1
|
Ngoo A, Semchenko EA, Atack A, Thomas PB, Seib KL, Vela I, Williams ED. Could Neisseria gonorrhoeae have carcinogenic potential? A critical review of current evidence. Crit Rev Microbiol 2025:1-12. [PMID: 39773285 DOI: 10.1080/1040841x.2024.2448166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
There is growing evidence that microbial dysbiosis is intimately related to carcinogenesis across several types of human cancer. Neisseria gonorrhoeae is best known for causing acute exudative genitourinary infection in males. N. gonorrhoeae can also cause chronic, asymptomatic infection of the female genitourinary tract along with the oropharynx and rectum of both sexes. Epidemiological studies suggest that N. gonorrhoeae is an independent risk factor for cancer of the anus, bladder, cervix, prostate, and oropharynx. It is not clear however if this association is causal. The purpose of this review is to appraise epidemiological, experimental, and clinical data in order to understand the possible carcinogenic potential of this sexually transmitted bacterium.
Collapse
Affiliation(s)
- Alexander Ngoo
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Department of Urology, Ipswich Hospital, Ipswich, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Atack
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Patrick B Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| |
Collapse
|
2
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
3
|
Yaghoubi A, Khazaei M, Ghazvini K, Hasanian SM, Avan A, Soleimanpour S. Bacterial Peptide and Bacteriocins in Treating Gynecological Cancers. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Barman TK, Metzger DW. Disease Tolerance during Viral-Bacterial Co-Infections. Viruses 2021; 13:v13122362. [PMID: 34960631 PMCID: PMC8706933 DOI: 10.3390/v13122362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Disease tolerance has emerged as an alternative way, in addition to host resistance, to survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results in superinfection and lethality. Several host cytokines and cells have shown promise in promoting tissue protection and damage control while others induce severe immunopathology leading to high levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately, survival during viral-bacterial co-infection.
Collapse
|
5
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Banerji R, Saroj SD. Early growth response 1 (EGR1) activation in initial stages of host-pathogen interactions. Mol Biol Rep 2021; 48:2935-2943. [PMID: 33783681 DOI: 10.1007/s11033-021-06305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The factors that determine the outcomes of host-pathogen interactions, such as host specificity, tissue specificity, and transition from asymptomatic to symptomatic behavior of a pathogen, are yet to be deciphered. The initial interaction of a pathogen with host and host-associated factors play a crucial role in deciding such outcomes. One of the several host-factors that contribute to bacterial adhesion and the outcome of an infection is the activation of early growth response 1 (EGR1). EGR1 is an initial response transcriptional regulator that plays a vital role in regulating cell growth, differentiation, and survival. EGR1 expression is seen in most of the mammalian tissues. Multiple post-translational modifications occur, which modulate the EGR1 transcriptional activity. Upon activation, EGR1 can transactivate several genes with diverse cellular functions, including transcriptional regulatory proteins and cell proliferation. EGR1 has also been identified as a potential mediator of inflammatory gene expression. Recent studies have highlighted the role of EGR1 as a potent signaling molecule that facilitates bacterial adhesion to host epithelial cells, thus modulating colonization pathways. The pathways for the regulation of EGR1 during host-pathogen interaction remain yet unidentified. The review focuses on the role and regulation of EGR1 during host-pathogen interaction.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
7
|
Rao J, Yang Y, Pan Bei H, Tang CY, Zhao X. Antibacterial nanosystems for cancer therapy. Biomater Sci 2020; 8:6814-6824. [PMID: 33078786 DOI: 10.1039/d0bm01537g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteria and cancer cells share a unique symbiotic relationship in the process of cancer development and treatment. It has been shown that certain bacteria can mediate cancer and thrive inside cancerous tissues. Moreover, during cancer treatment, microbial infections have been shown to impair the therapeutic efficacy and lead to serious complications. In the past decades, the application of antibiotics has achieved great success in fighting numerous bacteria but the administration route, low localization effects and related drug resistance limit the further utilization of antibiotics. Recently, advances in nanotechnology have made a significant impact in the medical field, which enhance the drug solubility and can target lesion sites, and some nanomaterials can even be applied as the therapeutic agent itself. In this review, we introduce anti-bacterial nanosystems for cancer therapy in the aspects of spontaneous and triggered anti-bacterial action, and our notions, as well as proposed research directions for the further development of this field, are discussed.
Collapse
Affiliation(s)
- Jingdong Rao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Yuhe Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Ho Pan Bei
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Chak-Yin Tang
- Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol 2020; 58:405-414. [PMID: 32279277 DOI: 10.1007/s12275-020-9505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflam-matory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been preco-lonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the micro-biota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.
Collapse
|
10
|
Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and Matrix Metalloproteinases. Mediators Inflamm 2018; 2018:4310419. [PMID: 30524196 PMCID: PMC6247478 DOI: 10.1155/2018/4310419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/26/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Neonates are highly susceptible to microbial infections which is partially attributable to fundamental phenotypic and functional differences between effector cells of the adult and neonatal immune system. The resolution of the inflammation is essential to return to tissue homeostasis, but given that various neonatal diseases, such as periventricular leukomalacia, necrotizing enterocolitis, or bronchopulmonary dysplasia, are characterized by sustained inflammation, newborns seem predisposed to a dysregulation of the inflammatory response. Targeted apoptosis of effector cells is generally known to control the length and extent of the inflammation, and previous studies have demonstrated that phagocytosis-induced cell death (PICD), a special type of apoptosis in phagocytic immune cells, is less frequently triggered in neonatal monocytes than in adult monocytes. We concluded that a rescue of monocyte PICD could be a potential therapeutic approach to target sustained inflammation in neonates. The EGFR ligand amphiregulin (AREG) is shed in response to bacterial infection and was shown to mediate cellular apoptosis resistance. We hypothesized that AREG might contribute to the reduced PICD of neonatal monocytes by affecting apoptosis signaling. In this study, we have examined a cascade of signaling events involved in extrinsic apoptosis by using a well-established in vitro E. coli infection model in monocytes from human peripheral blood (PBMO) and cord blood (CBMO). We found that CBMO shows remarkably higher pro-AREG surface expression as well as soluble AREG levels in response to infection as compared to PBMO. AREG increases intracellular MMP-2 and MMP-9 levels and induces cleavage of membrane-bound FasL through engagement with the EGF receptor. Our results demonstrate that loss of AREG rescues PICD in CBMO to the level comparable to adult monocytes. These findings identify AREG as a potential target for the prevention of prolonged inflammation in neonates.
Collapse
|
11
|
de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The Host Cell Transcription Factor EGR1 Is Induced by Bacteria through the EGFR-ERK1/2 Pathway. Front Cell Infect Microbiol 2017; 7:16. [PMID: 28180113 PMCID: PMC5264520 DOI: 10.3389/fcimb.2017.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 12/01/2022] Open
Abstract
The essential first step in bacterial colonization is adhesion to the host epithelial cells. The early host-responses post-bacterial adhesions are still poorly understood. Early growth response 1 (EGR1) is an early response transcriptional regulator that can be rapidly induced by various environmental stimuli. Several bacteria can induce EGR1 expression in host cells, but the involved bacterial characteristics and the underlying molecular mechanisms of this response are largely unknown. Here, we show that EGR1 can be induced in host epithelial cells by different species of bacteria independent of the adherence level, Gram-staining type and pathogenicity. However, bacterial viability and contact with host cells is necessary, indicating that an active interaction between bacteria and the host is important. Furthermore, the strongest response is observed in cells originating from the natural site of the infection, suggesting that the EGR1 induction is cell type specific. Finally, we show that EGFR–ERK1/2 and β1-integrin signaling are the main pathways used for bacteria-mediated EGR1 upregulation. In conclusion, the increase of EGR1 expression in epithelial cells is a common stress induced, cell type specific response upon host-bacteria interaction that is mediated by EGFR–ERK1/2 and β1-integrin signaling.
Collapse
Affiliation(s)
- Nele de Klerk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sunil D Saroj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
12
|
Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection. PLoS One 2014; 9:e114208. [PMID: 25460012 PMCID: PMC4252111 DOI: 10.1371/journal.pone.0114208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023] Open
Abstract
The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.
Collapse
|
13
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
14
|
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 2013; 25:403-416. [PMID: 23123499 DOI: 10.1016/j.cellsig.2012.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | | | | | | | | | | |
Collapse
|
15
|
The Role of Bacteria in Cancer Development. Infect Agent Cancer 2013. [DOI: 10.1007/978-94-007-5955-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Alibek K, Karatayeva N, Bekniyazov I. The role of infectious agents in urogenital cancers. Infect Agent Cancer 2012; 7:35. [PMID: 23198689 PMCID: PMC3626724 DOI: 10.1186/1750-9378-7-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/20/2012] [Indexed: 02/07/2023] Open
Abstract
Since the late 1990s, infectious agents have been thought to play a role in the pathogenesis of approximately 15% of cancers. It is now widely accepted that infection of stomach tissue with the bacteria Helicobacter pylori is an important cause of stomach adenocarcinoma. In addition, oncogenic viruses, such as papilloma viruses, herpes viruses, and hepadnaviruses are strongly associated with increased risk of cervical cancer, lymphomas, liver cancer, amongst others. However, in the scientific community the percentage of cancers caused by pathogens is believed to be far higher than 15%. A significant volume of data collected to date show an association between infectious agents and urogenital cancers. These agents include Chlamydia trachomatis, Neisseria gonorrhoea, Mycoplasma genitalium and certain viruses that have been implicated in ovarian cancer. Other pathogens include the hepatitis C and Epstein-Barr viruses, which are potentially involved in kidney cancer. In addition, infections with Schistosoma haematobium, the human papillomavirus, and human polyomaviruses are strongly associated with an increased risk of urinary bladder cancer. This article reviews publications available to date on the role of infectious agents in urogenital cancers. A greater understanding of the role of such agents could aid the identification of novel methods of urogenital cancer treatment.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
- Republican Scientific Center for Emergency Care, 3 Kerey and Zhanibek Khan Street, Astana 010000, Kazakhstan
| | - Nargis Karatayeva
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Ildar Bekniyazov
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
17
|
Vielfort K, Söderholm N, Weyler L, Vare D, Löfmark S, Aro H. Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, p27, and p53 in non-tumor epithelial cells. J Cell Sci 2012; 126:339-47. [DOI: 10.1242/jcs.117721] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The constant shedding and renewal of epithelial cells maintain the protection of epithelial barriers. Interference with the processes of host cell-cycle regulation and barrier integrity permits the bacterial pathogen Neisseria gonorrhoeae to effectively colonize and invade epithelial cells. Here, we show that a gonococcal infection causes DNA damage in human non-tumor vaginal VK2/E6E7 cells with an increase of 700 DNA strand breaks per cell per hour as detected by an alkaline DNA unwinding assay. Infected cells exhibited elevated levels of DNA double-strand breaks, as indicated by a more than 50% increase in cells expressing DNA damage-response protein 53BP1-positive foci that co-localized with phosphorylated histone H2AX (γH2AX). Furthermore, infected cells abolished their expression of the tumor protein p53 and induced an increase in the expression of cyclin-dependent kinase inhibitors p21 and p27 to 2.6-fold and 4.2-fold of controls, respectively. As shown by live-cell microscopy, flow cytometry assays, and BrdU incorporation assays, gonococcal infection slowed the host cell-cycle progression mainly by impairing progression through the G2 phase. Our findings show new cellular players that are involved in the control of the human cell cycle during gonococcal infection and the potential of bacteria to cause cellular abnormalities.
Collapse
|
18
|
Kim JH, Jiang S, Elwell CA, Engel JN. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 2011; 7:e1002285. [PMID: 21998584 PMCID: PMC3188521 DOI: 10.1371/journal.ppat.1002285] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/10/2011] [Indexed: 12/12/2022] Open
Abstract
The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread. Chlamydia trachomatis is an obligate intracellular bacterium that is an important cause of human disease, including sexually transmitted diseases and acquired blindness in developing countries. The inability to carry out conventional genetic manipulations limits our understanding of the mechanisms of C. trachomatis binding, entry, and spread. Previous studies have shown that heparan sulfate proteoglycans (HSPGs) play a role in early binding events. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated whether HSPG-associated growth factors affect C. trachomatis binding or entry. Here, we report the novel finding that Fibroblast Growth Factor 2 (FGF2), a ubiquitously expressed growth factor, enhances C. trachomatis binding to host cells in an HSPG-dependent manner. Furthermore, C. trachomatis infection stimulates production and release of FGF2 through distinct signaling pathways. Released FGF2 is sufficient to enhance the subsequent rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway that sets up a positive feedback loop to enhance bacterial infection and spread.
Collapse
Affiliation(s)
- Jung Hwa Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Shaobo Jiang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Cherilyn A. Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Joanne N. Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|