1
|
Bell SM, Wareing H, Capriglia F, Hughes R, Barnes K, Hamshaw A, Adair L, Shaw A, Olejnik A, De S, New E, Shaw PJ, De Marco M, Venneri A, Blackburn DJ, Ferraiuolo L, Mortiboys H. Increasing hexokinase 1 expression improves mitochondrial and glycolytic functional deficits seen in sporadic Alzheimer's disease astrocytes. Mol Psychiatry 2025; 30:1369-1382. [PMID: 39271753 PMCID: PMC11919762 DOI: 10.1038/s41380-024-02746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Abnormalities in cellular metabolism are seen early in Alzheimer's disease (AD). Astrocyte support for neuronal function has a high metabolic demand, and astrocyte glucose metabolism plays a key role in encoding memory. This indicates that astrocyte metabolic dysfunction might be an early event in the development of AD. In this paper we interrogate glycolytic and mitochondrial functional changes and mitochondrial structural alterations in patients' astrocytes derived with a highly efficient direct conversion protocol. In astrocytes derived from patients with sporadic (sAD) and familial AD (fAD) we identified reductions in extracellular lactate, total cellular ATP and an increase in mitochondrial reactive oxygen species. sAD and fAD astrocytes displayed significant reductions in mitochondrial spare respiratory capacity, have altered mitochondrial membrane potential and a stressed mitochondrial network. A reduction in glycolytic reserve and glycolytic capacity is seen. Interestingly, glycolytic reserve, mitochondrial spare respiratory capacity and extracellular lactate levels correlated positively with neuropsychological tests of episodic memory affected early in AD. We identified a deficit in the glycolytic enzyme hexokinase 1 (HK1), and correcting this deficit improved the metabolic phenotype in sAD not fAD astrocytes. Importantly, the amount of HK1 at the mitochondria was shown to be reduced in sAD astrocytes, and not in fAD astrocytes. Overexpression of HK1 in sAD astrocytes increases mitochondrial HK1 levels. In fAD astrocytes HK1 levels were unaltered at the mitochondria after overexpression. This study highlights a clear metabolic deficit in AD patient-derived astrocytes and indicates how HK1, with its roles in both oxidative phosphorylation and glycolysis, contributes to this.
Collapse
Affiliation(s)
- Simon M Bell
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| | - Hollie Wareing
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Francesco Capriglia
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Rachel Hughes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Katy Barnes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alexander Hamshaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Liam Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Allan Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alicja Olejnik
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Suman De
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Elizabeth New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniel J Blackburn
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Zhong X, Gong S, Meng L, Yao W, Du K, Jiao L, Ma G, Liang J, Wei B, Jin X, Tong J, Dong J, Liu M, Gao M, Jia H, Jiang W, Yu Z, Wang Y, Sun X, Wei M, Liu M. Cordycepin Modulates Microglial M2 Polarization Coupled with Mitochondrial Metabolic Reprogramming by Targeting HKII and PDK2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304687. [PMID: 38889331 PMCID: PMC11336950 DOI: 10.1002/advs.202304687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/11/2024] [Indexed: 06/20/2024]
Abstract
The microenvironment mediated by the microglia (MG) M1/M2 phenotypic switch plays a decisive role in the neuronal fate and cognitive function of Alzheimer's disease (AD). However, the impact of metabolic reprogramming on microglial polarization and its underlying mechanism remains elusive. This study reveals that cordycepin improved cognitive function and memory in APP/PS1 mice, as well as attenuated neuronal damage by triggering MG-M2 polarization and metabolic reprogramming characterized by increased OXPHOS and glycolysis, rather than directly protecting neurons. Simultaneously, cordycepin partially alleviates mitochondrial damage in microglia induced by inhibitors of OXPHOS and glycolysis, further promoting MG-M2 transformation and increasing neuronal survival. Through confirmation of cordycepin distribution in the microglial mitochondria via mitochondrial isolation followed by HPLC-MS/MS techniques, HKII and PDK2 are further identified as potential targets of cordycepin. By investigating the effects of HKII and PDK2 inhibitors, the mechanism through which cordycepin targeted HKII to elevate ECAR levels in the glycolysis pathway while targeting PDK2 to enhance OCR levels in PDH-mediated OXPHOS pathway, thereby inducing MG-M2 polarization, promoting neuronal survival and exerting an anti-AD role is elucidated.
Collapse
Affiliation(s)
- Xin Zhong
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Shiqiang Gong
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
- Liaoning Medical Diagnosis and Treatment CenterShenyangLiaoning11067China
| | | | - Weifan Yao
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
- Liaoning Medical Diagnosis and Treatment CenterShenyangLiaoning11067China
| | - Ke Du
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Linchi Jiao
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Guowei Ma
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Jingwei Liang
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Binbin Wei
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Xin Jin
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Junhui Tong
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Jianru Dong
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Mengyu Liu
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Menglin Gao
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Huachao Jia
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| | - Wenjuan Jiang
- The First Affiliated Hospital of China Medical UniversityShenyangLiaoning110002China
| | - Zhihua Yu
- The Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoning110165China
| | - Yanzhe Wang
- The First Affiliated Hospital of China Medical UniversityShenyangLiaoning110002China
| | - Xiaohong Sun
- Science Experiment CenterChina Medical UniversityShenyangLiaoning110122China
| | - Minjie Wei
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
- Liaoning Medical Diagnosis and Treatment CenterShenyangLiaoning11067China
| | - Mingyan Liu
- School of PharmacyChina Medical UniversityShenyangLiaoning110122China
| |
Collapse
|
4
|
Ganne A, Mainali N, Balasubramaniam M, Atluri R, Pahal S, Asante J, Nagel C, Vallurupalli S, Shmookler Reis RJ, Ayyadevara S. Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction. AGING BIOLOGY 2024; 2:20240028. [PMID: 39263528 PMCID: PMC11389752 DOI: 10.59368/agingbio.20240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | | | - Ramani Atluri
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Joseph Asante
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Corey Nagel
- College of Nursing, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Srikanth Vallurupalli
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
- Department of Internal Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| |
Collapse
|
5
|
Singh A, Tiwari S, Singh S. Pirh2 modulates the mitochondrial function and cytochrome c-mediated neuronal death during Alzheimer's disease. Cell Death Dis 2024; 15:331. [PMID: 38740775 PMCID: PMC11091053 DOI: 10.1038/s41419-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Chen YL, Wang Y, Fang QY, Wang T, Chen C, Gao TY, Wu M, Zhang WP, Lu YB. PARP-1 inhibitor alleviates cerebral ischemia/reperfusion injury by reducing PARylation of HK-1 and LDH in mice. Eur J Pharmacol 2024; 967:176377. [PMID: 38346469 DOI: 10.1016/j.ejphar.2024.176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) activity significantly increases during cerebral ischemia/reperfusion. PARP-1 is an NAD+-consumption enzyme. PARP-1 hyperactivity causes intracellular NAD+ deficiency and bioenergetic collapse, contributing to neuronal death. Besides, the powerful trigger of PARP-1 causes the catalyzation of poly (ADP-ribosyl)ation (PARylation), a posttranslational modification of proteins. Here, we found that PARP-1 was activated in the ischemic brain tissue during middle-cerebral-artery occlusion and reperfusion (MCAO/R) for 24 h, and PAR accumulated in the neurons in mice. Using immunoprecipitation, Western blotting, liquid chromatography-mass spectrometry, and 3D-modeling analysis, we revealed that the activation of PARP-1 caused PARylation of hexokinase-1 and lactate dehydrogenase-B, which, therefore, caused the inhibition of these enzyme activities and the resulting cell energy metabolism collapse. PARP-1 inhibition significantly reversed the activity of hexokinase and lactate dehydrogenase, decreased infarct volume, and improved neuronal deficiency. PARP-1 inhibitor combined with pyruvate further alleviated MCAO/R-induced ischemic brain injury in mice. As such, we conclude that PARP-1 inhibitor alleviates neuronal death partly by inhibiting the PARylation of metabolic-related enzymes and reversing metabolism reprogramming during cerebral ischemia/reperfusion injury in mice. PARP-1 inhibitor combined with pyruvate might be a promising therapeutic approach against brain ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiu-Yu Fang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Thoracic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Tong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tong-Yao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Wei-Ping Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yun-Bi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
7
|
Vyssokikh MY, Vigovskiy MA, Philippov VV, Boroday YR, Marey MV, Grigorieva OA, Vepkhvadze TF, Kurochkina NS, Manukhova LA, Efimenko AY, Popov DV, Skulachev VP. Age-Dependent Changes in the Production of Mitochondrial Reactive Oxygen Species in Human Skeletal Muscle. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:299-312. [PMID: 38622097 DOI: 10.1134/s0006297924020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/17/2024]
Abstract
A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.
Collapse
Affiliation(s)
- Mikhail Yu Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Maksim A Vigovskiy
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Vladislav V Philippov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Yakov R Boroday
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Mariya V Marey
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
| | - Olga A Grigorieva
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Nadezhda S Kurochkina
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Ludmila A Manukhova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
| | - Anastasiya Yu Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
8
|
Ribeiro FC, Cozachenco D, Heimfarth L, Fortuna JTS, de Freitas GB, de Sousa JM, Alves-Leon SV, Leite REP, Suemoto CK, Grinberg LT, De Felice FG, Lourenco MV, Ferreira ST. Synaptic proteasome is inhibited in Alzheimer's disease models and associates with memory impairment in mice. Commun Biol 2023; 6:1127. [PMID: 37935829 PMCID: PMC10630330 DOI: 10.1038/s42003-023-05511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The proteasome plays key roles in synaptic plasticity and memory by regulating protein turnover, quality control, and elimination of oxidized/misfolded proteins. Here, we investigate proteasome function and localization at synapses in Alzheimer's disease (AD) post-mortem brain tissue and in experimental models. We found a marked increase in ubiquitinylated proteins in post-mortem AD hippocampi compared to controls. Using several experimental models, we show that amyloid-β oligomers (AβOs) inhibit synaptic proteasome activity and trigger a reduction in synaptic proteasome content. We further show proteasome inhibition specifically in hippocampal synaptic fractions derived from APPswePS1ΔE9 mice. Reduced synaptic proteasome activity instigated by AβOs is corrected by treatment with rolipram, a phosphodiesterase-4 inhibitor, in mice. Results further show that dynein inhibition blocks AβO-induced reduction in dendritic proteasome content in hippocampal neurons. Finally, proteasome inhibition induces AD-like pathological features, including reactive oxygen species and dendritic spine loss in hippocampal neurons, inhibition of hippocampal mRNA translation, and memory impairment in mice. Results suggest that proteasome inhibition may contribute to synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana Heimfarth
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana T S Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme B de Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jorge M de Sousa
- Division of Neurosurgery, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Soniza V Alves-Leon
- Division of Neurology, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Translational Neuroscience Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
10
|
Wu H, Li Y, Zhang Q, Wang H, Xiu W, Xu P, Deng Y, Huang W, Wang DO. Crocetin antagonizes parthanatos in ischemic stroke via inhibiting NOX2 and preserving mitochondrial hexokinase-I. Cell Death Dis 2023; 14:50. [PMID: 36681688 PMCID: PMC9867762 DOI: 10.1038/s41419-023-05581-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Parthanatos is one of the major pathways of programmed cell death in ischemic stroke characterized by DNA damage, poly (ADP-ribose) polymerases (PARP) activation, and poly (ADP-ribose) (PAR) formation. Here we demonstrate that crocetin, a natural potent antioxidant compound from Crocus sativus, antagonizes parthanatos in ischemic stroke. We reveal that mechanistically, crocetin inhibits NADPH oxidase 2 (NOX2) activation to reduce reactive oxygen species (ROS) and PAR production at the early stage of parthanatos. Meanwhile we demonstrate that PARylated hexokinase-I (HK-I) is a novel substrate of E3 ligase RNF146 and that crocetin interacts with HK-I to suppress RNF146-mediated HK-I degradation at the later stage of parthanatos, preventing mitochondrial dysfunction and DNA damage that ultimately trigger the irreversible cell death. Our study supports further development of crocetin as a potential drug candidate for preventing and/or treating ischemic stroke.
Collapse
Affiliation(s)
- Hao Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanxun Wang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenyu Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510530, China
| | - Wanxu Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China.
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biostudies, Kyoto University, Yoshida Hon-Machi, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, Ball KA, Webb KJ, Simpson HL, Coleman S, Bunker E, Ramirez A, Reisz JA, Sievers R, Stowell MHB, D'Alessandro A, Liu X, Old WM. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics 2022; 21:100262. [PMID: 35753663 PMCID: PMC9525918 DOI: 10.1016/j.mcpro.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
The nonpsychoactive cannabinoid, cannabidiol (CBD), is Food and Dug Administration approved for treatment of two drug-resistant epileptic disorders and is seeing increased use among the general public, yet the mechanisms that underlie its therapeutic effects and side-effect profiles remain unclear. Here, we report a systems-level analysis of CBD action in human cell lines using temporal multiomic profiling. FRET-based biosensor screening revealed that CBD elicits a sharp rise in cytosolic calcium, and activation of AMP-activated protein kinase in human keratinocyte and neuroblastoma cell lines. CBD treatment leads to alterations in the abundance of metabolites, mRNA transcripts, and proteins associated with activation of cholesterol biosynthesis, transport, and storage. We found that CBD rapidly incorporates into cellular membranes, alters cholesterol accessibility, and disrupts cholesterol-dependent membrane properties. Sustained treatment with high concentrations of CBD induces apoptosis in a dose-dependent manner. CBD-induced apoptosis is rescued by inhibition of cholesterol synthesis and potentiated by compounds that disrupt cholesterol trafficking and storage. Our data point to a pharmacological interaction of CBD with cholesterol homeostasis pathways, with potential implications in its therapeutic use.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Douglas A Chapnick
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary C Poss
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Jacobsen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Kerri A Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kristofor J Webb
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Helen L Simpson
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Stephen Coleman
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Eric Bunker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Adrian Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Robert Sievers
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - William M Old
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
12
|
Leng L, Yuan Z, Pan R, Su X, Wang H, Xue J, Zhuang K, Gao J, Chen Z, Lin H, Xie W, Li H, Chen Z, Ren K, Zhang X, Wang W, Jin ZB, Wu S, Wang X, Yuan Z, Xu H, Chow HM, Zhang J. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nat Metab 2022; 4:1287-1305. [PMID: 36203054 DOI: 10.1038/s42255-022-00643-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 01/20/2023]
Abstract
Microglial cells consume adenosine triphosphate (ATP) during phagocytosis to clear neurotoxic β-amyloid in Alzheimer's disease (AD). However, the contribution of energy metabolism to microglial function in AD remains unclear. Here, we demonstrate that hexokinase 2 (HK2) is elevated in microglia from an AD mouse model (5xFAD) and AD patients. Genetic deletion or pharmacological inhibition of HK2 significantly promotes microglial phagocytosis, lowers the amyloid plaque burden and attenuates cognitive impairment in male AD mice. Notably, the ATP level is dramatically increased in HK2-deficient or inactive microglia, which can be attributed to a marked upregulation in lipoprotein lipase (LPL) expression and subsequent increase in lipid metabolism. We further show that two downstream metabolites of HK2, glucose-6-phosphate and fructose-6-phosphate, can reverse HK2-deficiency-induced upregulation of LPL, thus supporting ATP production and microglial phagocytosis. Our findings uncover a crucial role for HK2 in phagocytosis through regulation of microglial energy metabolism, suggesting a potential therapeutic strategy for AD by targeting HK2.
Collapse
Affiliation(s)
- Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ruiyuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiao Su
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Han Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jin Xue
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenyi Chen
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
- Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Lourenco MV, de Freitas GB, Raony Í, Ferreira ST, De Felice FG. Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front Cell Neurosci 2022; 16:953991. [PMID: 36187295 PMCID: PMC9518673 DOI: 10.3389/fncel.2022.953991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and alleviates memory impairment in Alzheimer’s disease (AD). Irisin is an exercise-linked hormone produced by cleavage of fibronectin type III domain containing protein 5 (FNDC5) in skeletal muscle, brain and other tissues. Irisin was recently shown to mediate the brain benefits of exercise in AD mouse models. Here, we sought to obtain insight into the neuroprotective actions of irisin. We demonstrate that adenoviral-mediated expression of irisin promotes extracellular brain derived neurotrophic factor (BDNF) accumulation in hippocampal cultures. We further show that irisin stimulates transient activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), and prevents amyloid-β oligomer-induced oxidative stress in primary hippocampal neurons. Finally, analysis of RNA sequencing (RNAseq) datasets shows a trend of reduction of hippocampal FNDC5 mRNA with aging and tau pathology in humans. Results indicate that irisin activates protective pathways in hippocampal neurons and further support the notion that stimulation of irisin signaling in the brain may be beneficial in AD.
Collapse
Affiliation(s)
- Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Mychael V. Lourenco,
| | - Guilherme B. de Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Psychiatry, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Sergio T. Ferreira,
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Psychiatry, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Fernanda G. De Felice,
| |
Collapse
|
14
|
Huynh VN, Benavides GA, Johnson MS, Ouyang X, Chacko BK, Osuma E, Mueller T, Chatham J, Darley-Usmar VM, Zhang J. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15:22. [PMID: 35248135 PMCID: PMC8898497 DOI: 10.1186/s13041-022-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Gloria A Benavides
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Edie Osuma
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Toni Mueller
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - John Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA.
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
16
|
Liu ZY, Xu L, Liu B. Detection of anti-kelch-like 12 and anti-hexokinase 1 antibodies in primary biliary cholangitis patients in China. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 113:585-590. [PMID: 33307711 DOI: 10.17235/reed.2020.7483/2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES primary biliary cholangitis (PBC) is a chronic cholestatic disease, characterized by positive anti-mitochondrial autoantibodies (AMA) in 90-95 % patients. Anti-kelch-like 12 (anti-KLHL12) and anti-hexokinase1 (anti-HK1) antibodies have been identified as the two new serum markers in recent years, which are used in the diagnosis of AMA-negative PBC patients. The objective of the study was to examine the performance of these two new biomarkers in China. METHODS a total of 192 patients were enrolled and screened for anti-KLHL12 and anti-HK1 antibodies and AMA by ELISA. Receiver operating characteristic (ROC curve) analysis was applied to examine the diagnostic importance of AMA, anti-KLHL12 and anti-HK1 antibodies. Furthermore, correlation analysis between some important biochemical indexes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], bilirubin, gamma-glutamil transferasa [γ-GT]), staging of pathological changes of the liver and the expression of novel antibodies in PBC patients were also examined. RESULTS the positivity of the anti-HK1 antibody in AMA-positive PBC patients and AMA-negative patients was 44.7 % and 33.3 %, respectively. The specificity, proportion of positive patients (PPV) and proportion of negative patients (NPV) were 93 %, 89 % and 53 %, respectively. In contrast, the positivity to the anti-KLHL12 antibody in AMA-positive and negative PBC patients was 41.2 % and 22.2 %, respectively. Specificity, PPV and NPV were 98 %, 95 % and 52 %, respectively. The area under the curve (AUC) with anti-HK1 and anti-KLHL12 antibodies were 0.720 and 0.703. With the combination with anti-HK1 and anti-KLHL12 antibodies, the AUC of AMA increased from 0.889 to 0.891, increasing the sensitivity from 0.764 to 0.836. Anti-KLHL12 and anti-HK1-positive patients had higher serum levels of ALP, γ-GT and bilirubin, with statistically significant differences (p < 0.01) compared with anti-KLHL12 or anti-HK1-negative patients. Notably, correlation analysis showed a significant positive correlation between antibody expression and ALP, γ-GT and bilirubin serum levels (r = 0.735, 0.491, 0.466; p < 0.01). CONCLUSIONS anti-HK1 and anti-KLHL12 antibodies have been identified as two significant biomarkers in PBC patients. Furthermore, the presence of these antibodies is likely to correlate with the severity of PBC.
Collapse
Affiliation(s)
- Zhao Yang Liu
- Rheumatology, Affiliated Hospital of Qingdao University
| | - Lishan Xu
- Rheumatology, Affiliated Hospital of Qingdao University
| | - Bin Liu
- Rheumatology, Affiliated hospital of Qingdao University, China
| |
Collapse
|
17
|
Kolar D, Kleteckova L, Brozka H, Vales K. Mini-review: Brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett 2021; 760:136003. [PMID: 34098028 DOI: 10.1016/j.neulet.2021.136003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are cellular organelles essential for energy metabolism and antioxidant defense. Mitochondrial impairment is implicated in many psychiatric disorders, including depression, bipolar disorder, schizophrenia, and autism. To characterize and eventually find effective treatments of bioenergetic impairment in psychiatric disease, researchers find animal models indispensable. The present review focuses on brain energetics in several environmental, genetic, drug-induced, and surgery-induced animal models of depression, bipolar disorder, schizophrenia, and autism. Most reported deficits included decreased activity in the electron transport chain, increased oxidative damage, decreased antioxidant defense, decreased ATP levels, and decreased mitochondrial potential. Models of depression, bipolar disorder, schizophrenia, and autism shared many bioenergetic deficits. This is in concordance with the absence of a disease-specific brain energy phenotype in human patients. Unfortunately, due to the absence of null results in examined literature, indicative of reporting bias, we refrain from making generalized conclusions. Present review can be a valuable tool for comparing current findings, generating more targeted hypotheses, and selecting fitting models for further preclinical research.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | - Hana Brozka
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
18
|
Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021; 115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane precursor protein that is widely expressed in the central nervous system and peripheral tissues in the liver and pancreas, adipose tissue, and myotubes. APP can be cleaved by proteases in two different ways to produce a variety of short peptides, each with different physiological properties and functions. APP peptides generated by non-amyloidogenic processing can positively influence metabolism, while the peptides produced by amyloidogenic processing have the opposite effects. Here, we summarize the regulatory effects of APP and its cleavage peptides on metabolism in the central nervous system and peripheral tissues. In addition, abnormal expression and function of APP and APP-derived peptides are associated with metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease, and cardiovascular disease, and cancers. Pharmacological intervention of APP function or reduction of the production of peptides derived from amyloidogenic processing may be effective strategies for the prevention and treatment of Alzheimer's disease, and they may also provide new guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
19
|
Effect of Increased IL-1β on Expression of HK in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031306. [PMID: 33525649 PMCID: PMC7865721 DOI: 10.3390/ijms22031306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by decreased glucose metabolism and increased neuroinflammation. Hexokinase (HK) is the key enzyme of glucose metabolism and is associated with mitochondria to exert its function. Recent studies have demonstrated that the dissociation of HK from mitochondria is enough to activate the NOD-like receptor protein 3 (NLRP3) inflammasome and leads to the release of interleukin-1β (IL-1β). However, the effect of increased IL-1β on the expression of HK is still unclear in AD. In this paper, we used positron emission tomography (PET), Western blotting and immunofluorescence to study the glucose metabolism, and the expression and distribution of HK in AD. Furthermore, we used lipopolysaccharide (LPS), nigericin (Nig), CY-09 and lonidamine (LND) to treat N2a and N2a-sw cells to investigate the link between IL-1β and HK in AD. The results show decreased expression of HK and the dissociation of HK from mitochondria in AD. Furthermore, a reduction of the expression of IL-1β could increase the expression of HK in AD. These results suggest that inhibiting inflammation may help to restore glucose metabolism in AD.
Collapse
|
20
|
Yang M, Sun J, Stowe DF, Tajkhorshid E, Kwok WM, Camara AKS. Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress. Cell Physiol Biochem 2021; 54:853-874. [PMID: 32901466 PMCID: PMC7898235 DOI: 10.33594/000000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background/Aims: The role of VDAC1, the most abundant mitochondrial outer membrane protein, in cell death depends on cell types and stimuli. Both silencing and upregulation of VDAC1 in various type of cancer cell lines can stimulate apoptosis. In contrast, in mouse embryonic stem (MES) cells and mouse embryonic fibroblasts (MEFs), the roles of VDAC1 knockout (VDAC1−/−) in apoptotic cell death are contradictory. The contribution and underlying mechanism of VDAC1−/− in oxidative stress-induced cell death in cardiac cells has not been established. We hypothesized that VDAC1 is an essential regulator of oxidative stress-induced cell death in H9c2 cells. Methods: We knocked out VDAC1 in this rat cardiomyoblast cell line with CRISPR-Cas9 genome editing technique to produce VDAC1−/− H9c2 cells, and determined if VDAC1 is critical in promoting cell death via oxidative stress induced by tert-butylhydroper-oxide (tBHP), an organic peroxide, or rotenone (ROT), an inhibitor of mitochondrial complex I by measuring cell viability with MTT assay, cell death with TUNEL stain and LDH release. The mitochondrial and glycolytic stress were examined by measuring O2 consumption rate (OCR) and extracellular acidification rate (ECAR) with a Seahorse XFp analyzer. Results: We found that under control conditions, VDAC1−/− did not affect H9c2 cell proliferation or mitochondrial respiration. However, compared to the wildtype (WT) cells, exposure to either tBHP or ROT enhanced the production of ROS, ECAR, and the proton (H+) production rate (PPR) from glycolysis, as well as promoted apoptotic cell death in VDAC1−/− H9c2 cells. VDAC1−/− H9c2 cells also exhibited markedly reduced mitochondria-bound hexokinase II (HKII) and Bax. Restoration of VDAC1 in VDAC1−/− H9c2 cells reinstated mitochondria-bound HKII and concomitantly decreased tBHP and ROT-induced ROS production and cell death. Interestingly, mitochondrial respiration remained the same after tBHP treatment in VDAC1−/− and WT H9c2 cells. Conclusion: Our results suggest that VDAC1−/− in H9c2 cells enhances oxidative stress-mediated cell apoptosis that is directly linked to the reduction of mitochondria-bound HKII and concomitantly associated with enhanced ROS production, ECAR, and PPR.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Sun
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Clinical Medicine Research, Department of Gastroenterology and Hepatology, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA.,Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA, .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Bastrup J, Hansen KH, Poulsen TB, Kastaniegaard K, Asuni AA, Christensen S, Belling D, Helboe L, Stensballe A, Volbracht C. Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2021; 79:249-265. [DOI: 10.3233/jad-200715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by accumulation of amyloid-β (Aβ) species and deposition of senile plaques (SPs). Clinical trials with the anti-Aβ antibody aducanumab have been completed recently. Objective: To characterize the proteomic profile of SPs and surrounding tissue in a mouse model of AD in 10-month-old tgAPPPS1-21 mice after chronic treatment with aducanumab for four months with weekly dosing (10 mg/kg). Methods: After observing significant reduction of SP numbers in hippocampi of aducanumab-treated mice, we applied a localized proteomic analysis by combining laser microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the remaining SPs in hippocampi. We microdissected three subregions, containing SPs, SP penumbra level 1, and an additional penumbra level 2 to follow the proteomic profile as gradient. Results: In the aducanumab-treated mice, we identified 17 significantly regulated proteins that were associated with 1) mitochondria and metabolism (ACAT2, ATP5J, ETFA, EXOG, HK1, NDUFA4, NDUFS7, PLCB1, PPP2R4), 2) cytoskeleton and axons (ADD1, CAPZB, DPYSL3, MAG), 3) stress response (HIST1H1C/HIST1H1D, HSPA12A), and 4) AβPP trafficking/processing (CD81, GDI2). These pathways and some of the identified proteins are implicated in AD pathogenesis. Proteins associated with mitochondria and metabolism were mainly upregulated while proteins associated with AβPP trafficking/processing and stress response pathways were mainly downregulated, suggesting that aducanumab could lead to a beneficial proteomic profile around SPs in tgAPPPS1-21 mice. Conclusion: We identified novel proteomic patterns of SPs and surrounding tissue indicating that chronic treatment with aducanumab could inhibit Aβ toxicity and increase phagocytosis and cell viability.
Collapse
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | - Thomas B.G. Poulsen
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | | | | | | | | - Lone Helboe
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | |
Collapse
|
22
|
Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, Chan ER, Wang Q, Xu R, Flanagan ME, Pieper AA, Qi X. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabb8680. [PMID: 33277246 PMCID: PMC7717916 DOI: 10.1126/sciadv.abb8680] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Myelin degeneration and white matter loss resulting from oligodendrocyte (OL) death are early events in Alzheimer's disease (AD) that lead to cognitive deficits; however, the underlying mechanism remains unknown. Here, we find that mature OLs in both AD patients and an AD mouse model undergo NLR family pyrin domain containing 3 (NLRP3)-dependent Gasdermin D-associated inflammatory injury, concomitant with demyelination and axonal degeneration. The mature OL-specific knockdown of dynamin-related protein 1 (Drp1; a mitochondrial fission guanosine triphosphatase) abolishes NLRP3 inflammasome activation, corrects myelin loss, and improves cognitive ability in AD mice. Drp1 hyperactivation in mature OLs induces a glycolytic defect in AD models by inhibiting hexokinase 1 (HK1; a mitochondrial enzyme that initiates glycolysis), which triggers NLRP3-associated inflammation. These findings suggest that OL glycolytic deficiency plays a causal role in AD development. The Drp1-HK1-NLRP3 signaling axis may be a key mechanism and therapeutic target for white matter degeneration in AD.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rihua Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen Lundberg
- Center for Proteomics and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Lemeshko VV. Electrical control of the cell energy metabolism at the level of mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183493. [PMID: 33132193 DOI: 10.1016/j.bbamem.2020.183493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Energy, generated by the mitochondrial oxidative phosphorylation system, is transferred to the cytosol across the mitochondrial outer membrane (MOM), through the voltage-dependent anion channels (VDACs). The role of the VDAC's voltage-gating process to control the transfer of ATP, creatine phosphate and other negatively charged metabolites across MOM might be crucial for the cell energy metabolism regulation. However, it depends on the probability of the outer membrane potential (OMP) generation by a currently undefined mechanism that has usually been considered doubtful, based on the assumption that VDACs always stay in the electrically open state. Nevertheless, computational analysis of various possible metabolically-dependent mechanisms of OMP generation suggests that MOM is not a "coarse sieve", but in fact it functions as an electrical gatekeeper of cell energy metabolism, due to a probable OMP-dependent VDAC's gating. OMP generation could also be involved in the control of cell death resistance and mechanisms of various diseases.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65, Nro. 59A - 110, Medellín, Colombia.
| |
Collapse
|
24
|
The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behav Pharmacol 2020; 31:738-747. [PMID: 32773452 DOI: 10.1097/fbp.0000000000000578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Converging evidence indicates that neurotoxicity and memory impairment in Alzheimer's disease is induced by brain accumulation of soluble amyloid-β oligomers (AβOs). Physiological metals are poorly distributed and concentrated in the senile plaques typical of Alzheimer's disease, where they may be coordinated to the amyloid-β peptide (Aβ). Indeed, zinc and copper increase Aβ oligomerization and toxicity. Metal-protein attenuating compounds represent a class of agents proposed for Alzheimer's disease treatment, as they reduce abnormal interactions of metal ions with Aβ, inhibit Aβ oligomerization and prevent deleterious redox reactions in the brain. The present work investigates the protective action of an isoniazid-derived aroylhydrazone, INHHQ, on AβO-induced memory impairment. Systemic administration of a single dose of INHHQ (1 mg/kg) prevented both short-term and long-term memory impairment caused by AβOs in mice. In-vitro studies showed that INHHQ prevents Cu(Aβ)-catalyzed production of reactive oxygen species. Although the mechanism of protection by INHHQ is not yet fully understood at a molecular level, the results reported herein certainly point to the value of aroylhydrazones as promising neuroprotective agents in Alzheimer's disease and related disorders.
Collapse
|
25
|
Zheng B, Mora RA, Fritzler MJ, Satoh M, Bloch DB, Garcia-De La Torre I, Boylan K, Kohl K, Wener MH, Andrade LEC, Chan EKL. Establishment of international autoantibody reference standards for the detection of autoantibodies directed against PML bodies, GW bodies, and NuMA protein. Clin Chem Lab Med 2020; 59:197-207. [PMID: 32776893 PMCID: PMC7855248 DOI: 10.1515/cclm-2020-0981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Objectives: Reference materials are important in the standardization of autoantibody testing and only a few are freely available for many known autoantibodies. Our goal was to develop three reference materials for antibodies to PML bodies/multiple nuclear dots (MND), antibodies to GW bodies (GWB), and antibodies to the nuclear mitotic apparatus (NuMA). Methods: Reference materials for identifying autoantibodies to MND (MND-REF), GWB (GWB-REF), and NuMA (NuMA-REF) were obtained from three donors and validated independently by seven laboratories. The sera were characterized using indirect immunofluorescence assay (IFA) on HEp-2 cell substrates including two-color immunofluorescence using antigen-specific markers, western blot (WB), immunoprecipitation (IP), line immunoassay (LIA), addressable laser bead immunoassay (ALBIA), enzyme-linked immunosorbent assay (ELISA), and immunoprecipitation–mass spectrometry (IP-MS). Results: MND-REF stained 6–20 discrete nuclear dots that colocalized with PML bodies. Antibodies to Sp100 and PML were detected by LIA and antibodies to Sp100 were also detected by ELISA. GWB-REF stained discrete cytoplasmic dots in interphase cells, which were confirmed to be GWB using two-color immunofluorescence. Anti-Ge-1 antibodies were identified in GWB-REF by ALBIA, IP, and IP-MS. All reference materials produced patterns at dilutions of 1:160 or greater. NuMA-REF produced fine speckled nuclear staining in interphase cells and staining of spindle fibers and spindle poles. The presence of antibodies to NuMA was verified by IP, WB, ALBIA, and IP-MS. Conclusions: MND-REF, GWB-REF, and NuMA-REF are suitable reference materials for the corresponding antinuclear antibodies staining patterns and will be accessible to qualified laboratories.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Oral Biology,University of Florida, Gainesville, FL, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rodrigo A Mora
- Department of Oral Biology,University of Florida, Gainesville, FL, USA
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Minoru Satoh
- Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Donald B Bloch
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ignacio Garcia-De La Torre
- Department of Immunology and Rheumatology, Hospital General de Occidente and University of Guadalajara, Guadalajara, Mexico
| | - Katherine Boylan
- Scientific & Clinical Affairs, Plasma Services Group Inc., Huntingdon Valley, PA, USA
| | - Kathryn Kohl
- Scientific & Clinical Affairs, Plasma Services Group Inc., Huntingdon Valley, PA, USA
| | - Mark H Wener
- Division of Rheumatology and Department of Laboratory Medicine,University of Washington, Seattle, WA, USA
| | - Luis E C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Immunology Division, Fleury Laboratories, São Paulo, Brazil
| | - Edward K L Chan
- Department of Oral Biology,University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
WANG Y, LU Y. [Poly adenosine diphosphate-ribosylation and neurodegenerative diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:100-106. [PMID: 32621411 PMCID: PMC8800811 DOI: 10.3785/j.issn.1008-9292.2020.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 06/11/2023]
Abstract
The morbidity of neurodegenerative diseases are increased in recent years, however, the treatment is limited. Poly ADP-ribosylation (PARylation) is a post-translational modification of protein that catalyzed by poly(ADP-ribose) polymerase (PARP). Studies have shown that PARylation is involved in many neurodegenerative diseases such as stroke, Parkinson's diseases, Alzheimer's disease, amyotrophic lateral sclerosis and so on, by affecting intracellular translocation of protein molecules, protein aggregation, protein activity, and cell death. PARP inhibitors have showed neuroprotective efficacy for neurodegenerative diseases in pre-clinical studies and phase Ⅰ clinical trials. To find new PARP inhibitors with more specific effects and specific pharmacokinetic characteristics will be the new direction for the treatment of neurodegenerative diseases. This paper reviews the recent progress on PARylation in neurodegenerative diseases.
Collapse
|
27
|
Dehghani Z, Meratan AA, Saboury AA, Nemat-Gorgani M. α-Synuclein fibrillation products trigger the release of hexokinase I from mitochondria: Protection by curcumin, and possible role in pathogenesis of Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183251. [PMID: 32113849 DOI: 10.1016/j.bbamem.2020.183251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/16/2023]
Abstract
Extensive research has shown that assembling of α-synuclein amyloid aggregates on mitochondria is an important mechanistic feature of Parkinson's disease (PD) and other Lewy body disorders. However, the molecular mechanism(s) of its neuronal toxicity remain unclear. Type 1 Hexokinase (HKI), a key enzyme in the control of brain glucose metabolism, plays an important role in protecting against mitochondrially-regulated apoptosis through reducing generation of reactive oxygen species (ROS). The release of mitochondrially-bound HKI causes a significant decrease in enzyme activity and triggers oxidative stress. Here, we have investigated the potency of amyloid fibrillation products arising from α-synuclein and hen egg white lysozyme (HEWL) for the release of HKI and ROS content enhancement in mitochondria isolated from rat brain. Results clearly indicate the capacity of the fibrillation products of α-synuclein, and not HEWL, to trigger release of HKI from the Type A binding site of mitochondria for the enzyme and to induce mitochondrial ROS enhancement in a dose-dependent manner. Moreover, we found that curcumin was very effective in preventing mitochondrial HKI release and ROS enhancement induced by α-synuclein fibrillation products. The pathophysiological significance of mitochondrial HKI activity and localization in pathogenesis of neurodegenerative disorders including PD are discussed. Taken together, these results may offer insight into a possible mechanism by which disease-related peptides and proteins may exert their neuronal toxicity.
Collapse
Affiliation(s)
- Ziba Dehghani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 14176-14335, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 14176-14335, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
28
|
From Stroke to Dementia: a Comprehensive Review Exposing Tight Interactions Between Stroke and Amyloid-β Formation. Transl Stroke Res 2019; 11:601-614. [PMID: 31776837 PMCID: PMC7340665 DOI: 10.1007/s12975-019-00755-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/13/2023]
Abstract
Stroke and Alzheimer’s disease (AD) are cerebral pathologies with high socioeconomic impact that can occur together and mutually interact. Vascular factors predisposing to cerebrovascular disease have also been specifically associated with development of AD, and acute stroke is known to increase the risk to develop dementia. Despite the apparent association, it remains unknown how acute cerebrovascular disease and development of AD are precisely linked and act on each other. It has been suggested that this interaction is strongly related to vascular deposition of amyloid-β (Aβ), i.e., cerebral amyloid angiopathy (CAA). Furthermore, the blood–brain barrier (BBB), perivascular space, and the glymphatic system, the latter proposedly responsible for the drainage of solutes from the brain parenchyma, may represent key pathophysiological pathways linking stroke, Aβ deposition, and dementia. In this review, we propose a hypothetic connection between CAA, stroke, perivascular space integrity, and dementia. Based on relevant pre-clinical research and a few clinical case reports, we speculate that impaired perivascular space integrity, inflammation, hypoxia, and BBB breakdown after stroke can lead to accelerated deposition of Aβ within brain parenchyma and cerebral vessel walls or exacerbation of CAA. The deposition of Aβ in the parenchyma would then be the initiating event leading to synaptic dysfunction, inducing cognitive decline and dementia. Maintaining the clearance of Aβ after stroke could offer a new therapeutic approach to prevent post-stroke cognitive impairment and development into dementia.
Collapse
|
29
|
Selles MC, Fortuna JTS, Zappa-Villar MF, de Faria YPR, Souza AS, Suemoto CK, Leite REP, Rodriguez RD, Grinberg LT, Reggiani PC, Ferreira ST. Adenovirus-Mediated Transduction of Insulin-Like Growth Factor 1 Protects Hippocampal Neurons from the Toxicity of Aβ Oligomers and Prevents Memory Loss in an Alzheimer Mouse Model. Mol Neurobiol 2019; 57:1473-1483. [PMID: 31760608 DOI: 10.1007/s12035-019-01827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AβOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AβOs to neurons and were protected against AβO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AβOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.
Collapse
Affiliation(s)
- Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana T S Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria F Zappa-Villar
- Institute of Biochemical Research (INIBIOLP) - National Scientific and Technical Research Council (CONICET) - School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Yasmin P R de Faria
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda S Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia K Suemoto
- Discipline of Geriatrics, University of São Paulo Medical School, Sao Paulo, Brazil.,LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Renata E P Leite
- Discipline of Geriatrics, University of São Paulo Medical School, Sao Paulo, Brazil.,LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Roberta D Rodriguez
- LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil.,Department of Neurology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Lea T Grinberg
- LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil.,Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Paula C Reggiani
- Institute of Biochemical Research (INIBIOLP) - National Scientific and Technical Research Council (CONICET) - School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Room C-31, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
30
|
Bodart-Santos V, de Carvalho LRP, de Godoy MA, Batista AF, Saraiva LM, Lima LG, Abreu CA, De Felice FG, Galina A, Mendez-Otero R, Ferreira ST. Extracellular vesicles derived from human Wharton's jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther 2019; 10:332. [PMID: 31747944 PMCID: PMC6864996 DOI: 10.1186/s13287-019-1432-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton’s jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer’s disease-linked amyloid beta oligomers (AβOs). Methods We isolated and characterized EVs released by human Wharton’s jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AβOs. Results hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AβOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AβOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. Conclusions hMSC-EVs protected hippocampal neurons from damage induced by AβOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer’s disease.
Collapse
Affiliation(s)
- Victor Bodart-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza R P de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mariana A de Godoy
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - André F Batista
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Leonardo M Saraiva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luize G Lima
- National Cancer Institute, Rio de Janeiro, RJ, 20230-240, Brazil
| | - Carla Andreia Abreu
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
31
|
Almeida D, Brígido M, Anjos M, Ferreira S, Souza A, Lopes R. Using a portable total reflection X‐ray fluorescence system for a multielement analysis of Swiss mice brains with experimental Alzheimer's disease induced by β‐amyloid oligomers. X-RAY SPECTROMETRY 2019; 48:452-464. [DOI: 10.1002/xrs.3044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/18/2019] [Indexed: 01/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible disorder whose pathological features include β‐amyloid (Aβ) plaques and neuronal and synaptic loss. Metals such as iron, copper, and zinc are increased in the brains of patients with AD. Those metals can interact with Aβ, resulting in the promotion of Aβ deposition and formation of plaque. However, no study analyzing the effects of single injection of Aβ soluble oligomers (AβOs) in the elements' homeostasis in mice was developed. Total reflection X‐ray fluorescence (TXRF) is a multielement analytical technique that can be utilized to identify and quantify trace elements present in a sample at very low concentrations. In this study, in order to evaluate the concentration of metals in brain regions of Swiss mice, three groups of female mice and three of male mice were studied: control, AD10, and AD100. The AD groups received an AβOs intracerebroventricular injection so as to induce experimental AD. Afterwards, a craniotomy was performed, and six brain compartments were dissected and evaluated. TXRF measurements were performed using a portable TXRF system that uses an X‐ray tube with a molybdenum anode and a detector Si‐PIN. It is proved to determine the following elements' concentrations: phosphorus, sulfur, potassium, iron, copper, zinc, and rubidium. Results showed differences in the elemental concentration in some brain regions between AD groups. These alterations suggest that AβOs act quickly, even before the amyloid plaques' formation, explaining cognitive deficits independently of amyloid plaques. This study helped to understand that this modification on elemental concentration can be influenced by AβOs.
Collapse
Affiliation(s)
- D.S. Almeida
- Nuclear Instrumentation Laboratory Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - M.M. Brígido
- Physics Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - M.J. Anjos
- Physics Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - S.T. Ferreira
- Institute of Biophysics Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - A.S. Souza
- Institute of Biophysics Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - R.T. Lopes
- Nuclear Instrumentation Laboratory Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
32
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 2019; 27:1081-1089. [PMID: 30778173 DOI: 10.1038/s41431-019-0366-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/15/2018] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia, autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa (adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.
Collapse
|
34
|
Chow HM, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol 2019; 218:909-928. [PMID: 30642892 PMCID: PMC6400560 DOI: 10.1083/jcb.201806197] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress, resulting from neuronal activity and depleted ATP levels, activates ATM, which phosphorylates NRF1, causing nuclear translocation and up regulation of mitochondrial gene expression. In ATM deficiency, ATP levels recover more slowly, particularly in active neurons with high energy demands. Ataxia-telangiectasia (A-T) is an autosomal recessive disease caused by mutation of the ATM gene and is characterized by loss of cerebellar Purkinje cells, neurons with high physiological activity and dynamic ATP demands. Here, we show that depletion of ATP generates reactive oxygen species that activate ATM. We find that when ATM is activated by oxidative stress, but not by DNA damage, ATM phosphorylates NRF1. This leads to NRF1 dimerization, nuclear translocation, and the up-regulation of nuclear-encoded mitochondrial genes, thus enhancing the capacity of the electron transport chain (ETC) and restoring mitochondrial function. In cells lacking ATM, cells replenish ATP poorly following surges in energy demand, and chronic ATP insufficiency endangers cell survival. We propose that in the absence of ATM, cerebellar Purkinje cells cannot respond adequately to the increase in energy demands of neuronal activity. Our findings identify ATM as a guardian of mitochondrial output, as well as genomic integrity, and suggest that alternative fuel sources may ameliorate A-T disease symptoms.
Collapse
Affiliation(s)
- Hei-Man Chow
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong .,Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong
| | - Aifang Cheng
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Karl Herrup
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
35
|
Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target Proteins in the Dorsal Hippocampal Formation Sustain the Memory-Enhancing and Neuroprotective Effects of Ginkgo biloba. Front Pharmacol 2019; 9:1533. [PMID: 30666208 PMCID: PMC6330356 DOI: 10.3389/fphar.2018.01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that standardized extracts of Ginkgo biloba (EGb) modulate fear memory formation, which is associated with CREB-1 (mRNA and protein) upregulation in the dorsal hippocampal formation (dHF), in a dose-dependent manner. Here, we employed proteomic analysis to investigate EGb effects on different protein expression patterns in the dHF, which might be involved in the regulation of CREB activity and the synaptic plasticity required for long-term memory (LTM) formation. Adult male Wistar rats were randomly assigned to four groups (n = 6/group) and were submitted to conditioned lick suppression 30 min after vehicle (12% Tween 80) or EGb (0.25, 0.50, and 1.00 g⋅kg-1) administration (p.o). All rats underwent a retention test session 48 h after conditioning. Twenty-four hours after the test session, the rats were euthanized via decapitation, and dHF samples were removed for proteome analysis using two-dimensional polyacrylamide gel electrophoresis, followed by peptide mass fingerprinting. In agreement with our previous data, no differences in the suppression ratios (SRs) were identified among the groups during first trial of CS (conditioned stimulus) presentation (P > 0.05). Acute treatment with 0.25 g⋅kg-1 EGb significantly resulted in retention of original memory, without prevent acquisition of extinction within-session. In addition, our results showed, for the first time, that 32 proteins were affected in the dHF following treatment with 0.25, 0.50, and 1.00 g⋅kg-1 doses of EGb, which upregulated seven, 19, and five proteins, respectively. Additionally, EGb downregulated two proteins at each dose. These proteins are correlated with remodeling of the cytoskeleton; the stability, size, and shape of dendritic spines; myelin sheath formation; and composition proteins of structures found in the membrane of the somatodendritic and axonal compartments. Our findings suggested that EGb modulates conditioned suppression LTM through differential protein expression profiles, which may be a target for cognitive enhancers and for the prevention or treatment of neurocognitive impairments.
Collapse
Affiliation(s)
- Renan Barretta Gaiardo
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago Ferreira Abreu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas, Laboratório de Fisiologia Metabólica, Universidade Federal de São Paulo, Diadema, Brazil
| | - Suzete Maria Cerutti
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
36
|
VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2599-2607. [PMID: 30291922 DOI: 10.1016/j.bbamem.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Abstract
Glycolysis plays a key role in brain energy metabolism. The initial and rate-limiting step of brain glycolysis is catalyzed mainly by hexokinase I (HKI), the majority of which is bound to the mitochondrial outer membrane (MOM), mostly through the mitochondrial inter-membrane contact sites formed by the voltage-dependent anion channel (VDAC, outer membrane) and the adenine nucleotide translocator (ANT, inner membrane). Earlier, we proposed a mechanism for the generation of the mitochondrial outer membrane potential (OMP) as a result of partial application of the inner membrane potential (IMP) to MOM through the electrogenic ANT-VDAC-HK inter-membrane contact sites. According to this previous mechanism, the Gibbs free energy of the hexokinase reaction might modulate the generated OMP (Lemeshko, Biophys. J., 2002). In the present work, a new computational model was developed to perform thermodynamic estimations of the proposed mechanism of IMP-HKI-mediated generation of OMP. The calculated OMP was high enough to electrically regulate MOM permeability for negatively charged metabolites through free, unbound VDACs in MOM. On the other hand, the positive-inside polarity of OMP generated by the IMP-HKI-mediated mechanism is expected to protect mitochondria against elevated concentrations of cytosolic Ca2+. This computational analysis suggests that metabolically-dependent generation of OMP in the brain mitochondria, controlled by many factors that modulate VDAC1-HKI interaction, VDAC's voltage-gating properties and permeability, might represent one of the physiological mechanisms of regulation of the brain energy metabolism and of neuronal death resistance, and might also be involved in various neurodegenerative disorders, such as Alzheimer's disease.
Collapse
|
37
|
Gulamhusein AF, Hirschfield GM. Pathophysiology of primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:17-25. [PMID: 30343706 DOI: 10.1016/j.bpg.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a prototypical autoimmune disease characterized by an overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an imbalance between effector and regulatory activity resulting in progressive and self-perpetuating biliary injury. Genome wide studies shed light on important pathways involved in disease, key among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on the missing heritability and female preponderance of disease. Taken together, these findings have dramatically advanced our understanding of disease and may lead to important therapeutic advances.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, 200 Elizabeth Street, Toronto, ON, Canada.
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
38
|
Mitochondria-Bound Hexokinase (mt-HK) Activity Differ in Cortical and Hypothalamic Synaptosomes: Differential Role of mt-HK in H 2O 2 Depuration. Mol Neurobiol 2017; 55:5889-5900. [PMID: 29119535 DOI: 10.1007/s12035-017-0807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023]
Abstract
Glucose and oxygen are vital for the brain, as these molecules provide energy and metabolic intermediates that are necessary for cell function. The glycolysis pathway and mitochondria play a pivotal role in cell energy metabolism, which is closely related to reactive oxygen species (ROS) production. Hexokinase (HK) is a key enzyme involved in glucose metabolism that modulates the level of brain mitochondrial ROS by recycling ADP for oxidative phosphorylation (OxPhos). Here, we hypothesize that the control of mitochondrial metabolism by hexokinase differs in distinct areas of the brain, such as the cortex and hypothalamus, in which ROS might function as signaling molecules. Thus, we investigated mitochondrial metabolism of synaptosomes derived from both brain regions. Cortical synaptosomes (CSy) show a predominance of glutamatergic synapses, while in the hypothalamic synaptosomes (HSy), the GABAergic synapses predominate. Significant differences of oxygen consumption and ROS production were related to higher mitochondrial complex II activity (succinate dehydrogenase-SDH) in CSy rather than to mitochondrial number. Mitochondrial HK (mt-HK) activity was higher in CSy than in HSy regardless the substrate added. Mitochondrial O2 consumption related to mt-HK activation by 2-deoxyglucose was also higher in CSy. In the presence of substrate for complex II, the activation of synaptosomal mt-HK promoted depuration of ROS in both HSy and CSy, while ROS depuration did not occur in HSy when substrate for complex I was used. The impact of the mt-HK inhibition by glucose-6-phosphate (G6P) was the same in synaptosomes from both areas. Together, the differences found between CSy and HSy indicate specific roles of mt-HK and SDH on the metabolism of each brain region, what probably depends on the main metabolic route that is used by the neurons.
Collapse
|
39
|
Sebollela A, Cline EN, Popova I, Luo K, Sun X, Ahn J, Barcelos MA, Bezerra VN, Lyra E Silva NM, Patel J, Pinheiro NR, Qin LA, Kamel JM, Weng A, DiNunno N, Bebenek AM, Velasco PT, Viola KL, Lacor PN, Ferreira ST, Klein WL. A human scFv antibody that targets and neutralizes high molecular weight pathogenic amyloid-β oligomers. J Neurochem 2017; 142:934-947. [PMID: 28670737 PMCID: PMC5752625 DOI: 10.1111/jnc.14118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022]
Abstract
Brain accumulation of soluble oligomers of the amyloid-β peptide (AβOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AβO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AβO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AβOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AβO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AβOs from both monomeric and fibrillar Aβ. NUsc1 readily detected AβOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AβO binding and reduced AβO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AβOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AβOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AβO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Adriano Sebollela
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Izolda Popova
- Recombinant Protein Production Core (rPPC), Northwestern University, Evanston, Illinois, USA
| | - Kevin Luo
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Xiaoxia Sun
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jay Ahn
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Milena A Barcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vanessa N Bezerra
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jason Patel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nathalia R Pinheiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lei A Qin
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Josette M Kamel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Anthea Weng
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nadia DiNunno
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Adrian M Bebenek
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Illinois Math and Science Academy, Aurora, Illinois, USA
| | - Pauline T Velasco
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Pascale N Lacor
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
40
|
Jin H, Komita M, Aoe T. The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration. Front Mol Neurosci 2017; 10:222. [PMID: 28769758 PMCID: PMC5511815 DOI: 10.3389/fnmol.2017.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai HospitalIchihara, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo UniversityIchihara, Japan
| |
Collapse
|
41
|
Czeczor JK, McGee SL. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism. J Neuroendocrinol 2017; 29. [PMID: 28349564 DOI: 10.1111/jne.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein that can be cleaved by proteases through two different pathways to yield a number of small peptides, each with distinct physiological properties and functions. It has been extensively studied in the context of Alzheimer's disease, with the APP-derived amyloid β (Aβ) peptide being a major constituent of the amyloid plaques observed in this disease. It has been known for some time that APP can regulate neuronal metabolism; however, the present review examines the evidence indicating that APP and its peptides can also regulate key metabolic processes such as insulin action, lipid synthesis and storage and mitochondrial function in peripheral tissues. This review presents the hypothesis that amyloidogenic processing of APP in peripheral tissues plays a key role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic diseases such as obesity and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- J K Czeczor
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, München-Neuherberg, Germany
| | - S L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
42
|
Seixas da Silva GS, Melo HM, Lourenco MV, Lyra E Silva NM, de Carvalho MB, Alves-Leon SV, de Souza JM, Klein WL, da-Silva WS, Ferreira ST, De Felice FG. Amyloid-β oligomers transiently inhibit AMP-activated kinase and cause metabolic defects in hippocampal neurons. J Biol Chem 2017; 292:7395-7406. [PMID: 28302722 DOI: 10.1074/jbc.m116.753525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aβ oligomers (AβOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AβOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AβO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AβO-induced inhibition of AMPK. Our results establish a novel toxic impact of AβOs on neuronal metabolism and suggest that AβO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.
Collapse
Affiliation(s)
| | - Helen M Melo
- From the Institute of Medical Biochemistry Leopoldo de Meis and
| | - Mychael V Lourenco
- From the Institute of Medical Biochemistry Leopoldo de Meis and.,the Institute of Biophysics Carlos Chagas Filho
| | | | | | | | - Jorge M de Souza
- Neurosurgery, Clementino Fraga Filho Hospital, Federal University of Rio De Janeiro, Rio de Janeiro 21941-902, Brazil
| | - William L Klein
- the Department of Neurobiology, Northwestern University, Evanston, Illinois 60208-3520, and
| | | | - Sergio T Ferreira
- From the Institute of Medical Biochemistry Leopoldo de Meis and.,the Institute of Biophysics Carlos Chagas Filho
| | - Fernanda G De Felice
- From the Institute of Medical Biochemistry Leopoldo de Meis and .,the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
43
|
Brito-Moreira J, Lourenco MV, Oliveira MM, Ribeiro FC, Ledo JH, Diniz LP, Vital JFS, Magdesian MH, Melo HM, Barros-Aragão F, de Souza JM, Alves-Leon SV, Gomes FCA, Clarke JR, Figueiredo CP, De Felice FG, Ferreira ST. Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 2017; 292:7327-7337. [PMID: 28283575 DOI: 10.1074/jbc.m116.761189] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/26/2017] [Indexed: 11/06/2022] Open
Abstract
Brain accumulation of the amyloid-β protein (Aβ) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aβ oligomers (AβOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AβOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AβOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AβOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AβO binding to hippocampal neurons and prevented AβO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AβOs in mice. The results indicate that Nrx2α and NL1 are targets of AβOs and that prevention of this interaction reduces the deleterious impact of AβOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AβOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.
Collapse
Affiliation(s)
| | - Mychael V Lourenco
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Mauricio M Oliveira
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Felipe C Ribeiro
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | - Helen M Melo
- From the Institute of Medical Biochemistry Leopoldo de Meis
| | | | - Jorge M de Souza
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | - Soniza V Alves-Leon
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | | | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Fernanda G De Felice
- From the Institute of Medical Biochemistry Leopoldo de Meis.,the Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sergio T Ferreira
- From the Institute of Medical Biochemistry Leopoldo de Meis, .,Institute of Biophysics Carlos Chagas Filho
| |
Collapse
|
44
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
45
|
Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS One 2017; 12:e0168840. [PMID: 28060833 PMCID: PMC5218554 DOI: 10.1371/journal.pone.0168840] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aβ oligomers (Aβos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-β (Aβ) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aβos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aβos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3β and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Ramos-Fernández
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Universidad de Atacama, Facultad de Ciencias Naturales, Departamento de Química y Biología, Copiapó, Chile
| | - Daniela Ordenes
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
46
|
Jan A, Jansonius B, Delaidelli A, Somasekharan SP, Bhanshali F, Vandal M, Negri GL, Moerman D, MacKenzie I, Calon F, Hayden MR, Taubert S, Sorensen PH. eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathol 2017; 133:101-119. [PMID: 27752775 DOI: 10.1007/s00401-016-1634-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Soluble oligomers of amyloid-β (Aβ) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer's disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aβ oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aβ oligomers activate neuronal eEF2K, suggesting a potential link to Aβ induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aβ42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aβ42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aβ42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aβ-mediated oxidative stress in AD.
Collapse
Affiliation(s)
- Asad Jan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Brandon Jansonius
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | - Forum Bhanshali
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Milène Vandal
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Gian Luca Negri
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ian MacKenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
47
|
Ben-Hail D, Begas-Shvartz R, Shalev M, Shteinfer-Kuzmine A, Gruzman A, Reina S, De Pinto V, Shoshan-Barmatz V. Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction. J Biol Chem 2016; 291:24986-25003. [PMID: 27738100 DOI: 10.1074/jbc.m116.744284] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is thought to play a critical role in several pathological processes, such as neurodegenerative diseases (i.e. Parkinson's and Alzheimer's diseases) and various cardiovascular diseases. Despite the fact that apoptotic mechanisms are well defined, there is still no substantial therapeutic strategy to stop or even slow this process. Thus, there is an unmet need for therapeutic agents that are able to block or slow apoptosis in neurodegenerative and cardiovascular diseases. The outer mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1) is a convergence point for a variety of cell survival and death signals, including apoptosis. Recently, we demonstrated that VDAC1 oligomerization is involved in mitochondrion-mediated apoptosis. Thus, VDAC1 oligomerization represents a prime target for agents designed to modulate apoptosis. Here, high-throughput compound screening and medicinal chemistry were employed to develop compounds that directly interact with VDAC1 and prevent VDAC1 oligomerization, concomitant with an inhibition of apoptosis as induced by various means and in various cell lines. The compounds protected against apoptosis-associated mitochondrial dysfunction, restoring dissipated mitochondrial membrane potential, and thus cell energy and metabolism, decreasing reactive oxidative species production, and preventing detachment of hexokinase bound to mitochondria and disruption of intracellular Ca2+ levels. Thus, this study describes novel drug candidates with a defined mechanism of action that involves inhibition of VDAC1 oligomerization, apoptosis, and mitochondrial dysfunction. The compounds VBIT-3 and VBIT-4 offer a therapeutic strategy for treating different diseases associated with enhanced apoptosis and point to VDAC1 as a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Danya Ben-Hail
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Racheli Begas-Shvartz
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moran Shalev
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arie Gruzman
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel, and
| | - Simona Reina
- the Departments of Biomedicine and Biotechnology and.,Chemical Sciences, National Institute for Biomembranes and Biosystems, Section of Catania, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vito De Pinto
- the Departments of Biomedicine and Biotechnology and
| | - Varda Shoshan-Barmatz
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
| |
Collapse
|
48
|
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 2016; 96:1169-209. [PMID: 27489306 DOI: 10.1152/physrev.00032.2015] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
50
|
Moriya S, Soga T, Wong DW, Parhar IS. Transcriptome composition of the preoptic area in mid-age and escitalopram treatment in male mice. Neurosci Lett 2016; 622:67-71. [PMID: 27113202 DOI: 10.1016/j.neulet.2016.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/16/2016] [Accepted: 04/22/2016] [Indexed: 01/18/2023]
Abstract
The decrease in serotonergic neurotransmission during aging can increase the risk of neuropsychiatric diseases such as depression in elderly population and decline the reproductive system. Therefore, it is important to understand the age-associated molecular mechanisms of brain aging. In this study, the effect of aging and chronic escitalopram (antidepressant) treatment to admit mice was investigated by comparing transcriptomes in the preoptic area (POA) which is a key nucleus for reproduction. In the mid-aged brain, the immune system-related genes were increased and hormone response-related genes were decreased. In the escitalopram treated brains, transcription-, granule cell proliferation- and vasoconstriction-related genes were increased and olfactory receptors were decreased. Since homeostasis and neuroprotection-related genes were altered in both of mid-age and escitalopram treatment, these genes could be important for serotonin related physiologies in the POA.
Collapse
Affiliation(s)
- Shogo Moriya
- Brain Research Institutes, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia.
| | - Tomoko Soga
- Brain Research Institutes, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Dutt Way Wong
- Brain Research Institutes, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Ishwar S Parhar
- Brain Research Institutes, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|