1
|
Gamage M, Ho KD, Kader MS, Nguyen K, Velmurugan M, McBride-Gagyi SH, Buckner SW, Jelliss PA. Synthesis of Lead(II) Carbonate-Containing Nanoparticles Using Ultrasonication or Microwave Irradiation. ACS OMEGA 2024; 9:48802-48809. [PMID: 39676948 PMCID: PMC11635499 DOI: 10.1021/acsomega.4c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
We report on the synthesis of lead(II) carbonate-containing nanoparticles using the polyol process under high-energy ultrasound or microwave irradiation as alternate energization methods. Five carbonate source precursors are used in the reaction, and the precipitation reactions generate four different crystal products, depending on the precursor. More alkaline precursors produce the hydroxy-carbonate structures (abellaite, or its potassium analog, and hydrocerussite), while the less alkaline precursors produce the simple carbonate structure (cerussite). Ultrasonication or microwave irradiation during the arrested precipitation ensures the formation of nanoparticles <100 nm in diameter in a mostly single crystalline phase in all cases, bar one. The products were characterized by powder X-ray diffraction, dynamic light scattering, electron microscopy, infrared spectroscopy, and thermal analysis. These nanoparticles are targeted as X-ray contrast agents for biological imaging, particularly of fine vasculature where small particle size is essential.
Collapse
Affiliation(s)
- Madhushika
E. Gamage
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Kyan D. Ho
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Mohammad S. Kader
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Katherine Nguyen
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Mirudhula Velmurugan
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Sara H. McBride-Gagyi
- Department
of Biomedical Engineering, The Ohio State
University, 140 W. 19th
Ave., Columbus, Ohio 43210, United States
| | - Steven W. Buckner
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Paul A. Jelliss
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| |
Collapse
|
2
|
Wang Y, Li X, Chen H, Gao Y. Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1432-1444. [PMID: 36530516 PMCID: PMC9727275 DOI: 10.3762/bjnano.13.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles with large size exhibit preferable properties for photothermal therapy (PTT). However, the prolonged tissue retention and slow elimination of gold nanoparticles limit their therapeutic applications. Previously, gold nanoclusters carrying lipid nanoparticles (Au-LNPs) have been reported after simply mixing Au3+ with preformed diethylenetriaminepentaacetic acid lipid nanoparticles to solve this contradiction. Au-LNPs demonstrated enhanced photothermal effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for synergistic PTT in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
3
|
Gholibegloo E, Ebrahimpour A, Mortezazadeh T, Sorouri F, Foroumadi A, Firoozpour L, Shafiee Ardestani M, Khoobi M. pH-Responsive chitosan-modified gadolinium oxide nanoparticles delivering 5-aminolevulinic acid: A dual cellular and metabolic T1-T2* contrast agent for glioblastoma brain tumors detection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Henderson L, Neumann O, Kadria-Vili Y, Gerislioglu B, Bankson J, Nordlander P, Halas NJ. Plasmonic gadolinium oxide nanomatryoshkas: bifunctional magnetic resonance imaging enhancers for photothermal cancer therapy. PNAS NEXUS 2022; 1:pgac140. [PMID: 36714874 PMCID: PMC9802487 DOI: 10.1093/pnasnexus/pgac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-assisted laser-induced photothermal therapy (PTT) is a promising method for cancer treatment; yet, visualization of nanoparticle uptake and photothermal response remain a critical challenge. Here, we report a magnetic resonance imaging-active nanomatryoshka (Gd2O3-NM), a multilayered (Au core/Gd2O3 shell/Au shell) sub-100 nm nanoparticle capable of combining T1 MRI contrast with PTT. This bifunctional nanoparticle demonstrates an r1 of 1.28 × 108 mM-1 s-1, an MRI contrast enhancement per nanoparticle sufficient for T1 imaging in addition to tumor ablation. Gd2O3-NM also shows excellent stability in an acidic environment, retaining 99% of the internal Gd(3). This report details the synthesis and characterization of a promising system for combined theranostic nanoparticle tracking and PTT.
Collapse
Affiliation(s)
- Luke Henderson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA,Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Oara Neumann
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Electrical and Computer Engineering, Applied Physics Program, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Yara Kadria-Vili
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA,Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, TX 77030, USA
| | - Burak Gerislioglu
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - James Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, TX 77030, USA
| | - Peter Nordlander
- Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Electrical and Computer Engineering, Applied Physics Program, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA,Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | | |
Collapse
|
5
|
Perazzolo S, Shen DD, Ho RJY. Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 2: Model for the Drug-combination Nanoparticles. J Pharm Sci 2022; 111:825-837. [PMID: 34673094 PMCID: PMC9270959 DOI: 10.1016/j.xphs.2021.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
We previously developed a mechanism-based pharmacokinetic (MBPK) model to characterize the PK of a lymphocyte-targeted, long-acting 3 HIV drug-combination nanoparticle (DcNP) formulation of lopinavir, ritonavir, and tenofovir. MBPK describes time-courses of plasma drug concentration and has provided an initial hypothesis for the lymphatic PK of DcNP. Because anatomical and physiological interpretation of MBPK is limited, in this Part 2, we report the development of a Physiologically Based Pharmacokinetic (PBPK) model for a detailed evaluation of the systemic and lymphatic PK of drugs associated with DcNP. The DcNP model is linked to the PBPK model presented earlier in Part 1 to account for the disposition of released free drugs. A key feature of the DcNP model is the uptake of the injected dose from the subcutaneous site to the adjacent lymphoid depot, routing through the nodes within and throughout the lymphatic network, and its subsequent passage into the blood circulation. Furthermore, the model accounts for DcNP transport to the lymph by lymphatic recirculation and mononuclear cell migration. The present PBPK model can be extended to other nano-drug combinations that target or transit through the lymphatic system. The PBPK model may allow scaling and prediction of DcNP PK in humans.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA.
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Kim JH, Koppolu S, Akturk E, Roth E, Walters MA. Formation of a lanthanoid complex shell on a nanoparticulate wax core. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wang Z, Zhou X, Xu Y, Fan S, Tian N, Zhang W, Sheng F, Lin J, Zhong W. Development of a Novel Dual-Order Protein-Based Nanodelivery Carrier That Rapidly Targets Low-Grade Gliomas with Microscopic Metastasis in Vivo. ACS OMEGA 2020; 5:20653-20663. [PMID: 32832819 PMCID: PMC7439698 DOI: 10.1021/acsomega.0c03073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 06/06/2023]
Abstract
Clinically diagnosing low-grade gliomas and microscopic metastatic tumors in the spinal cord using magnetic resonance imaging (MRI) is challenging, as the blood-brain barrier (BBB) almost completely excludes the MRI contrast agent gadopentetate dimeglumine, GdDTPA (Magnevist), from the brain. The development of a more efficient, safe, and broad-spectrum glioma diagnosis and treatment would therefore have a great clinical value. Based on the high expression levels of both transferrin receptor 1 (TfR1) and low-density lipoprotein receptor-related protein 1 (LRP1) in BBB-related cells and glioma cells, we designed a novel protein nanoparticle, ferritin-HREV107-Angiopep-2 (Fn-Rev-Ang). We found that Fn-Rev-Ang rapidly crossed the BBB in mice and had drug-loading properties. Moreover, the brain MRI signal intensity ratio associated with Fn-Rev-Ang-GdDTPA was higher than that associated with Fn-GdDTPA alone. Importantly, gliomas with diameters below 1 mm and microscopic metastatic tumors in the spinal cord were successfully detected in mice by MRI with Fn-Rev-Ang-GdDTPA, which is not possible using the current clinical MRI technology. In addition, Fn-Rev-Ang-loaded doxorubicin had a strong inhibitory effect on mouse brain gliomas and their metastasis, which significantly prolonged the animal survival time. Thus, our newly constructed Fn-Rev-Ang nanodelivery carrier may help expand the use of MRI to the early diagnosis and treatment of microscopic tumors, thereby offering a possible basis for improving the survival rate of patients with gliomas and microscopic spinal metastatic tumors.
Collapse
Affiliation(s)
- Zihao Wang
- Beijing
Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, China
| | - Xinbo Zhou
- Beijing
Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, China
| | - Yuru Xu
- Beijing
Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, China
| | - Shiyong Fan
- Beijing
Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, China
| | - Ning Tian
- Chinese
People’s Liberation Army Hospital 307, 8 East Street, Fengtai District, Beijing 100071, China
| | - Wenyuan Zhang
- Synthetic
and Functional Biomolecules Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Fugeng Sheng
- Chinese
People’s Liberation Army Hospital 307, 8 East Street, Fengtai District, Beijing 100071, China
| | - Jian Lin
- Synthetic
and Functional Biomolecules Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Wu Zhong
- Beijing
Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
8
|
Perazzolo S, Shireman LM, McConnachie LA, Koehn J, Kinman L, Lee W, Lane S, Collier AC, Shen DD, Ho RJY. Integration of Computational and Experimental Approaches to Elucidate Mechanisms of First-Pass Lymphatic Drug Sequestration and Long-Acting Pharmacokinetics of the Injectable Triple-HIV Drug Combination TLC-ART 101. J Pharm Sci 2020; 109:1789-1801. [PMID: 32006525 PMCID: PMC9648115 DOI: 10.1016/j.xphs.2020.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
TLC-ART101 is a long-acting triple-HIV drug combination of lopinavir-ritonavir-tenofovir in one nanosuspension intended for subcutaneous injection. After a single TLC-ART 101 administration in nonhuman primates, drug concentrations in both plasma and HIV-target lymph node mononuclear cells were sustained for 2 weeks. Nevertheless, the mechanisms leading to the targeted long-acting pharmacokinetics remain elusive. Therefore, an intravenous study of TLC-ART 101 in nonhuman primates was conducted to elucidate the degree of association of drugs in vivo, estimate subcutaneous bioavailability, and refine a mechanism-based pharmacokinetic (MBPK2) model. The MBPK2 model considers TLC-ART 101 systemic drug clearances, nanoparticle-associated/dissociated species, more detailed mechanisms of lymphatic first-pass retention of associated-drugs after subcutaneous administrations, and the prediction of drug concentration time-courses in lymph node mononuclear cells. For all 3 drugs, we found a high association with the nanoparticles in plasma (>87% lopinavir-ritonavir, 97% tenofovir), and an incomplete subcutaneous bioavailability (<29% lopinavir-ritonavir, 85% tenofovir). As hypothesized by the MBPK2 model, the incomplete SC bioavailability observed is due to sequestration into a lymphatic node depot after subcutaneous absorption (unlike most intramuscular nanodrug products having near-to-injection depots), which contributes to long-acting profiles detected in plasma and target cells. This combined experimental and modeling approach may be applicable for the clinical development of other long-acting drug-combination injectables.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Laura M Shireman
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Lisa A McConnachie
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Josefin Koehn
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Loren Kinman
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Wonsok Lee
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Sarah Lane
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Ann C Collier
- Department of Medicine, University of Washington, Seattle, Washington 98195; Center for AIDS Research, University of Washington, Seattle, Washington 98195
| | - Danny D Shen
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195
| | - Rodney J Y Ho
- Department of Pharmaceutics and Targeted and Long-Acting Drug Combination Anti-Retroviral Therapeutic (TLC-ART) Program, University of Washington, Seattle, Washington 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
9
|
Gao Y, Mu Q, Zhu L, Li Z, Ho RJY. Optimizing a Novel Au-Grafted Lipid Nanoparticle Through Chelation Chemistry for High Photothermal Biologic Activity. J Pharm Sci 2020; 109:1780-1788. [PMID: 32081720 DOI: 10.1016/j.xphs.2020.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles through nucleation of Au clusters have been extensively studied. However, due to low potency, prolonged tissue retention, and irreversible accumulation, the safety considerations have limited their therapeutic and diagnostic applications. Novel gold nanostructures with retained physical properties and higher biodegradability could be prepared by alternative approaches. Previously, a lipid nanoparticle (LNP) platform carrying gadolinium (Gd3+) has been reported to eliminate through the biliary without accumulation in the liver or kidney within 24 h. Inspired by this discovery, we investigated a new approach of forming gold nanoparticles using preformed LNPs grafting diethylenetriamine-pentaacetic acid as a chelating agent. Tiny Au nanoparticles are formed by simply mixing Au3+ with preformed diethylenetriamine-pentaacetic acid-LNP. The Au3+ associates stably to these LNPs after a systematic optimization. The Au-grafted LNPs are scalable and showed excellent photothermal effects when subjected to near-infrared light irradiation. They exhibit enhanced light-induced tumor cell killing at higher efficiency, compared with that of classical gold nanoparticles (citrated reduced). Given an additional small dose (2 Gy) of gamma irradiation, Au-grafted LNP could produce synergistic photothermal and radiotherapeutic effects under reduced light dose. The simple and adaptive nanoparticle design may enhance the margin of safety of gold nanoparticles in the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
10
|
Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals (Basel) 2019; 12:ph12030137. [PMID: 31527492 PMCID: PMC6789861 DOI: 10.3390/ph12030137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews the use of metal complexes as contrast agents (CA) and radiopharmaceuticals for the anatomical and functional imaging of the liver. The main focus was on two established imaging modalities: magnetic resonance imaging (MRI) and nuclear medicine, the latter including scintigraphy and positron emission tomography (PET). The review provides an overview on approved pharmaceuticals like Gd-based CA and 99mTc-based radiometal complexes, and also on novel agents such as 68Ga-based PET tracers. Metal complexes are presented by their imaging modality, with subsections focusing on their structure and mode of action. Uptake mechanisms, metabolism, and specificity are presented, in context with advantages and limitations of the diagnostic application and taking into account the respective imaging technique.
Collapse
|
11
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
12
|
Zhang Y, Zhu X, Liu L, Hong S, Zuo Z, Wang P, Su D. Synthesis and In Vitro Study of a Dual-Mode Probe Targeting Integrin α vβ 3. NANOSCALE RESEARCH LETTERS 2018; 13:281. [PMID: 30203331 PMCID: PMC6134723 DOI: 10.1186/s11671-018-2695-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 06/01/2023]
Abstract
Malignant tumors constitute a serious disease that threaten human life, and early diagnosis and metastasis prediction are critical to the choice of treatment plan and the timing of treatment. Integrin αvβ3, which has received broad attention as a molecular marker of the tumor neovasculature, is an important target for monitoring tumorigenesis and progression in molecular imaging research. This study reports a magnetic resonance (MR)/fluorescence dual-mode molecular probe, cRGD-Gd-Cy5.5, which targets the integrin αvβ3 receptor and uses liposomes as carrier. The obtained nanoprobe had a size of 60.08 ± 0.45 nm, with good dispersion in water, a uniform distribution of sizes, desirable stability, and high relaxivity. Its r1 relaxation rate was 10.515 mM-1 s-1, much higher than that of other Gd chelates in clinical use. The probe showed no cytotoxicity at the tested concentrations in vitro, and its ability to target A549 cells and SUNE-1-5-8F cells was preliminarily evaluated through in vitro fluorescence imaging and MR imaging. The results demonstrated that the cRGD-Gd-Cy5.5 nanoprobe had good characteristics, showing desirable stability and biosafety, a high T1 relaxation rate, and strong targeting and binding to tumors with high expression of integrin αvβ3. Therefore, cRGD-Gd-Cy5.5 is a promising agent for the visual monitoring of tumor metastasis.
Collapse
Affiliation(s)
- Yali Zhang
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Xuna Zhu
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Lidong Liu
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Sen Hong
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhichao Zuo
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Wang
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Danke Su
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
13
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
14
|
Kraft JC, Treuting PM, Ho RJY. Indocyanine green nanoparticles undergo selective lymphatic uptake, distribution and retention and enable detailed mapping of lymph vessels, nodes and abnormalities. J Drug Target 2018; 26:494-504. [PMID: 29388438 DOI: 10.1080/1061186x.2018.1433681] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distributed network of lymph vessels and nodes in the body, with its complex architecture and physiology, presents a major challenge for whole-body lymphatic-targeted drug delivery. To gather physiological and pathological information of the lymphatics, near-infrared (NIR) fluorescence imaging of NIR fluorophores is used in clinical practice due to its tissue-penetrating optical radiation (700-900 nm) that safely provides real-time high-resolution in vivo images. However, indocyanine green (ICG), a common clinical NIR fluorophore, is unstable in aqueous environments and under light exposure, and its poor lymphatic distribution and retention limits its use as a NIR lymphatic tracer. To address this, we investigated in mice the distribution pathways of a novel nanoparticle formulation that stabilises ICG and is optimised for lymphatic drug delivery. From the subcutaneous space, ICG particles provided selective lymphatic uptake, lymph vessel and node retention, and extensive first-pass lymphatic distribution of ICG, enabling 0.2 mm and 5-10 cell resolution of lymph vessels, and high signal-to-background ratios for lymphatic vessel and node networks. Soluble (free) ICG readily dissipated from lymph vessels local to the injection site and absorbed into the blood. These unique characteristics of ICG particles could enable mechanistic studies of the lymphatics and diagnosis of lymphatic abnormalities.
Collapse
Affiliation(s)
- John C Kraft
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| | - Piper M Treuting
- b Department of Comparative Medicine , University of Washington , Seattle , WA , USA
| | - Rodney J Y Ho
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA.,c Department of Bioengineering , University of Washington , Seattle , WA , USA
| |
Collapse
|
15
|
Influence of different cleaning processes on the surface chemistry of gold nanoparticles. Biointerphases 2017; 12:031003. [PMID: 28750541 DOI: 10.1116/1.4994286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, the authors have investigated the effects of different cleaning methods (centrifugation and dialysis) on the surface chemistry and composition of 15 nm sodium citrate stabilized gold nanoparticles. The nuclear magnetic resonance (NMR) results indicate that three centrifugation cycles are sufficient to remove most of the citrate molecules, while centrifuged liquid sedimentation and dynamic light scattering data reveal some degree of nanoparticle aggregation when three centrifugation cycles are exceeded. Regarding the dialysis procedure, NMR analysis demonstrated that after nine cleaning cycles, the citrate concentration is comparable to that measured after the first centrifugation (about 6 × 10-4 M) but with an increase in the dispersion polydispersivity index as determined by dynamic light scattering. X-ray photoelectron spectroscopy results support the NMR findings and revealed a major hydrocarbon contamination after the nanoparticles cleaning process. The impact of cleaning on surface functionalization was tested using 1H,1H,2H,2H-perfluorodecanethiol hydrophobic thiols (PFT) to test thiol-citrate substitution. After 24 h exposure, the PFT coverage was less than 0.6 monolayer (ML) for both pristine nanoparticles and particles after three dialysis cycles, but about 0.8 ML after two centrifugation washes.
Collapse
|
16
|
Gupta A, de Campo L, Waddington LJ, Knott RB, Hwang D, Kirby N, Price WS, Moghaddam MJ. Towards advanced paramagnetic nanoassemblies of highly ordered interior nanostructures as potential MRI contrast agents. NEW J CHEM 2017. [DOI: 10.1039/c6nj03934k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel paramagnetic amphiphile designed to form nanoassemblies of highly ordered nanostructures was explored as an advanced MRI contrast agent.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- Western Sydney University
- Penrith
- Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering
- ANSTO
- Lucas Heights
- Australia
| | | | - Robert B. Knott
- Australian Centre for Neutron Scattering
- ANSTO
- Lucas Heights
- Australia
| | - Dennis Hwang
- Department of Chemistry and Biochemistry
- National Chung Cheng University
- Chiayi
- Taiwan
| | | | - William S. Price
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- Western Sydney University
- Penrith
- Australia
| | | |
Collapse
|
17
|
Partridge SC, Kurland BF, Liu CL, Ho RJY, Ruddell A. Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles. Sci Rep 2015; 5:15641. [PMID: 26497382 PMCID: PMC4620490 DOI: 10.1038/srep15641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022] Open
Abstract
Contrast-enhanced MRI lymphography shows potential to identify alterations in lymph drainage through lymph nodes (LNs) in cancer and other diseases. MRI studies have typically used low molecular weight gadolinium contrast agents, however larger gadolinium-loaded nanoparticles possess characteristics that could improve the specificity and sensitivity of lymphography. The performance of three gadolinium contrast agents with different sizes and properties was compared by 3T MRI after subcutaneous injection. Mice bearing B16-F10 melanoma footpad tumors were imaged to assess tumor-induced alterations in lymph drainage through tumor-draining popliteal and inguinal LNs versus contralateral uninvolved drainage. Gadolinium lipid nanoparticles were able to identify tumor-induced alterations in contrast agent drainage into the popliteal LN, while lower molecular weight or albumin-binding gadolinium agents were less effective. All of the contrast agents distributed in foci around the cortex and medulla of tumor-draining popliteal LNs, while they were restricted to the cortex of non-draining LNs. Surprisingly, second-tier tumor-draining inguinal LNs exhibited reduced uptake, indicating that tumors can also divert LN drainage. These characteristics of tumor-induced lymph drainage could be useful for diagnosis of LN pathology in cancer and other diseases. The preferential uptake of nanoparticle contrasts into tumor-draining LNs could also allow selective targeting of therapies to tumor-draining LNs.
Collapse
Affiliation(s)
- S C Partridge
- Seattle Cancer Care Alliance, Seattle WA USA.,Department of Radiology, University of Washington, Seattle WA USA
| | - B F Kurland
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
| | - C-L Liu
- Seattle Cancer Care Alliance, Seattle WA USA.,Department of Radiology, University of Washington, Seattle WA USA
| | - R J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle WA USA
| | - A Ruddell
- Department of Comparative Medicine, Seattle WA USA.,Fred Hutchinson Cancer Research Center, Seattle WA USA
| |
Collapse
|
18
|
Gupta A, Willis SA, Waddington LJ, Stait‐Gardner T, de Campo L, Hwang DW, Kirby N, Price WS, Moghaddam MJ. Gd‐DTPA‐Dopamine‐Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents. Chemistry 2015; 21:13950-60. [DOI: 10.1002/chem.201501905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Abhishek Gupta
- Manufacturing Flagship CSIRO, P.O. Box 52, North Ryde, NSW, 1670 (Australia)
- Nanoscale Organisation and Dynamics Group, University of Western Sydney, Penrith, NSW, 2751 (Australia)
| | - Scott A. Willis
- Nanoscale Organisation and Dynamics Group, University of Western Sydney, Penrith, NSW, 2751 (Australia)
| | - Lynne J. Waddington
- Manufacturing Flagship CSIRO, 343 Royal Parade, Parkville, VIC, 3052 (Australia)
| | - Tim Stait‐Gardner
- Nanoscale Organisation and Dynamics Group, University of Western Sydney, Penrith, NSW, 2751 (Australia)
| | - Liliana de Campo
- Manufacturing Flagship CSIRO, P.O. Box 52, North Ryde, NSW, 1670 (Australia)
- Bragg Institute ANSTO, Lucas Heights, NSW, 2234 (Australia)
| | - Dennis W. Hwang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Min‐Hsiung Township Chiayi, 621 (Taiwan)
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168 (Australia)
| | - William S. Price
- Nanoscale Organisation and Dynamics Group, University of Western Sydney, Penrith, NSW, 2751 (Australia)
| | - Minoo J. Moghaddam
- Manufacturing Flagship CSIRO, P.O. Box 52, North Ryde, NSW, 1670 (Australia)
| |
Collapse
|
19
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Abstract
The advent of cancer nanomedicine has forged new pathways for the enhanced imaging and treatment of a broad range of cancers using new classes of materials. Among the many platforms being developed for drug delivery and imaging, nanodiamonds (NDs) possess several important attributes that may be beneficial toward improving the efficacy and safety of cancer nanomedicine applications. These include the uniquely faceted surfaces of the ND particles that result in electrostatic properties that mediate enhanced interactions with water and loaded therapeutic compounds, scalable processing and synthesis parameters, versatility as platform carriers, and a spectrum of other characteristics. In addition, comprehensive in vitro and in vivo studies have demonstrated that NDs are well tolerated. This chapter will examine several recent studies that have harnessed the ND agent as a foundation for both systemic and localized drug delivery, as well as the marked improvements in magnetic resonance imaging efficiency that has been observed following ND-contrast agent conjugation. In addition, insight into the important steps toward bringing the ND translational pathway to the clinic will be discussed.
Collapse
Affiliation(s)
- Dean Ho
- Division of Oral Biology and Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, Room B3-068A, Los Angeles, CA, 90095, USA,
| |
Collapse
|
21
|
Freeling JP, Koehn J, Shu C, Sun J, Ho RJ. Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res Hum Retroviruses 2015; 31:107-14. [PMID: 25402233 DOI: 10.1089/aid.2014.0210] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV patients on combination oral drug therapy experience insufficient drug levels in lymph nodes, which is linked to viral persistence. Following success in enhancing lymph node drug levels and extending plasma residence time of indinavir formulated in lipid nanoparticles, we developed multidrug anti-HIV lipid nanoparticles (anti-HIV LNPs) containing lopinavir (LPV), ritonavir (RTV), and tenofovir (PMPA). These anti-HIV LNPs were prepared, characterized, scaled up, and evaluated in primates with a focus on plasma time course and intracellular drug exposure in blood and lymph nodes. Four macaques were subcutaneously administered anti-HIV LNPs and free drug suspension in a crossover study. The time course of the plasma drug concentration as well as intracellular drug concentrations in blood and inguinal lymph nodes were analyzed to compare the effects of LNP formulation. Anti-HIV LNPs incorporated LPV and RTV with high efficiency and entrapped a reproducible fraction of hydrophilic PMPA. In primates, anti-HIV LNPs produced over 50-fold higher intracellular concentrations of LPV and RTV in lymph nodes compared to free drug. Plasma and intracellular drug levels in blood were enhanced and sustained up to 7 days, beyond that achievable by their free drug counterpart. Thus, multiple antiretroviral agents can be simultaneously incorporated into anti-HIV lipid nanoparticles to enhance intracellular drug concentrations in blood and lymph nodes, where viral replication persists. As these anti-HIV lipid nanoparticles also prolonged plasma drug exposure, they hold promise as a long-acting dosage form for HIV patients in addressing residual virus in cells and tissue.
Collapse
Affiliation(s)
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Cuiling Shu
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jianguo Sun
- Department of Pharmaceutics, University of Washington, Seattle, Washington
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rodney J.Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Li Y, Lin TY, Luo Y, Liu Q, Xiao W, Guo W, Lac D, Zhang H, Feng C, Wachsmann-Hogiu S, Walton JH, Cherry SR, Rowland DJ, Kukis D, Pan C, Lam KS. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 2014; 5:4712. [PMID: 25158161 PMCID: PMC4145614 DOI: 10.1038/ncomms5712] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/16/2014] [Indexed: 02/05/2023] Open
Abstract
Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. However, attaining consistently high performance of these functions in vivo in one single nanoconstruct remains extremely challenging. Here we demonstrate the use of one single polymer to develop a smart 'all-in-one' nanoporphyrin platform that conveniently integrates a broad range of clinically relevant functions. Nanoporphyrins can be used as amplifiable multimodality nanoprobes for near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), positron emission tomography (PET) and dual modal PET-MRI. Nanoporphyrins greatly increase the imaging sensitivity for tumour detection through background suppression in blood, as well as preferential accumulation and signal amplification in tumours. Nanoporphyrins also function as multiphase nanotransducers that can efficiently convert light to heat inside tumours for photothermal therapy (PTT), and light to singlet oxygen for photodynamic therapy (PDT). Furthermore, nanoporphyrins act as programmable releasing nanocarriers for targeted delivery of drugs or therapeutic radio-metals into tumours.
Collapse
Affiliation(s)
- Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Tzu-yin Lin
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- Department of Oncology, PLA Cancer Research Institute of the Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qiangqiang Liu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Wenchang Guo
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Diana Lac
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Caihong Feng
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- Beijing institute of technology, Beijing, 100081, China
| | - Sebastian Wachsmann-Hogiu
- NSF Center for Biophotonics Science and Technology, University of California Davis, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jeffrey H. Walton
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- UC Davis NMR Facility, Davis, CA 95616, USA
| | - Simon R. Cherry
- Department of Biomedical Engineering, Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, USA
| | - Douglas J. Rowland
- Department of Biomedical Engineering, Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, USA
| | - David Kukis
- Department of Biomedical Engineering, Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, USA
| | - Chongxian Pan
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA 95817, USA
- VA Northern California Health Care System, Mather, CA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
23
|
Spanakis M, Marias K. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp® simulator platform. In Silico Pharmacol 2014; 2:2. [PMID: 27502621 PMCID: PMC4644137 DOI: 10.1186/s40203-014-0002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023] Open
Abstract
Purpose Gadofosveset is a Gd-based contrast agent used for magnetic resonance imaging (MRI). Gadolinium kinetic distribution models are implemented in T1-weighted dynamic contrast-enhanced perfusion MRI for characterization of lesion sites in the body. Physiology changes in a disease state potentially can influence the pharmacokinetics of drugs and to this respect modify the distribution properties of contrast agents. This work focuses on the in silico modelling of pharmacokinetic properties of gadofosveset in different population groups through the application of physiologically-based pharmacokinetic models (PBPK) embedded in Simcyp® population pharmacokinetics platform. Methods Physicochemical and pharmacokinetic properties of gadofosveset were introduced into Simcyp® simulator platform and a min-PBPK model was applied. In silico clinical trials were generated simulating the administration of the recommended dose for the contrast agent (i.v., 30 mg/kg) in population cohorts of healthy volunteers, obese, renal and liver impairment, and in a generated virtual oncology population. Results were evaluated regarding basic pharmacokinetic parameters of Cmax, AUC and systemic CL and differences were assessed through ANOVA and estimation of ratio of geometric mean between healthy volunteers and the other population groups. Results Simcyp® predicted a mean Cmax = 551.60 mg/l, a mean AUC = 4079.12 mg/L*h and a mean systemic CL = 0.56 L/h for the virtual population of healthy volunteers. Obese population showed a modulation in Cmax and CL, attributed to increased administered dose. In renal and liver impairment cohorts a significant modulation in Cmax, AUC and CL of gadofosveset is predicted. Oncology population exhibited statistical significant differences regarding AUC when compared with healthy volunteers. Conclusions This work employed Simcyp® population pharmacokinetics platform in order to compute gadofosveset’s pharmacokinetic profiles through PBPK models and in silico clinical trials and evaluate possible differences between population groups. The approach showed promising results that could provide new insights regarding administration of contrast agents in special population cohorts. In silico pharmacokinetics could further be used for evaluating of possible toxicity, interpretation of MRI PK image maps and development of novel contrast agents.
Collapse
Affiliation(s)
- Marios Spanakis
- Computational Medicine Laboratory, Institute of Computer Science, Foundation of Research & Technology-Hellas (FORTH), Heraklion, GR-71110, Crete, Greece.
| | - Kostas Marias
- Computational Medicine Laboratory, Institute of Computer Science, Foundation of Research & Technology-Hellas (FORTH), Heraklion, GR-71110, Crete, Greece.
| |
Collapse
|
24
|
Doan BT, Crauste-Manciet S, Bourgaux C, Dhotel H, Jugé L, Brossard D, Scherman D, Bessodes M, Cuenod CA, Mignet N. Lipidic spherulites as magnetic resonance imaging contrast agents. NEW J CHEM 2014. [DOI: 10.1039/c4nj00571f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Anti-HIV drug particles may overcome lymphatic drug insufficiency and associated HIV persistence. Proc Natl Acad Sci U S A 2014; 111:E2512-3. [PMID: 24889644 DOI: 10.1073/pnas.1406554111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging. Eur J Pharm Biopharm 2014; 87:132-41. [DOI: 10.1016/j.ejpb.2013.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022]
|
27
|
Carrillo-Carrión C, Nazarenus M, Paradinas SS, Carregal-Romero S, Almendral MJ, Fuentes M, Pelaz B, del Pino P, Hussain I, Clift MJD, Rothen-Rutishauser B, Liang XJ, Parak WJ. Metal ions in the context of nanoparticles toward biological applications. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103:29-52. [PMID: 24338748 PMCID: PMC4074410 DOI: 10.1002/jps.23773] [Citation(s) in RCA: 385] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50-300 nm. The growing interest in nanomedicine has fueled lipid-drug and lipid-protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid-drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid-drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid-drug particles may further advance translation of these systems to improve therapeutic safety and efficacy.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
29
|
Bokacheva L, Ackerstaff E, LeKaye HC, Zakian K, Koutcher JA. High-field small animal magnetic resonance oncology studies. Phys Med Biol 2013; 59:R65-R127. [PMID: 24374985 DOI: 10.1088/0031-9155/59/2/r65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include (1)H, (31)P, chemical exchange saturation transfer imaging and hyperpolarized (13)C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.
Collapse
Affiliation(s)
- Louisa Bokacheva
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 415 East 68 Street, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
30
|
Andreozzi E, Wang P, Valenzuela A, Tu C, Gorin F, Dhenain M, Louie A. Size-stable solid lipid nanoparticles loaded with Gd-DOTA for magnetic resonance imaging. Bioconjug Chem 2013; 24:1455-67. [PMID: 24004269 DOI: 10.1021/bc300605f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solid lipid nanoparticles (SLNs) have recently emerged as nontoxic, versatile alternatives to traditional carriers (liposomes, polymeric nanoparticles) for drug delivery. Because SLNs are composed of a solid lipid core, they offer significant protection against chemical degradation of their drug cargo and offer the potential for controlled release. SLNs also hold promise for use as targeted agents and multimodal imaging agents. Here we report the synthesis and characterization of SLNs loaded with gadolinium (1,4,7,10-tetraazacyclododecane)-1,4,7,10-tetraacetate (Gd-DOTA) in order to produce a new category of stable T1-weighted (T1w) magnetic resonance imaging (MRI) contrast agents. Systematically varying components in the SLN synthesis, we demonstrated an increase in Gd-DOTA incorporation and an increase in longitudinal relaxivity (r1) through optimizing the amount of surfactant (Span 80) in the "oil" phase. These highly monodisperse SLNs confirm stable loading of Gd-DOTA and a stable size distribution (∼150 nm) over time in aqueous solution. Relaxivity measurements (1.4T, 37 °C) demonstrate that the r1 of Gd-DOTA does not strongly decrease following encapsulation in SLNs, demonstrating an advantage over liposomes. These Gd-loaded SLNs demonstrate enhanced contrast in vivo at 7T using T1w MRI and in the future can be loaded with other cargo (hydrophilic or hydrophobic) to enable functionality with other imaging modalities such as optical or positron emission tomography.
Collapse
Affiliation(s)
- Erica Andreozzi
- Department of Biomedical Engineering, University of California Davis , Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm 2013; 10:1977-87. [PMID: 23534919 PMCID: PMC3683459 DOI: 10.1021/mp4000019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to compare the pharmacokinetics and metabolism of polymeric nanoparticle-encapsulated (nanocurcumin) and solvent-solubilized curcumin formulations in Sprague-Dawley (SD) rats. Nanocurcumin is currently under development for cancer therapy. Since free, unencapsulated curcumin is rapidly metabolized and excreted in rats, upon intravenous (i.v.) administration of nanocurcumin only nanoparticle-encapsulated curcumin can be detected in plasma samples. Hence, the second objective of this study was to utilize the metabolic instability of curcumin to assess in vivo drug release from nanocurcumin. Nanocurcumin and solvent-solubilized curcumin were administered at 10 mg curcumin/kg by jugular vein to bile duct-cannulated male SD rats (n = 5). Nanocurcumin increased the plasma Cmax of curcumin 1749 fold relative to the solvent-solubilized curcumin. Nanocurcumin also increased the relative abundance of curcumin and glucuronides in bile but did not dramatically alter urine and tissue metabolite profiles. The observed increase in biliary and urinary excretion of both curcumin and metabolites for the nanocurcumin formulation suggested a rapid "burst" release of curcumin. Although the burst release observed in this study is a limitation for targeted tumor delivery, nanocurcumin still exhibits major advantages over solvent-solubilized curcumin, as the nanoformulation does not result in the lung accumulation observed for the solvent-solubilized curcumin and increases overall systemic curcumin exposure. Additionally, the remaining encapsulated curcumin fraction following burst release is available for tumor delivery via the enhanced permeation and retention effect commonly observed for nanoparticle formulations.
Collapse
Affiliation(s)
- Peng Zou
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Lawrence Helson
- Sign Path Pharma, Inc, 1375 California Road, Quakertown, PA 18951
| | - Anirban Maitra
- Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231
| | - Stephan T. Stern
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Scott E. McNeil
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
32
|
Shriver LP, Plummer EM, Thomas DM, Ho S, Manchester M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J Mater Chem B 2013; 1:5256-5263. [DOI: 10.1039/c3tb20521e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:1-18. [PMID: 23047730 DOI: 10.1002/wnan.1198] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents (CA) have been routinely used for detecting tumor at an early stage. Gadolinium-based CA are the most commonly used CA in clinical MRI. There have been significant efforts to design and develop novel Gd(III) CA with high relaxivity, low toxicity, and specific tumor binding. The relaxivity of the Gd(III) CA can be increased by proper chemical modification. The toxicity of Gd(III) CA can be reduced by increasing the agents' thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific CA. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR CA tumor imaging.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
34
|
Vithanarachchi SM, Allen MJ. Strategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2012; 1:12-25. [PMID: 23316452 DOI: 10.2174/2211555211201010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent research efforts focused on increasing the specificity of contrast agents for proton magnetic resonance imaging (MRI). Contrast agents play an indispensable role in MRI by enhancing the inherent contrast of images; however, the non-specific nature of current clinical contrast agents limits their usefulness. This limitation can be addressed by conjugating contrast agents or contrast-agent-loaded carriers-including polymers, nanoparticles, dendrimers, and liposomes-to molecules that bind to biological sites of interest. An alternative approach to conjugation is synthetically mimicking biological structures with metal complexes that are also contrast agents. In this review, we describe the advantages and limitations of these two targeting strategies with respect to translation from in vitro to in vivo imaging while focusing on advances from the last ten years.
Collapse
|
35
|
X-ray microscopy and tomography detect the accumulation of bare and PEG-coated gold nanoparticles in normal and tumor mouse tissues. Anal Bioanal Chem 2012; 404:1287-96. [PMID: 22918568 DOI: 10.1007/s00216-012-6217-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/23/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
We demonstrate that, with appropriate staining, high-resolution X-ray microscopy can image complicated tissue structures--cerebellum and liver--and resolve large or small amounts of Au nanoparticles in these tissues. Specifically, images of tumor tissue reveal high concentrations of accumulated Au nanoparticles. PEG (poly(ethylene glycol)) coating is quite effective in enhancing this accumulation and significantly modifies the mechanism of uptake by reticuloendothelial system (RES) organs.
Collapse
|
36
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
37
|
Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 2012; 23:1322-32. [PMID: 22577859 DOI: 10.1021/bc300175d] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with noninvasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The premanufactured liposomes were composed of DSPC/cholesterol/Gd-DOTA-DSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively postinserted into the premanufactured liposomes. Doxorubicin could be effectively postloaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with (99m)Tc or (64)Cu for single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high-resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT, and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing noninvasive multimodality NIR fluorescent, MR, SPECT, and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality.
Collapse
Affiliation(s)
- Shihong Li
- Department of Radiology and ‡Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | | | |
Collapse
|
38
|
Tu C, Louie AY. Nanoformulations for molecular MRI. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:448-57. [PMID: 22488901 DOI: 10.1002/wnan.1170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale contrast agents have shown the ability to increase the detection sensitivity of magnetic resonance imaging (MRI) by several orders of magnitude, endowing this traditionally macroscopic modality with the ability to observe unique molecular signatures. Herein, we describe three types of nanoparticulate contrast agents: iron oxide nanoparticles, gadolinium-based nanoparticles, and bio-essential manganese, cobalt, nickel, and copper ion-containing nanoformulations. Some of these agents have been approved for clinical use, but more are still under development for medical imaging. The advantages and disadvantages of each nanoformulation, in terms of intrinsic magnetism, ease of synthesis, biodistribution, etc. are discussed.
Collapse
Affiliation(s)
- Chuqiao Tu
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA.
| | | |
Collapse
|
39
|
Choi SY, Kim YS, Seo YJ, Yang J, Choi KS. Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation. PLoS One 2012; 7:e34333. [PMID: 22479602 PMCID: PMC3315537 DOI: 10.1371/journal.pone.0034333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/25/2012] [Indexed: 11/18/2022] Open
Abstract
To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C5F12-phospholipid nanobubbles (PLNs) 30–100 nm in diameter. The biochemical and physical characterization of Gd-C5F12-PLNs were performed. Since Gd-C5F12-PLN-50 (Φ = 50 nm) and Gd-C5F12-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C5F12-PLNs was longer than 1.5 hrs. Gd-C5F12-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C5F12-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C5F12-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C5F12-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation.
Collapse
Affiliation(s)
- Se-Young Choi
- Molecular and Cellular Imaging Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul, South Korea
| | - Young-Sun Kim
- Department of Radiology and Center for Imaging Science, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul, South Korea
| | - Yeong-Ju Seo
- Molecular and Cellular Imaging Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul, South Korea
| | - Jehoon Yang
- Molecular and Cellular Imaging Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul, South Korea
| | - Kyu-Sil Choi
- Molecular and Cellular Imaging Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul, South Korea
- * E-mail:
| |
Collapse
|
40
|
Zhang B, Jin H, Li Y, Chen B, Liu S, Shi D. Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30629h] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Su HS, Nahrendorf M, Panizzi P, Breckwoldt MO, Rodriguez E, Iwamoto Y, Aikawa E, Weissleder R, Chen JW. Vasculitis: molecular imaging by targeting the inflammatory enzyme myeloperoxidase. Radiology 2011; 262:181-90. [PMID: 22084204 DOI: 10.1148/radiol.11110040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if a molecular imaging approach targeting the highly oxidative enzyme myeloperoxidase (MPO) can help noninvasively identify and confirm sites of vascular wall inflammation in a murine model of vasculitis. MATERIALS AND METHODS Animal experiments were approved by the institutional animal care committee. Twenty-six mice were studied, including eight MPO-deficient and six sham-operated mice as controls. Vasculitis was induced with intraperitoneal injection of Candida albicans water-soluble fraction (CAWS). Aortic root magnetic resonance imaging was performed after intravenous injection of the activatable MPO sensor (bis-5-hydroxytryptamide-diethylenetriaminepentatacetate gadolinium) (n = 23), referred to as MPO-Gd, or gadopentetate dimeglumine (n = 10). Seven mice were randomly assigned to receive either MPO-Gd or gadopentetate dimeglumine first. Aortic root specimens were collected for biochemical and histopathologic analyses to validate imaging findings. Statistical significance was calculated for contrast-to-noise ratios (CNRs) by using the paired t test. RESULTS In the aortic root, the mean MPO-Gd CNRs after agent injection (CNR = 28.1) were more than 2.5-fold higher than those of sham-operated mice imaged with MPO-Gd and vasculitis mice imaged with gadopentetate dimeglumine (CNR = 10.6) (P < .05). MPO-Gd MR imaging helped identify areas of vasculitis that were not seen at unenhanced and contrast material-enhanced imaging with gadopentetate dimeglumine. Histopathologic and biochemical analyses for MPO and myeloid cells confirmed imaging findings. In MPO-deficient mice, injection of CAWS did not result in a vasculitis phenotype, implying a key role of the imaging target in disease cause. CONCLUSION Molecular imaging targeting MPO can be a useful biomarker to noninvasively detect and confirm inflammation in vasculitis by using a murine model of Kawasaki disease.
Collapse
Affiliation(s)
- Henry S Su
- Center for Molecular Imaging Research, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One 2011; 6:e19099. [PMID: 21533123 PMCID: PMC3078938 DOI: 10.1371/journal.pone.0019099] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured. Lastly, despite technological advances in live-animal specimen imaging, it is quite difficult to minimize or prevent movement of a live animal, which can cause motion artifacts in the final data output. It is demonstrated here that through the use of postmortem perfusion protocols of radiopaque silicone polymer mediums and ex-vivo organ harvest, it is possible to acquire a high level of vascular signal in preclinical specimens through the use of micro-computed tomographic (microCT) imaging. Additionally, utilizing high-order rendering algorithms, it is possible to further derive vessel morphometrics for qualitative and quantitative analysis.
Collapse
|