1
|
Wang L, Shi X, Zhou Y. Spatial reciprocity under reinforcement learning mechanism. CHAOS (WOODBURY, N.Y.) 2025; 35:023103. [PMID: 39899566 DOI: 10.1063/5.0246843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025]
Abstract
At present, the research on the dynamics of cooperative behavior of agents under reinforcement learning mechanism either assumes that agents have global interaction, that is, agents interact with all other agents in the population, or directly study the influence of relevant factors on cooperation evolution based on the local interaction in a network structure. It neglects to formally study how the limitation of agents that only interact with local agents affects their strategy choice. Thus, in this paper, we study the cooperative behavior of agents in a typical social decision-making environment with conflicts between individual interests and collective interests. On the one hand, a programmed game model in game theory, namely, prisoner's dilemma game, is used to capture the essence of real-world dilemmas. On the other hand, the effects of local and global strategy learning on the cooperative evolution of agents are investigated separately, and the nature of spatial reciprocity under the reinforcement learning mechanism is found. Specifically, when there is no inherent connection between the interacting agents and the learning agents within the system, the network structure has a limited effect on promoting cooperation. It is only when there is an overlap between the interacting agents and the learning agents that the spatial reciprocity effect observed in the traditional evolutionary game theory can be fully realized.
Collapse
Affiliation(s)
- Lu Wang
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Xiaoqiu Shi
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
- Mianyang Science and Technology City Intelligent Manufacturing Industry Technology Innovation Institute, Mianyang, Sichuan 621000, China
| | - Yang Zhou
- Engineering Technology Center, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| |
Collapse
|
2
|
Hao Q, Yang H, Sun Y, Xu T, Huang H. Evolutionary game on mutually influenceing double-layer network. PLoS One 2025; 20:e0317923. [PMID: 39888920 PMCID: PMC11785339 DOI: 10.1371/journal.pone.0317923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/02/2025] Open
Abstract
In recent years, coupled double-layer networks have played an increasingly critical role in evolutionary game theory. Research indicates that these networks more accurately reflect real-world relationships between individuals. However, current studies mainly focus on unidirectional influence within double-layer networks. Based on this, we propose a strongly coupled double-layer network cooperation evolution model. Strength individuals are located in the upper network layer, influencing the strategy choices of ordinary individuals in the lower layer, and vice versa. Monte Carlo simulations show that strength individuals can effectively enhance overall group cooperation. Under low temptation to defect, the group maintains a high cooperation rate; under high temptation, the presence of strength individuals prevents the group from falling into total defection, helping ordinary individuals escape the defection dilemma and improve cooperation levels.
Collapse
Affiliation(s)
- Qinzhi Hao
- Air Force Engineering University, Xi’an, China
| | - Haochun Yang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Yao Sun
- Air Force Engineering University, Xi’an, China
| | - Tao Xu
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Huang Huang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
3
|
Yang Q, Tang Y, Gao D. Agent-based evolutionary game dynamics uncover the dual role of resource heterogeneity in the evolution of cooperation. J Theor Biol 2024; 595:111952. [PMID: 39322113 DOI: 10.1016/j.jtbi.2024.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Cooperation is a cornerstone of social harmony and group success. Environmental feedbacks that provide information about resource availability play a crucial role in encouraging cooperation. Previous work indicates that the impact of resource heterogeneity on cooperation depends on the incentive to act in self-interest presented by a situation, demonstrating its potential to both hinder and facilitate cooperation. However, little is known about the underlying evolutionary drivers behind this phenomenon. Leveraging agent-based modeling and game theory, we explore how differences in resource availability across environments influence the evolution of cooperation. Our results show that resource variation hinders cooperation when resources are slowly replenished but supports cooperation when resources are more readily available. Furthermore, simulations in different scenarios suggest that discerning the rate of natural selection acts on strategies under distinct evolutionary dynamics is instrumental in elucidating the intricate nexus between resource variability and cooperation. When evolutionary forces are strong, resource heterogeneity tends to work against cooperation, yet relaxed selection conditions enable it to facilitate cooperation. Inspired by these findings, we also propose a potential application in improving the performance of artificial intelligence systems through policy optimization in multi-agent reinforcement learning. These explorations promise a novel perspective in understanding the evolution of social organisms and the impact of different interactions on the function of natural systems.
Collapse
Affiliation(s)
- Qin Yang
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China; School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yi Tang
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China.
| | - Dehua Gao
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai 264005, China
| |
Collapse
|
4
|
Gao L, Pan Q, He M. Two-stage strategy update rule based on learning cost in weak prisoner's dilemma. CHAOS (WOODBURY, N.Y.) 2024; 34:073144. [PMID: 39042507 DOI: 10.1063/5.0220267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
When players are dissatisfied with their actual payoffs, they will change the actuality by learning strategy of neighbors. The more effort players put in, the more likely they are to succeed in learning. Inspired by this, this paper proposes a two-stage strategy update rule based on learning cost. The players first decide whether to learn strategy according to the updating willingness. If the players imitate the strategy of neighbors, they need to pay the learning cost. Results show that for the well-mixed population, if the updating willingness is homogeneous and remains unchanged, reducing the updating willingness or increasing the learning cost can extend the life cycle of cooperators. If the updating willingness is heterogeneous and dynamically adjusted based on the difference between the actual payoff and the expected payoff, increasing aspiration value and learning cost promotes cooperation. For the structured population, if the updating willingness is homogeneous and remains unchanged, the moderate learning cost is beneficial for cooperators to resist the temptation of defection, and reducing updating willingness makes the system maintain cooperation within a larger parameter range. If the updating willingness is heterogeneous and dynamically adjusted, the larger learning cost and the appropriate aspiration value promote cooperation. This study highlights the complex dynamics of cooperation in paid strategy learning, contributing to the theory of cooperation in the evolutionary game.
Collapse
Affiliation(s)
- Liyan Gao
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
- School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Du C, Lu Y, Zhang Y, Shen C, Shi L, Guo H. Replicator-mutator dynamics with evolutionary public goods game-environmental feedbacks. CHAOS (WOODBURY, N.Y.) 2024; 34:043114. [PMID: 38572947 DOI: 10.1063/5.0200761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Feedback loops between strategies and the environment are commonly observed in socio-ecological, evolution-ecological, and psychology-economic systems. However, the impact of mutations in these feedback processes is often overlooked. This study proposes a novel model that integrates the public goods game with environmental feedback, considering the presence of mutations. In our model, the enhancement factor of the public goods game combines positive and negative incentives from the environment. By employing replicator-mutator (RM) equations, we provide an objective understanding of the system's evolutionary state, focusing on identifying conditions that foster cooperation and prevent the tragedy of the commons. Specifically, mutations play a crucial role in the RM dynamics, leading to the emergence of an oscillatory tragedy of the commons. By verifying the Hopf bifurcation condition, we establish the existence of a stable limit cycle, providing valuable insights into sustained oscillation strategies. Moreover, the feedback mechanism inherent in the public goods game model offers a fresh perspective on effectively addressing the classic dilemma of the tragedy of the commons.
Collapse
Affiliation(s)
- Chunpeng Du
- School of Mathematics, Kunming University, Kunming, Yunnan 650214, China
| | - Yikang Lu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Yali Zhang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Chen Shen
- Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
- Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
| | - Hao Guo
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Aguilar-Janita M, Khalil N, Leyva I, Sendiña-Nadal I. Cooperation transitions in social games induced by aspiration-driven players. Phys Rev E 2024; 109:024107. [PMID: 38491644 DOI: 10.1103/physreve.109.024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024]
Abstract
Cooperation and defection are social traits whose evolutionary origin is still unresolved. Recent behavioral experiments with humans suggested that strategy changes are driven mainly by the individuals' expectations and not by imitation. This work theoretically analyzes and numerically explores an aspiration-driven strategy updating in a well-mixed population playing games. The payoffs of the game matrix and the aspiration are condensed into just two parameters that allow a comprehensive description of the dynamics. We find continuous and abrupt transitions in the cooperation density with excellent agreement between theory and the Gillespie simulations. Under strong selection, the system can display several levels of steady cooperation or get trapped into absorbing states. These states are still relevant for experiments even when irrational choices are made due to their prolonged relaxation times. Finally, we show that for the particular case of the prisoner dilemma, where defection is the dominant strategy under imitation mechanisms, the self-evaluation update instead favors cooperation nonlinearly with the level of aspiration. Thus, our work provides insights into the distinct role between imitation and self-evaluation with no learning dynamics.
Collapse
Affiliation(s)
- M Aguilar-Janita
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - N Khalil
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - I Leyva
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - I Sendiña-Nadal
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
7
|
LaPorte P, Nowak MA. A geometric process of evolutionary game dynamics. J R Soc Interface 2023; 20:20230460. [PMID: 38016638 PMCID: PMC10684345 DOI: 10.1098/rsif.2023.0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Many evolutionary processes occur in phenotype spaces which are continuous. It is therefore of interest to explore how selection operates in continuous spaces. One approach is adaptive dynamics, which assumes that mutants are local. Here we study a different process which also allows non-local mutants. We assume that a resident population is challenged by an invader who uses a strategy chosen from a random distribution on the space of all strategies. We study the repeated donation game of direct reciprocity. We consider reactive strategies given by two probabilities, denoting respectively the probability to cooperate after the co-player has cooperated or defected. The strategy space is the unit square. We derive analytic formulae for the stationary distribution of evolutionary dynamics and for the average cooperation rate as function of the cost-to-benefit ratio. For positive reactive strategies, we prove that cooperation is more abundant than defection if the area of the cooperative region is greater than 1/2 which is equivalent to benefit, b, divided by cost, c, exceeding [Formula: see text]. We introduce the concept of strategies that are stable with probability one. We also study an extended process and discuss other games.
Collapse
Affiliation(s)
- Philip LaPorte
- Department of Mathematics, University of California, Berkeley, CA 94720, USA
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Lu S, Zhu G, Zhang L. The promoting effect of adaptive persistence aspiration on the cooperation based on the consideration of payoff and environment in prisoner's dilemma game. Biosystems 2023; 226:104868. [PMID: 36841505 DOI: 10.1016/j.biosystems.2023.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
This work explores whether holding the last aspiration for a period of time can promote cooperation. Specifically, an evolutionary spatial prisoner's dilemma game mode is proposed, in which the players adjust strategies and aspirations by considering the payoff and environment. Therefore, the core is to allow players to hold the current aspiration for a period of time. Through numerical calculation, this study finds that the existence of an appropriate duration of aspiration can promote cooperation when b is less than a certain value. Moreover, the cooperation is gradually enhanced with the increase of T-max (maximum aspiration duration) when b is greater than it, but the enhancing effect is limited. It is also found that an appropriate value α (sensitivity to environmental change) can promote cooperation at different b intervals. Besides, this system indicates good robustness. Overall, this study provides a new perspective on exploring cooperative evolution based on aspiration.
Collapse
Affiliation(s)
- Shounan Lu
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Ge Zhu
- School of Information Management, Beijing Information Science and Technology University, Beijing, 100192, China; Owen Graduate School of Management, Vanderbilt University, Nashville, 37203, USA
| | - Lianzhong Zhang
- School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Qiang B, Zhang L, Huang C. Towards preferential selection in the prisoner's dilemma game. PLoS One 2023; 18:e0282258. [PMID: 36827346 PMCID: PMC9955638 DOI: 10.1371/journal.pone.0282258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
In previous works, the choice of learning neighbor for an individual has generally obeyed pure random selection or preferential selection rules. In this paper, we introduce a tunable parameter ε to characterize the strength of preferential selection and focus on the transition towards preferential selection in the spatial evolutionary game by controlling ε to guide the system from pure random selection to preferential selection. Our simulation results reveal that the introduction of preferential selection can hugely alleviate social dilemmas and enhance network reciprocity. A larger ε leads to a higher critical threshold of the temptation b for the extinction of cooperators. Moreover, we provide some intuitive explanations for the above results from the perspective of strategy transition and cooperative clusters. Finally, we examine the robustness of the results for noise K and different topologies, find that qualitative features of the results are unchanged.
Collapse
Affiliation(s)
- Bingzhuang Qiang
- School of Computer, Electronics and Information, Guangxi University, Nanning, Guangxi, China
| | - Lan Zhang
- School of Information, Xi’an University of Finance and Economics, Xi’an, Shanxi, China
| | - Changwei Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
10
|
Impact of social reward on the evolution of cooperation in voluntary prisoner's dilemma. Biosystems 2023; 223:104821. [PMID: 36464161 DOI: 10.1016/j.biosystems.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
The existence and sustainability of cooperation is a critical issue in nature and social systems. Reward is an essential mechanism to enhance cooperation. Meanwhile, some individuals loathe competition and then choose to escape and become a loner in competition. In this scenario, we propose a four-strategy networked evolutionary game model involving rewarders, loners, cooperators, and defectors. The classical square lattice and the Erdös-Rényi random network are adopted to describe the interaction between individuals. The four-strategy model is an extension of the classic prisoner's dilemma game model. The simulation results show that the introduction of new strategic choices can significantly improve cooperation in the population. The promotion level of cooperation is directly correlated with reward intensity and negatively correlated with reward cost. With regard to the evolution of altruistic behaviors, the fixed income from interactions with loners has an impact that is connected to the temptation to defect. Furthermore, by analyzing characteristic snapshots of four strategies, we further dissect the essence of the evolution of cooperation. As the temptation value increases, cooperators and rewarders first form compact clusters, then more and more loners join to resist the intrusion of defectors. Eventually, the three strategies coexist stably in a spatially structured population. Our research may shed some light on exploring the nature of cooperation and solving social dilemmas in the future.
Collapse
|
11
|
Vivekanandhan G, Nourian Zavareh M, Natiq H, Nazarimehr F, Rajagopal K, Svetec M. Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates. CHAOS, SOLITONS, AND FRACTALS 2022; 163:112565. [PMID: 35996619 PMCID: PMC9385832 DOI: 10.1016/j.chaos.2022.112565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, an epidemic model for spreading COVID-19 is presented. This model considers the birth and death rates in the dynamics of spreading COVID-19. The birth and death rates are assumed to be the same, so the population remains constant. The dynamics of the model are explained in two phases. The first is the epidemic phase, which spreads during a season based on the proposed SIR/V model and reaches a stable state at the end of the season. The other one is the "vaccination campaign", which takes place between two seasons based on the rules of the vaccination game. In this stage, each individual in the population decides whether to be vaccinated or not. Investigating the dynamics of the studied model during a single epidemic season without consideration of the vaccination game shows waves in the model as experimental knowledge. In addition, the impact of the parameters is studied via the rules of the vaccination game using three update strategies. The result shows that the pandemic speeding can be changed by varying parameters such as efficiency and cost of vaccination, defense against contagious, and birth and death rates. The final epidemic size decreases when the vaccination coverage increases and the average social payoff is modified.
Collapse
Affiliation(s)
| | - Mahdi Nourian Zavareh
- Department of Biomedical Engineering, Faculty of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hayder Natiq
- Information Technology Collage, Imam Ja'afar Al-Sadiq University, 10001 Baghdad, Iraq
| | - Fahimeh Nazarimehr
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran polytechnic), Iran
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, India
- Department of Electronics and Communications Engineering and University Centre for Research & Development, Chandigarh University, Mohali, -140413, Punjab, India
| | - Milan Svetec
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Cuaresma DCN, Chiba E, Tubay JM, Rabajante JF, Gavina MKA, Yoshimura J, Ito H, Okabe T, Morita S. Optimal strategies and cost-benefit analysis of the [Formula: see text]-player weightlifting game. Sci Rep 2022; 12:8482. [PMID: 35589925 PMCID: PMC9120137 DOI: 10.1038/s41598-022-12394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
The study of cooperation has been extensively studied in game theory. Especially, two-player two-strategy games have been categorized according to their equilibrium strategies and fully analysed. Recently, a grand unified game covering all types of two-player two-strategy games, i.e., the weightlifting game, was proposed. In the present study, we extend this two-player weightlifting game into an [Formula: see text]-player game. We investigate the conditions for pure strategy Nash equilibria and for Pareto optimal strategies, expressed in terms of the success probability and benefit-to-cost ratio of the weightlifting game. We also present a general characterization of [Formula: see text]-player games in terms of the proposed game. In terms of a concrete example, we present diagrams showing how the game category varies depending on the benefit-to-cost ratio. As a general rule, cooperation becomes difficult to achieve as group size increases because the success probability of weightlifting saturates towards unity. The present study provides insights into achieving behavioural cooperation in a large group by means of a cost-benefit analysis.
Collapse
Affiliation(s)
- Diane Carmeliza N. Cuaresma
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 423-8561 Japan
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Erika Chiba
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Jerrold M. Tubay
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Jomar F. Rabajante
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Maica Krizna A. Gavina
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Jin Yoshimura
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 423-8561 Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523 Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 Japan
- The University Museum, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Takuya Okabe
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 423-8561 Japan
| | - Satoru Morita
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 423-8561 Japan
| |
Collapse
|
13
|
The Effect of Bounded Rationality on Human Cooperation with Voluntary Participation. MATHEMATICS 2022. [DOI: 10.3390/math10091550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolution of human cooperation is an important issue concerning social science. A deep understanding of human bounded rationality is a prerequisite for promoting collective cooperation and solving social dilemmas. Here we construct an asymmetric micro-dynamic based on bounded rationality from a micro perspective by combining behavioral economics and cognitive psychology with evolutionary game theory. Asynchronously updated Monte Carlo simulations were conducted where individuals were located on a square lattice to play a voluntary public goods game. The results showed that “free riding” behaviors can be effectively suppressed in most situations. The cooperation level can be obviously enhanced in a population comprising easily satisfied cooperators and greedy defectors. Moreover, essential conditions for the stability of the system are further discussed at the microscopic level, and altruistic behavior can be explained that an individual with lower expectations for or underestimation of a single game is more likely to cooperate. We argue that, compared to traditional approaches, the integration of interdisciplinary ideas should be taken more seriously.
Collapse
|
14
|
Lu P, He R, Chen D. Exploring S-shape curves and heterogeneity effects of rumor spreading in online collective actions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2355-2380. [PMID: 35240788 DOI: 10.3934/mbe.2022109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays online collective actions are pervasive, such as the rumor spreading on the Internet. The observed curves take on the S-shape, and we focus on evolutionary dynamics for S- shape curves of online rumor spreading. For agents, key factors, such as internal aspects, external aspects, and hearing frequency jointly determine whether to spread it. Agent-based modeling is applied to capture micro-level mechanism of this S-shape curve. We have three findings: (a) Standard S-shape curves of spreading can be obtained if each agent has the zero threshold; (b) Under zero-mean thresholds, as heterogeneity (SD) grows from zero, S-shape curves with longer right tails can be obtained. Generally speaking, stronger heterogeneity comes up with a longer duration; and (c) Under positive mean thresholds, the spreading curve is two-staged, with a linear stage (first) and nonlinear stage (second), but not standard S-shape curves either. From homogeneity to heterogeneity, the spreading S-shaped curves have longer right tail as the heterogeneity grows. For the spreading duration, stronger heterogeneity usually brings a shorter duration. The effects of heterogeneity on spreading curves depend on different situations. Under both zero and positive-mean thresholds, heterogeneity leads to S-shape curves. Hence, heterogeneity enhances the spreading with thresholds, but it may postpone the spreading process with homogeneous thresholds.
Collapse
Affiliation(s)
- Peng Lu
- School of Economics and Management, Shananxi University of Science and Technology, Xi'an, China
- School of Public Administration, Central South University, Changsha, China
| | - Rong He
- School of Economics and Management, Shananxi University of Science and Technology, Xi'an, China
| | - Dianhan Chen
- School of Public Administration, Central South University, Changsha, China
| |
Collapse
|
15
|
Shi J, Liu J, Perc M, Deng Z, Wang Z. Neighborhood size effects on the evolution of cooperation under myopic dynamics. CHAOS (WOODBURY, N.Y.) 2021; 31:123113. [PMID: 34972342 DOI: 10.1063/5.0073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We study the evolution of cooperation in 2×2 social dilemma games in which players are located on a two-dimensional square lattice. During the evolution, each player modifies her strategy by means of myopic update dynamic to maximize her payoff while composing neighborhoods of different sizes, which are characterized by the corresponding radius, r. An investigation of the sublattice-ordered spatial structure for different values of r reveals that some patterns formed by cooperators and defectors can help the former to survive, even under untoward conditions. In contrast to individuals who resist the invasion of defectors by forming clusters due to network reciprocity, innovators spontaneously organize a socially divisive structure that provides strong support for the evolution of cooperation and advances better social systems.
Collapse
Affiliation(s)
- Juan Shi
- School of Automation, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Jinzhuo Liu
- School of Software, Yunnan University, Kunming, Yunnan 650504, China
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Zhenghong Deng
- School of Automation, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Zhen Wang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Shaanxi 710072, China
| |
Collapse
|
16
|
Arefin MR, Tanimoto J. Impact of the baseline payoff on evolutionary outcomes. Phys Rev E 2021; 104:044314. [PMID: 34781447 DOI: 10.1103/physreve.104.044314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
Do individuals enjoying a higher baseline payoff behave similarly in competitive scenarios compared to their counterparts? The classical replicator equation does not answer such a question since it is invariant to the background or baseline payoff of individuals. In reality, however, if one's baseline payoff is higher than the possible payoffs of an interaction (or game), the individual may respond generously or indifferently if s(he) is satisfied with the prevailing benchmark payoff. This work intends to explore such a phenomenon within the realm of pairwise interactions-taking the prisoner's dilemma as a metaphor-in well-mixed finite and infinite populations. In this framework, a player uses the payoff (comprising baseline and game payoffs) -expectation difference to estimate a degree of eagerness and, with that degree of eagerness, revises his or her strategy with a certain probability. We adopt two approaches to explore such a context, naming them as the Fermi and imitation processes, in which the former uses a pairwise Femi function and the latter considers the relative fitness to estimate probabilities for strategy revision. In a finite population, we examine the effect of intensities to payoff-expectation and strategic payoff differences (denoted by k_{1} and k_{2}, respectively) as well as the level of contentment (ω) on the fixation probability and fixation time (for a single defector). We observe that the fixation probability surges with the increase of intensity parameters. Nevertheless, the maximum fixation probability may require a substantially larger time to fixate, especially when the expectation is lower than the baseline payoff. This means that cooperators can persist for a longer period of time. A higher expectation or greed, however, considerably reduces the fixation time. Interestingly, our numerical simulation reveals that both approaches are equivalent under weak k_{2}(≪1) in the Fermi process. We further derive mean-field equations for both approaches in the context of an infinite population, where we observe two possible evolutionary consequences: either full-scale defection or the persistence of the initial frequency of cooperators. The latter scenario indicates players' uninterested or neutral behavior in relation to the interaction due to their satisfaction on the baseline payoff.
Collapse
Affiliation(s)
- Md Rajib Arefin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan.,Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan.,Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
17
|
Chowdhury SN, Kundu S, Perc M, Ghosh D. Complex evolutionary dynamics due to punishment and free space in ecological multigames. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The concurrence of ecological and evolutionary processes often arises as an integral part of various biological and social systems. We here study eco-evolutionary dynamics by adopting two paradigmatic metaphors of social dilemmas with contrasting outcomes. We use the Prisoner’s Dilemma and Snowdrift games as the backbone of the proposed mathematical model. Since cooperation is a costly proposition in the face of the Darwinian theory of evolution, we go beyond the traditional framework by introducing punishment as an additional strategy. Punishers bare an additional cost from their own resources to try and discourage or prohibit free-riding from selfish defectors. Our model also incorporates the ecological signature of free space, which has an altruistic-like impact because it allows others to replicate and potentially thrive. We show that the consideration of these factors has broad implications for better understanding the emergent complex evolutionary dynamics. In particular, we report the simultaneous presence of different subpopulations through the spontaneous emergence of cyclic dominance, and we determine various stationary points using traditional game-theoretic concepts and stability analysis.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica, 17, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
18
|
Xia K. The characteristics of average abundance function with mutation of multi-player threshold public goods evolutionary game model under redistribution mechanism. BMC Ecol Evol 2021; 21:152. [PMID: 34348658 PMCID: PMC8336419 DOI: 10.1186/s12862-021-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In recent years, the average abundance function has attracted much attention as it reflects the degree of cooperation in the population. Then it is significant to analyse how average abundance functions can be increased to promote the proliferation of cooperative behaviour. However, further theoretical analysis for average abundance function with mutation under redistribution mechanism is still lacking. Furthermore, the theoretical basis for the corresponding numerical simulation is not sufficiently understood. RESULTS We have deduced the approximate expressions of average abundance function with mutation under redistribution mechanism on the basis of different levels of selection intensity [Formula: see text] (sufficiently small and large enough). In addition, we have analysed the influence of the size of group d, multiplication factor r, cost c, aspiration level [Formula: see text] on average abundance function from both quantitative and qualitative aspects. CONCLUSIONS (1) The approximate expression will become the linear equation related to selection intensity when [Formula: see text] is sufficiently small. (2) On one hand, approximation expression when [Formula: see text] is large enough is not available when r is small and m is large. On the other hand, this approximation expression will become more reliable when [Formula: see text] is larger. (3) On the basis of the expected payoff function [Formula: see text] and function [Formula: see text], the corresponding results for the effects of parameters (d,r,c,[Formula: see text]) on average abundance function [Formula: see text] have been explained.
Collapse
Affiliation(s)
- Ke Xia
- School of Economics, Zhengzhou University of Aeronautics, Zhengzhou, China.
| |
Collapse
|
19
|
Arefin MR, Tanimoto J. Imitation and aspiration dynamics bring different evolutionary outcomes in feedback-evolving games. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Feedback-evolving games characterize the interplay between the evolution of strategies and environments. Rich dynamics have been derived for such games under the premise of the replicator equation, which unveils persistent oscillations between cooperation and defection. Besides replicator dynamics, here we have employed aspiration dynamics, in which individuals, instead of comparing payoffs with opposite strategies, assess their payoffs by self-evaluation to update strategies. We start with a brief review of feedback-evolving games with replicator dynamics and then comprehensively discuss such games with aspiration dynamics. Interestingly, the tenacious cycles, as perceived in replicator dynamics, cannot be observed in aspiration dynamics. Our analysis reveals that a parameter
θ
—which depicts the strength of cooperation in enhancing the environment—plays a pivotal role in comprehending the dynamics. In particular, with the symmetric aspiration level, if replete and depleted states, respectively, experience Prisoner's Dilemma and Trivial games, the rich environment is achievable only when
θ
> 1. The case
θ
< 1 never allows us to reach the replete state, even with a higher cooperation level. Furthermore, if cooperators aspire less than defectors, then the enhanced state can be achieved with a relatively lower
θ
value compared with the opposite scenario because too much expectation from cooperation can be less beneficial.
Collapse
Affiliation(s)
- Md. Rajib Arefin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
20
|
Chiba E, Cuaresma DCN, Rabajante JF, Tubay JM, Areja Gavina MK, Yamamoto T, Yoshimura J, Morita S, Ito H, Okabe T. Improving environment drives dynamical change in social game structure. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201166. [PMID: 34035943 PMCID: PMC8097197 DOI: 10.1098/rsos.201166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The development of cooperation in human societies is a major unsolved problem in biological and social sciences. Extensive studies in game theory have shown that cooperative behaviour can evolve only under very limited conditions or with additional complexities, such as spatial structure. Non-trivial two-person games are categorized into three types of games, namely, the prisoner's dilemma game, the chicken game and the stag hunt game. Recently, the weight-lifting game has been shown to cover all five games depending on the success probability of weight lifting, which include the above three games and two trivial cases (all cooperation and all defection; conventionally not distinguished as separate classes). Here, we introduce the concept of the environmental value of a society. Cultural development and deterioration are represented by changes in this probability. We discuss cultural evolution in human societies and the biological communities of living systems.
Collapse
Affiliation(s)
- Erika Chiba
- Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Diane Carmeliza N. Cuaresma
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Jomar F. Rabajante
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
- Faculty of Education, University of the Philippines Open University, College, Laguna 4031, Philippines
| | - Jerrold M. Tubay
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Maica Krizna Areja Gavina
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | | | - Jin Yoshimura
- Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- The University Museum, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Marine Biosystems Research Center, Chiba University, Uchiura, Kamogawa, Chiba 299-5502, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Satoru Morita
- Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Takuya Okabe
- Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
21
|
Peshkovskaya A, Myagkov M. Eye Gaze Patterns of Decision Process in Prosocial Behavior. Front Behav Neurosci 2020; 14:525087. [PMID: 33192360 PMCID: PMC7642209 DOI: 10.3389/fnbeh.2020.525087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding human behavior remains a grand challenge across disciplines. We used eye tracking to investigate how visual perception is associated with a strategic behavior in the decision process. Gaze activity and eye movement patterns were measured in 14 human participants with different decision strategies. We also employed a social domain to force strategic behavior. We find that social interaction significantly improves the level of cooperation, prosocial decisions, and overall cooperative strategy in experiment participants. Gaze behavior in individuals with a cooperative strategy is characterized by a greater number of fixations and frequent gaze returns to the scanned areas. On the contrary, individuals with a non-cooperative strategy approach decision-making task stimuli in a distinct way with long-duration fixations and a low number of gaze returns to the areas already scanned. Social domain, which enhances cooperation and prosocial behavior, makes participants more attentive to the task stimuli in our experiments. Moreover, prolonged gaze at the area of cooperative choice testifies in favor of the cooperative decision.
Collapse
Affiliation(s)
- Anastasia Peshkovskaya
- Laboratory of Experimental Methods in Cognitive and Social Sciences, Tomsk State University, Tomsk, Russia
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail Myagkov
- Laboratory of Experimental Methods in Cognitive and Social Sciences, Tomsk State University, Tomsk, Russia
- Institute of Education, National Research University Higher School of Economics, Moscow, Russia
- University of Oregon, Eugene, OR, United States
| |
Collapse
|
22
|
Arefin MR, Tanimoto J. Evolution of cooperation in social dilemmas under the coexistence of aspiration and imitation mechanisms. Phys Rev E 2020; 102:032120. [PMID: 33075988 DOI: 10.1103/physreve.102.032120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/24/2020] [Indexed: 05/09/2023]
Abstract
Imitation and aspiration update rules are frequently observed in human and animal populations. While the imitation process entails payoff comparisons with surroundings, the aspiration process refers to self-evaluation. This work explores the evolution of cooperation in dyadic games under the coexistence of these two dynamics in an infinitely large well-mixed population. Two situations have been explored: (i) individuals adopt either an imitation or aspiration update rule with a certain probability, and (ii) the entire population is divided into two groups where one group only uses imitative rules and the other obeys aspiration updating alone. Both premises have been modeled by taking an infinite approximation of the finite population. In particular, the second mixing principle follows an additive property: the outcome of the whole population is the weighted average of outcomes from imitators and aspiration-driven individuals. Our work progressively investigates several variants of aspiration dynamics under strong selection, encompassing symmetric, asymmetric, and adaptive aspirations, which then coalesce with imitative dynamics. We also demonstrate which of the update rules performs better, under different social dilemmas, by allowing the evolution of the preference of update rules besides strategies. Aspiration dynamics always outperform imitation dynamics in the prisoner's dilemma, however, in the chicken and stag-hunt games the predominance of either update rule depends on the level of aspirations as well as on the extent of greed and fear present in the system. Finally, we examine the coevolution of strategies, aspirations, and update rules which leads to a binary state of obeying either imitation or aspiration dynamics. In such a circumstance, when aspiration dynamics prevail over imitation dynamics, cooperators and defectors coexist to an equal extent.
Collapse
Affiliation(s)
- Md Rajib Arefin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
23
|
Arefin MR, Masaki T, Tanimoto J. Vaccinating behaviour guided by imitation and aspiration. Proc Math Phys Eng Sci 2020. [DOI: 10.1098/rspa.2020.0327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vaccinating decisions can be influenced by imitation as well as self-evaluation or aspiration. This work analyses vaccinating behaviours by coupling both imitation and aspiration update rules, adopting an existing set-up of the mean-field vaccination game. We incorporate the imitation mechanism with several variants of the aspiration protocol, encompassing constant and adaptive aspirations. Equations of the combined dynamics have been derived by grouping the population according to (i) vaccinating strategies and (ii) healthy and infected status within each strategy. If aspiration levels are fixed but differentiated by vaccinating strategies, then vaccinators aspiring less than non-vaccinators are found to ameliorate the vaccination coverage, thereby yielding a less infectious state. The adaptive aspirations maintain a positive correlation with the vaccine efficacy while keeping the opposite relation with vaccination cost. When vaccinating strategies, aspirations and update rules are allowed to evolve synchronously, then either the imitation or aspiration process takes over the entire population. If aspiration rules prevail, then vaccinees and non-vaccinees coexist equally (according to (i)) or vaccine uptake follows a non-monotonic trend with the efficacy (according to (ii)). The imitative rule performs better when vaccination is less expensive or cheap, while aspiration updating safeguards the tenacity of vaccinees despite vaccination being expensive.
Collapse
Affiliation(s)
- Md. Rajib Arefin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanaka Masaki
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
24
|
Amaral MA, Javarone MA. Strategy equilibrium in dilemma games with off-diagonal payoff perturbations. Phys Rev E 2020; 101:062309. [PMID: 32688499 DOI: 10.1103/physreve.101.062309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We analyze the strategy equilibrium of dilemma games considering a payoff matrix affected by small and random perturbations on the off-diagonal. Notably, a recent work [Proc. R. Soc. A 476, 20200116 (2020)1364-502110.1098/rspa.2020.0116] reported that while cooperation is sustained by perturbations acting on the main diagonal, a less clear scenario emerges when perturbations act on the off-diagonal. Thus, the second case represents the core of this investigation, aimed at completing the description of the effects that payoff perturbations have on the dynamics of evolutionary games. Our results, achieved by analyzing the proposed model under a variety of configurations as different update rules, suggest that off-diagonal perturbations actually constitute a nontrivial form of noise. In particular, the most interesting effects are detected near the phase transition, as perturbations tend to move the strategy distribution towards nonordered states of equilibrium, supporting cooperation when defection is pervading the population, and supporting defection in the opposite case. To conclude, we identified a form of noise that, under controlled conditions, could be used to enhance cooperation and greatly delay its extinction.
Collapse
Affiliation(s)
- Marco A Amaral
- Instituto de Humanidades, Artes e Ciências, Universidade Federal do Sul da Bahia-BA, 45996-108, Brazil
| | - Marco A Javarone
- Department of Mathematics, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Cooperation on Interdependent Networks by Means of Migration and Stochastic Imitation. ENTROPY 2020; 22:e22040485. [PMID: 33286258 PMCID: PMC7516967 DOI: 10.3390/e22040485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Evolutionary game theory in the realm of network science appeals to a lot of research communities, as it constitutes a popular theoretical framework for studying the evolution of cooperation in social dilemmas. Recent research has shown that cooperation is markedly more resistant in interdependent networks, where traditional network reciprocity can be further enhanced due to various forms of interdependence between different network layers. However, the role of mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an interdependent network model, where individuals in each layer follow different evolutionary games, and where each player is considered as a mobile agent that can move locally inside its own layer to improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on the other layer. We show that, by considering migration and stochastic imitation, further fascinating gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be promoted on both layers, even if cooperation without interdependence would be improbable on one of the layers due to adverse conditions. Our results provide a rationale for engineering better social systems at the interface of networks and human decision making under testing dilemmas.
Collapse
|
26
|
Co-Evolution of Complex Network Public Goods Game under the Edges Rules. ENTROPY 2020; 22:e22020199. [PMID: 33285973 PMCID: PMC7516628 DOI: 10.3390/e22020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
The reconnection of broken edges is an effective way to avoid drawback for the commons in past studies. Inspired by this, we proposed a public goods game model under the edges rules, where we evaluate the weight of edges by their nodes' payoff. The results proved that the game obtains a larger range of cooperation with a small gain factor by this proposed model by consulting Monte Carlo simulations (MCS) and real experiments. Furthermore, as the following the course of game and discussing the reason of cooperation, in the research, we found that the distribution entropy of the excess average degree is able to embody and predict the presence of cooperation.
Collapse
|
27
|
Rong Z, Wu ZX, Li X, Holme P, Chen G. Heterogeneous cooperative leadership structure emerging from random regular graphs. CHAOS (WOODBURY, N.Y.) 2019; 29:103103. [PMID: 31675848 DOI: 10.1063/1.5120349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
This paper investigates the evolution of cooperation and the emergence of hierarchical leadership structure in random regular graphs. It is found that there exist different learning patterns between cooperators and defectors, and cooperators are able to attract more followers and hence more likely to become leaders. Hence, the heterogeneous distributions of reputation and leadership can emerge from homogeneous random graphs. The important directed game-learning skeleton is then studied, revealing some important structural properties, such as the heavy-tailed degree distribution and the positive in-in degree correlation.
Collapse
Affiliation(s)
- Zhihai Rong
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou 730000, China
| | - Xiang Li
- Adaptive Networks and Control Lab, Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Petter Holme
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Guanrong Chen
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
The influence of heterogeneous learning ability on the evolution of cooperation. Sci Rep 2019; 9:13920. [PMID: 31558763 PMCID: PMC6763452 DOI: 10.1038/s41598-019-50451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
In this paper, we design a simple coevolution model to investigate the role of heterogeneous learning ability on the evolution of cooperation. The model weakens the winner's learning ability in order to keep its current advantage. Conversely, it strengthens the loser's learning ability for increasing the chance to update its strategy. In particular, we consider this coevolutionary model separately applying to both cooperators and defectors (rule I), only cooperators (rule II), as well as only defectors (rule III) in spatial prisoner's dilemma game. Through numerical simulations, we find that cooperation can be promoted in rule II, whereas, cooperation is hampered in rule I and rule III. We reveal its potential reason from the viewpoint of enduring and expanding periods in game dynamics. Our results thus provide a deeper understanding regarding the heterogeneous learning ability on game theory.
Collapse
|
29
|
The public goods game with shared punishment cost in well-mixed and structured populations. J Theor Biol 2019; 476:36-43. [PMID: 31150664 DOI: 10.1016/j.jtbi.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022]
Abstract
Both experimental and theoretical studies have shown that punishment plays an important role in promoting cooperation. Various forms of punishment are proposed to explain why costly punishment could be maintained in the population and stabilize cooperation. Here we consider an altruistic behavior that cooperators perform cooperation and punishment simultaneously and share the punishment cost. We investigate the role of punishment cost shared among cooperators in the evolution of cooperation in public goods game. We show that the punishment can promote and stabilize cooperation when the penalty imposed on defectors is large enough compared to the punishment cost incurred by cooperators in well-mixed populations. In structured populations, cooperation could emerge under lower fine threshold and coexist with defection. However, as the penalty increases, cooperation will have a larger basin of attraction in the well-mixed population than that in the structured population. Our analytical and simulated results indicate that punishment indeed can effectively promote the evolution of cooperation. We also find that population structure can promote the coexistence of cooperation and defection but not always be beneficial to cooperation.
Collapse
|
30
|
Fang Y, Benko TP, Perc M, Xu H. Dissimilarity-driven behavior and cooperation in the spatial public goods game. Sci Rep 2019; 9:7655. [PMID: 31113984 PMCID: PMC6529404 DOI: 10.1038/s41598-019-44184-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
In this paper, we explore the impact of four different types of dissimilarity-driven behavior on the evolution of cooperation in the spatial public goods game. While it is commonly assumed that individuals adapt their strategy by imitating one of their more successful neighbors, in reality only very few will be awarded the highest payoffs. Many have equity or equality preferences, and they have to make do with an average or even with a low payoff. To account for this, we divide the population into two categories. One consists of payoff-driven players, while the other consists of dissimilarity-driven players. The later imitate the minority strategy in their group based on four different dissimilarity-driven behaviors. The rule that most effectively promotes cooperation, and this regardless of the multiplication factor of the public goods game, is when individuals adopt the minority strategy only when their payoff is better than that of their neighbors. If the dissimilarity-driven players adopt the minority strategy regardless of the payoffs of others, or if their payoff is the same, the population typically evolves towards a neutral state where cooperators and defectors are equally common. This may be beneficial when the multiplication factor is low, when defectors would otherwise dominate. However, if the dissimilarity-driven players adopt the minority strategy only when their payoff is worse than that of their neighbors, then cooperation is not promoted at all in comparison to the baseline case in the absence of dissimilarity-driven behavior. We explore the pattern formation behind these results, and we discuss their wider implications for the better understanding of cooperative behavior in social groups.
Collapse
Affiliation(s)
- Yinhai Fang
- College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
| | - Tina P Benko
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia.
- CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000, Maribor, Slovenia.
- Complexity Science Hub Vienna, Josefstädterstraße 39, A-1080, Vienna, Austria.
| | - Haiyan Xu
- College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
31
|
Chu C, Hu X, Shen C, Li T, Boccaletti S, Shi L, Wang Z. Self-organized interdependence among populations promotes cooperation by means of coevolution. CHAOS (WOODBURY, N.Y.) 2019; 29:013139. [PMID: 30709109 DOI: 10.1063/1.5059360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
We show that self-organized interdependence promotes the evolution of cooperation in interdependent networks. The evolution of connections between networks occurs according to the following rule: if a player often wins against its opponent (regardless of its strategy), it is allowed to form an external link with the corresponding partner in another network to obtain additional benefit; otherwise, the opportunity to increase its benefit is lost. Through numerical simulation, it is unveiled that cooperation can be significantly promoted due to interdependent network reciprocity. Interestingly, the synchronization of evolutionary processes emerges on both networks, and individuals can take advantage of interdependent network reciprocity when both the strategies and the coevolving times in the two networks are synchronous.
Collapse
Affiliation(s)
- Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Xintao Hu
- School of Software, Yunnan University, Kunming, Yunnan 650504, China
| | - Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Tong Li
- School of Software, Yunnan University, Kunming, Yunnan 650504, China
| | - Stefano Boccaletti
- CNR Institute of Complex Systems, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Zhen Wang
- School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
32
|
Wu B, Zhou L. Individualised aspiration dynamics: Calculation by proofs. PLoS Comput Biol 2018; 14:e1006035. [PMID: 30252850 PMCID: PMC6177198 DOI: 10.1371/journal.pcbi.1006035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/09/2018] [Accepted: 08/24/2018] [Indexed: 11/30/2022] Open
Abstract
Cooperation is key for the evolution of biological systems ranging from bacteria communities to human societies. Evolutionary processes can dramatically alter the cooperation level. Evolutionary processes are typically of two classes: comparison based and self-evaluation based. The fate of cooperation is extremely sensitive to the details of comparison based processes. For self-evaluation processes, however, it is still unclear whether the sensitivity remains. We concentrate on a class of self-evaluation processes based on aspiration, where all the individuals adjust behaviors based on their own aspirations. We prove that the evolutionary outcome with heterogeneous aspirations is the same as that of the homogeneous one for regular networks under weak selection limit. Simulation results further suggest that it is also valid for general networks across various distributions of personalised aspirations. Our result clearly indicates that self-evaluation processes are robust in contrast with comparison based rules. In addition, our result greatly simplifies the calculation of the aspiration dynamics, which is computationally expensive. Cooperation is the cornerstone to understand how biological systems evolve. Previous studies have shown that cooperation is sensitive to the details of evolutionary processes, even if all the individuals update strategies in the same way. Here we propose a class of updating rules driven by self-evaluation, where each individual has its personal aspiration. The evolutionary outcome is the same as if all the individuals adopt the same aspiration for regular networks, provided the selection intensity is weak enough. In addition, we provide a simple numerical method to identify the favored strategy. Our result shows a very robust class of strategy updating rules. And it implies that complexity in updating rules does not necessarily lead to the sensitivity of evolutionary outcomes.
Collapse
Affiliation(s)
- Bin Wu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, China
- * E-mail:
| | - Lei Zhou
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
33
|
Shen C, Chu C, Shi L, Perc M, Wang Z. Aspiration-based coevolution of link weight promotes cooperation in the spatial prisoner's dilemma game. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180199. [PMID: 29892454 PMCID: PMC5990773 DOI: 10.1098/rsos.180199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 05/24/2023]
Abstract
In this article, we propose an aspiration-based coevolution of link weight, and explore how this set-up affects the evolution of cooperation in the spatial prisoner's dilemma game. In particular, an individual will increase the weight of its link to its neighbours only if the payoff received via this interaction exceeds a pre-defined aspiration. Conversely, if the received payoff is below this aspiration, the link weight with the corresponding neighbour will decrease. Our results show that an appropriate aspiration level leads to a high-cooperation plateau, whereas too high or too low aspiration will impede the evolution of cooperation. We explain these findings with a comprehensive analysis of transition points and with a systematic analysis of typical configuration patterns. The presented results provide further theoretical insights with regards to the impact of different aspiration levels on cooperation in human societies.
Collapse
Affiliation(s)
- Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, 2000 Maribor, Slovenia
- CAMTP—Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, 2000 Maribor, Slovenia
- Complexity Science Hub, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Zhen Wang
- School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
34
|
Shen C, Chu C, Geng Y, Jin J, Chen F, Shi L. Cooperation enhanced by the coevolution of teaching activity in evolutionary prisoner's dilemma games with voluntary participation. PLoS One 2018; 13:e0193151. [PMID: 29451899 PMCID: PMC5815606 DOI: 10.1371/journal.pone.0193151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/04/2018] [Indexed: 11/28/2022] Open
Abstract
Voluntary participation, as an additional strategy involved in repeated games, has been proved to be an efficient way to promote the evolution of cooperation theoretically and empirically. Besides, current studies show that the coevolution of teaching activity can promote cooperation. Thus, inspired by aforementioned above, we investigate the effect of coevolution of teaching activity on the evolution of cooperation for prisoner's dilemma game with voluntary participation: when the focal player successfully enforces its strategy on the opponent, his teaching ability will get an increase. Through numerical simulation, we have shown that voluntary participation could effectively promote the fraction of cooperation, which is also affected by the value of increment. Furthermore, we investigate the influence of the increment value on the density of different strategies and find that there exists an optimal increment value that plays an utmost role on the evolutionary dynamics. With regard to this observation, we unveil that an optimal value of increment can lead to strongest heterogeneity in agents' teaching ability, further promoting the evolution of cooperation.
Collapse
Affiliation(s)
- Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
| | - Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
| | - Yini Geng
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
| | - Jiahua Jin
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
- Library, Yunnan Normal University, Kunming, Yunnan, PR China
| | - Fei Chen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, PR China
| |
Collapse
|
35
|
Liu X, Pan Q, He M. Promotion of cooperation in evolutionary game dynamics with local information. J Theor Biol 2018; 437:1-8. [PMID: 29031517 DOI: 10.1016/j.jtbi.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/07/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
In this paper, we propose a strategy-updating rule driven by local information, which is called Local process. Unlike the standard Moran process, the Local process does not require global information about the strategic environment. By analyzing the dynamical behavior of the system, we explore how the local information influences the fixation of cooperation in two-player evolutionary games. Under weak selection, the decreasing local information leads to an increase of the fixation probability when natural selection does not favor cooperation replacing defection. In the limit of sufficiently large selection, the analytical results indicate that the fixation probability increases with the decrease of the local information, irrespective of the evolutionary games. Furthermore, for the dominance of defection games under weak selection and for coexistence games, the decreasing of local information will lead to a speedup of a single cooperator taking over the population. Overall, to some extent, the local information is conducive to promoting the cooperation.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China; School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China.
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
36
|
Pinheiro FL, Hartmann D. Intermediate Levels of Network Heterogeneity Provide the Best Evolutionary Outcomes. Sci Rep 2017; 7:15242. [PMID: 29127336 PMCID: PMC5681591 DOI: 10.1038/s41598-017-15555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
Complex networks impact the diffusion of ideas and innovations, the formation of opinions, and the evolution of cooperative behavior. In this context, heterogeneous structures have been shown to generate a coordination-like dynamics that drives a population towards a monomorphic state. In contrast, homogeneous networks tend to result in a stable co-existence of multiple traits in the population. These conclusions have been reached through the analysis of networks with either very high or very low levels of degree heterogeneity. In this paper, we use methods from Evolutionary Game Theory to explore how different levels of degree heterogeneity impact the fate of cooperation in structured populations whose individuals face the Prisoner’s Dilemma. Our results suggest that in large networks a minimum level of heterogeneity is necessary for a society to become evolutionary viable. Moreover, there is an optimal range of heterogeneity levels that maximize the resilience of the society facing an increasing number of social dilemmas. Finally, as the level of degree heterogeneity increases, the evolutionary dominance of either cooperators or defectors in a society increasingly depends on the initial state of a few influential individuals. Our findings imply that neither very unequal nor very equal societies offer the best evolutionary outcome.
Collapse
Affiliation(s)
- Flávio L Pinheiro
- Collective Learning Group, The MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dominik Hartmann
- Chair for Innovation Management and Innovation Economics, University of Leipzig, Leipzig, Germany. .,Fraunhofer Center for International Management and Knowledge Economy, Leipzig, Germany.
| |
Collapse
|
37
|
Xu X, Rong Z, Wu ZX, Zhou T, Tse CK. Extortion provides alternative routes to the evolution of cooperation in structured populations. Phys Rev E 2017; 95:052302. [PMID: 28618489 DOI: 10.1103/physreve.95.052302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 06/07/2023]
Abstract
In this paper, we study the evolution of cooperation in structured populations (individuals are located on either a regular lattice or a scale-free network) in the context of repeated games by involving three types of strategies, namely, unconditional cooperation, unconditional defection, and extortion. The strategy updating of the players is ruled by the replicator-like dynamics. We find that extortion strategies can act as catalysts to promote the emergence of cooperation in structured populations via different mechanisms. Specifically, on regular lattice, extortioners behave as both a shield, which can enwrap cooperators inside and keep them away from defectors, and a spear, which can defeat those surrounding defectors with the help of the neighboring cooperators. Particularly, the enhancement of cooperation displays a resonance-like behavior, suggesting the existence of optimal extortion strength mostly favoring the evolution of cooperation, which is in good agreement with the predictions from the generalized mean-field approximation theory. On scale-free network, the hubs, who are likely occupied by extortioners or defectors at the very beginning, are then prone to be conquered by cooperators on small-degree nodes as time elapses, thus establishing a bottom-up mechanism for the emergence and maintenance of cooperation.
Collapse
Affiliation(s)
- Xiongrui Xu
- CompleX Lab, Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhihai Rong
- CompleX Lab, Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tao Zhou
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chi Kong Tse
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
38
|
Wang X, Zhang L, Du X. The Effectiveness of Reward and Punishment in Spatial Social Games. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2017. [DOI: 10.1142/s1469026817500079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Punishment and reward are usually regarded as two potential mechanisms to explain the evolution of cooperation especially among multiple participators. However, the performance of these two scenarios in spatial environment needs to be discussed. To figure out this issue, we resort to the [Formula: see text]-player Iterated Snowdrift Dilemma (ISD) game and Iterated Prisoner’s Dilemma (IPD) game. More importantly, the evolution of punishment and reward in social network-structured populations has not been formally addressed. The numerical results show the equilibrium cooperation frequency can be influenced by cost-to-benefit ratio [Formula: see text], the punishment-to-benefit ratio [Formula: see text] and the reward-to-benefit ratio [Formula: see text]. And one intriguing observation is that under the same situation, the punishment is more effective than reward to the population. Then we further probe the effectiveness of neighborhood relationship to the cooperation, which is reflected by the random rewired probability [Formula: see text]. From the distribution of the four roles of the participator we can find that individuals can cooperate easily when they have close relationship. The results of this paper may be helpful to understand the cooperation in complex project or among industry–university–research cooperation project.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong 528400, China
| | - Lei Zhang
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaorong Du
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
39
|
Ito H, Katsumata Y, Hasegawa E, Yoshimura J. The promotion of cooperation by the poor in dynamic chicken games. Sci Rep 2017; 7:43377. [PMID: 28233837 PMCID: PMC5324166 DOI: 10.1038/srep43377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
The evolution of cooperative behavior is one of the most important issues in game theory. Previous studies have shown that cooperation can evolve only under highly limited conditions, and various modifications have been introduced to games to explain the evolution of cooperation. Recently, a utility function basic to game theory was shown to be dependent on current wealth as a conditional (state) variable in a dynamic version of utility theory. Here, we introduce this dynamic utility function to several games. Under certain conditions, poor players exhibit cooperative behavior in two types of chicken games (the hawk-dove game and the snowdrift game) but not in the prisoner’s dilemma game and the stag hunt game. This result indicates that cooperation can be exhibited by the poor in some chicken games. Thus, the evolution of cooperation may not be as limited as has been suggested in previous studies.
Collapse
Affiliation(s)
- Hiromu Ito
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan.,Graduate School of Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Yuki Katsumata
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Eisuke Hasegawa
- Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan.,Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan.,Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.,Marine Biosystems Research Center, Chiba University, Uchiura, Kamogawa, Chiba 299-5502, Japan
| |
Collapse
|
40
|
Chu C, Liu J, Shen C, Jin J, Shi L. Win-stay-lose-learn promotes cooperation in the prisoner's dilemma game with voluntary participation. PLoS One 2017; 12:e0171680. [PMID: 28182707 PMCID: PMC5300200 DOI: 10.1371/journal.pone.0171680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Voluntary participation, demonstrated to be a simple yet effective mechanism to promote persistent cooperative behavior, has been extensively studied. It has also been verified that the aspiration-based win-stay-lose-learn strategy updating rule promotes the evolution of cooperation. Inspired by this well-known fact, we combine the Win-Stay-Lose-Learn updating rule with voluntary participation: Players maintain their strategies when they are satisfied, or players attempt to imitate the strategy of one randomly chosen neighbor. We find that this mechanism maintains persistent cooperative behavior, even further promotes the evolution of cooperation under certain conditions.
Collapse
Affiliation(s)
- Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Jinzhuo Liu
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Jiahua Jin
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
- Library of Yunnan Normal University, Kunming, Yunnan, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
41
|
Reding I, Kelley M, Rowell JT, Rychtář J. A continuous ideal free distribution approach to the dynamics of selfish, cooperative and kleptoparasitic populations. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160788. [PMID: 28018667 PMCID: PMC5180165 DOI: 10.1098/rsos.160788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Population distributions depend upon the aggregate behavioural responses of individuals to a range of environmental factors. We extend a model of ideally motivated populations to describe the local and regional consequences of interactions between three populations distinguished by their levels of cooperation and exploitation. Inspired by the classic prisoner's dilemma game, stereotypical fitness functions describe a baseline non-cooperative population whose per capita fitness decreases with density, obligate co-operators who initially benefit from the presence of conspecifics, and kleptoparasites who require heterospecifics to extract resources from the environment. We examine these populations in multiple combinations, determine where both local and regional coexistence is permitted, and investigate conditions under which one population will invade another. When they invade co-operators in resource-rich areas, kleptoparasites initiate a dynamic instability that leads to the loss of both populations; however, selfish hosts, who can persist at low densities, are immune to this risk. Furthermore, adaptive movement may delay the onset of instability as dispersal relieves dynamic stress. Selfish and cooperative populations default to mutual exclusion, but asymmetric variations in interference strength may relax this condition and permit limited sympatry within the environment. Distinct sub-communities characterize the overall spatial structure.
Collapse
Affiliation(s)
- Ilona Reding
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | | | | | - Jan Rychtář
- University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
42
|
Amaral MA, Wardil L, Perc M, da Silva JKL. Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas. Phys Rev E 2016; 94:032317. [PMID: 27739792 DOI: 10.1103/physreve.94.032317] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/07/2022]
Abstract
In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.
Collapse
Affiliation(s)
- Marco A Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Lucas Wardil
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto, CEP 35400-000 MG, Brazil
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.,CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Jafferson K L da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| |
Collapse
|
43
|
Ito H, Katsumata Y, Hasegawa E, Yoshimura J. What Is True Halving in the Payoff Matrix of Game Theory? PLoS One 2016; 11:e0159670. [PMID: 27487194 PMCID: PMC4972255 DOI: 10.1371/journal.pone.0159670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
In game theory, there are two social interpretations of rewards (payoffs) for decision-making strategies: (1) the interpretation based on the utility criterion derived from expected utility theory and (2) the interpretation based on the quantitative criterion (amount of gain) derived from validity in the empirical context. A dynamic decision theory has recently been developed in which dynamic utility is a conditional (state) variable that is a function of the current wealth of a decision maker. We applied dynamic utility to the equal division in dove-dove contests in the hawk-dove game. Our results indicate that under the utility criterion, the half-share of utility becomes proportional to a player's current wealth. Our results are consistent with studies of the sense of fairness in animals, which indicate that the quantitative criterion has greater validity than the utility criterion. We also find that traditional analyses of repeated games must be reevaluated.
Collapse
Affiliation(s)
- Hiromu Ito
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Yuki Katsumata
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Eisuke Hasegawa
- Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Marine Biosystems Research Center, Chiba University, Uchiura, Kamogawa, Chiba, Japan
- * E-mail:
| |
Collapse
|
44
|
Liu X, He M, Kang Y, Pan Q. Aspiration promotes cooperation in the prisoner's dilemma game with the imitation rule. Phys Rev E 2016; 94:012124. [PMID: 27575094 DOI: 10.1103/physreve.94.012124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/07/2022]
Abstract
A model of stochastic evolutionary game dynamics with finite population of size N+M was built. Among these individuals, N individuals update strategies with aspiration updating, while the other M individuals update strategies with imitation updating. In the proposed model, we obtain the expression of the mean fraction of cooperators and analyze some concrete cases. Compared with the standard imitation dynamics, there is always a positive probability to support the formation of cooperation in the system with the aspiration and imitation rules. Moreover, the numerical results indicate that more aspiration-driven individuals lead to a higher mean fraction of imitation-driven cooperators, which means the invasion of the aspiration-driven individuals is conducive to promoting the cooperation of the imitation-driven individuals.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| | - Yibin Kang
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China.,School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Amaral MA, Wardil L, Perc M, da Silva JKL. Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity. Phys Rev E 2016; 93:042304. [PMID: 27176309 DOI: 10.1103/physreve.93.042304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Collapse
Affiliation(s)
- Marco A Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Lucas Wardil
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Jafferson K L da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| |
Collapse
|
46
|
Jin W, Chen F. Topological chaos of the spatial prisoner's dilemma game on regular networks. J Theor Biol 2016; 391:43-50. [PMID: 26646768 DOI: 10.1016/j.jtbi.2015.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein.
Collapse
Affiliation(s)
- Weifeng Jin
- School of Science, Shanghai University, Shanghai, 200444, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Fangyue Chen
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
47
|
Han D, Sun M. An evolutionary vaccination game in the modified activity driven network by considering the closeness. PHYSICA A 2016; 443:49-57. [PMID: 32288095 PMCID: PMC7134395 DOI: 10.1016/j.physa.2015.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/07/2015] [Indexed: 06/11/2023]
Abstract
In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ / μ . However, when vaccination is allowed the final density of recovered individual first increases and then decreases with the value of λ / μ . Two variables are designed to identify the relation between the individuals' activities and their states. The results draw that both recovered and vaccinated frequency increase with the increase of the individuals' activities. Meanwhile, the immune fee has less impact on the individuals' vaccination than the closeness. While the λ / μ is in a certain range, with the increase of the value of λ / μ , the recovered frequency of the whole crowds reduces. Our results, therefore, reveal the fact that the best of intentions may lead to backfire.
Collapse
Affiliation(s)
- Dun Han
- Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, PR China
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Mei Sun
- Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
48
|
Promote or hinder? The role of punishment in the emergence of cooperation. J Theor Biol 2015; 386:69-77. [PMID: 26408337 DOI: 10.1016/j.jtbi.2015.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 11/24/2022]
Abstract
Investigation of anti-social punishment has shaken the positive role of punishment in the evolution of cooperation. However, punishment is ubiquitous in nature, and the centralized, apposed to decentralized, punishment is more favored by certain modern societies in particular. To explore the underlying principle of such phenomenon, we study the evolution of cooperation in the context of pro- and anti-social punishments subject to two distinct patterns: costly centralized and decentralized punishments. The results suggest that the pattern of punishment has a great effect on the role of punishment in the evolution of cooperation. In the absence of anti-social punishment, the costly centralized punishment is more effective in promoting the emergence of cooperation. Anti-social punishment can subvert the positive role of punishment when anti- and pro-social punishments are in the same pattern. However, driven by centralized pro-social punishment, cooperation can be more advantageous than defection even in the presence of decentralized anti-social punishment.
Collapse
|
49
|
Song K, Wang R, Liu Y, Qian D, Zhang H, Cai J. Game Theoretical Analysis on Cooperation Stability and Incentive Effectiveness in Community Networks. PLoS One 2015; 10:e0141755. [PMID: 26551649 PMCID: PMC4638359 DOI: 10.1371/journal.pone.0141755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network’s stability by adjusting the network’s properties and give some proposal on the designs of these types of networks from the points of game theory and stability.
Collapse
Affiliation(s)
- Kaida Song
- State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Rui Wang
- State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
- School of Computer Science and Engineering, Beihang University, Beijing, China
- * E-mail:
| | - Yi Liu
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Depei Qian
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Han Zhang
- Science and Technology on Special System simulation Laboratory, Beijing Simulation Center, Beijing, China
| | - Jihong Cai
- Science and Technology on Special System simulation Laboratory, Beijing Simulation Center, Beijing, China
| |
Collapse
|
50
|
Di Stefano A, Scatà M, La Corte A, Liò P, Catania E, Guardo E, Pagano S. Quantifying the Role of Homophily in Human Cooperation Using Multiplex Evolutionary Game Theory. PLoS One 2015; 10:e0140646. [PMID: 26496351 PMCID: PMC4619798 DOI: 10.1371/journal.pone.0140646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Nature shows as human beings live and grow inside social structures. This assumption allows us to explain and explore how it may shape most of our behaviours and choices, and why we are not just blindly driven by instincts: our decisions are based on more complex cognitive reasons, based on our connectedness on different spaces. Thus, human cooperation emerges from this complex nature of social network. Our paper, focusing on the evolutionary dynamics, is intended to explore how and why it happens, and what kind of impact is caused by homophily among people. We investigate the evolution of human cooperation using evolutionary game theory on multiplex. Multiplexity, as an extra dimension of analysis, allows us to unveil the hidden dynamics and observe non-trivial patterns within a population across network layers. More importantly, we find a striking role of homophily, as the higher the homophily between individuals, the quicker is the convergence towards cooperation in the social dilemma. The simulation results, conducted both macroscopically and microscopically across the network layers in the multiplex, show quantitatively the role of homophily in human cooperation.
Collapse
Affiliation(s)
- Alessandro Di Stefano
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| | - Marialisa Scatà
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| | - Aurelio La Corte
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Emanuele Catania
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| | - Ermanno Guardo
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| | - Salvatore Pagano
- Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), Università degli Studi di Catania, Catania, Italy
| |
Collapse
|