmi.1.2011.3.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022] Open
Abstract
While the key initiating processes that trigger human autoimmune diseases remain enigmatic, increasing evidences support the concept that microbial stimuli are among major environmental factors eliciting autoimmune diseases in genetically susceptible individuals. Here, we present an overview of evidences obtained through various experimental models of autoimmunity for the role of microbial stimuli in disease development. Disease onset and severity have been compared in numerous models under conventional, specific-pathogen-free and germ-free conditions. The results of these experiments suggest that there is no uniform scheme that could describe the role played by infectious agents in the experimental models of autoimmunity. While some models are dependent, others prove to be completely independent of microbial stimuli. In line with the threshold hypothesis of autoimmune diseases, highly relevant genetic factors or microbial stimuli induce autoimmunity on their own, without requiring further factors. Importantly, recent evidences show that colonization of germ-free animals with certain members of the commensal flora [such as segmented filamentous bacteria (SFB)] may lead to autoimmunity. These data drive attention to the importance of the complex composition of gut flora in maintaining immune homeostasis. The intriguing observation obtained in autoimmune animal models that parasites often confer protection against autoimmune disease development may suggest new therapeutic perspectives of infectious agents in autoimmunity.
Collapse
|