1
|
Yang F, Beltran-Lobo P, Sung K, Goldrick C, Croft CL, Nishimura A, Hedges E, Mahiddine F, Troakes C, Golde TE, Perez-Nievas BG, Hanger DP, Noble W, Jimenez-Sanchez M. Reactive astrocytes secrete the chaperone HSPB1 to mediate neuroprotection. SCIENCE ADVANCES 2024; 10:eadk9884. [PMID: 38507480 PMCID: PMC10954207 DOI: 10.1126/sciadv.adk9884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Molecular chaperones are protective in neurodegenerative diseases by preventing protein misfolding and aggregation, such as extracellular amyloid plaques and intracellular tau neurofibrillary tangles in Alzheimer's disease (AD). In addition, AD is characterized by an increase in astrocyte reactivity. The chaperone HSPB1 has been proposed as a marker for reactive astrocytes; however, its astrocytic functions in neurodegeneration remain to be elucidated. Here, we identify that HSPB1 is secreted from astrocytes to exert non-cell-autonomous protective functions. We show that in human AD brain, HSPB1 levels increase in astrocytes that cluster around amyloid plaques, as well as in the adjacent extracellular space. Moreover, in conditions that mimic an inflammatory reactive response, astrocytes increase HSPB1 secretion. Concomitantly, astrocytes and neurons can uptake astrocyte-secreted HSPB1, which is accompanied by an attenuation of the inflammatory response in reactive astrocytes and reduced pathological tau inclusions. Our findings highlight a protective mechanism in disease conditions that encompasses the secretion of a chaperone typically regarded as intracellular.
Collapse
Affiliation(s)
- Fangjia Yang
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Katherine Sung
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Caoimhe Goldrick
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Cara L. Croft
- UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Agnes Nishimura
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Erin Hedges
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Farah Mahiddine
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Todd E. Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Beatriz G. Perez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Diane P. Hanger
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Department of Biomedical and Clinical Sciences, University of Exeter, Exeter, UK
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
2
|
Schutzer SE, Liu T, Tsai CF, Petyuk VA, Schepmoes AA, Wang YT, Weitz KK, Bergquist J, Smith RD, Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes. Ann Med 2023; 55:2208372. [PMID: 37722890 PMCID: PMC10512920 DOI: 10.1080/07853890.2023.2208372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/24/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other. MATERIAL AND METHODS To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF). This was to ascertain if the proteome profile of one was the same or different from the other. We examined two separate groups of ME/CFS, one with (n = 15) and one without (n = 15) fibromyalgia. RESULTS We quantified a total of 2083 proteins using immunoaffinity depletion, tandem mass tag isobaric labelling and offline two-dimensional liquid chromatography coupled to tandem mass spectrometry, including 1789 that were quantified in all the CSF samples. ANOVA analysis did not yield any proteins with an adjusted p value <.05. CONCLUSION This supports the notion that ME/CFS and fibromyalgia as currently defined are not distinct entities.Key messageME/CFS and fibromyalgia as currently defined are not distinct entities.Unbiased quantitative mass spectrometry-based proteomics can be used to discover cerebrospinal fluid proteins that are biomarkers for a condition such as we are studying.
Collapse
Affiliation(s)
| | - Tao Liu
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vladislav A. Petyuk
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A. Schepmoes
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Karl K. Weitz
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Richard D. Smith
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin H. Natelson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Strand V, Jayne DRW, Horomanski A, Yue H, Bekker P, Merkel PA. The impact of treatment with avacopan on health-related quality of life in antineutrophil cytoplasmic antibody-associated vasculitis: a post-hoc analysis of data from the ADVOCATE trial. THE LANCET. RHEUMATOLOGY 2023; 5:e451-e460. [PMID: 38251577 DOI: 10.1016/s2665-9913(23)00092-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is characterised by inflammation and destruction of small to medium sized blood vessels. In the previously reported ADVOCATE study, a phase 3 double-blind, double-dummy randomised controlled trial of patients with newly diagnosed or relapsing ANCA-associated vasculitis, the oral selective complement 5a receptor inhibitor avacopan was shown to be non-inferior with regard to remission induction at week 26 and superior with regard to sustained remission at week 52, compared with a prednisone taper in a standard of care regimen. In this Article, we report an in-depth analysis of prespecified and exploratory patient-reported outcomes from the ADVOCATE study, measuring health-related quality of life and health utilities. METHODS We did a post-hoc analysis of patient-reported outcome data from the ADVOCATE study (NCT02994927) of patients with newly diagnosed or relapsing ANCA-associated vasculitis. We analysed summary scores and individual domain scores for the prespecified health-related quality of life outcomes from ADVOCATE, which were evaluated at weeks 26 and 52 by use of the Medical Outcomes Survey 36-Item Short Form Health Survey (SF-36) version 2, the EuroQol 5-Dimensions 5-Levels Questionnaire (EQ-5D-5L), and the EQ-5D health utility measure, assessed in the modified intention-to-treat population. We also calculated the Short Form 6 Dimension (SF-6D) score as an additional health utility measure. We evaluated the proportion of patients who reported scores that met or exceeded minimum clinically important differences in health-related quality of life, and we compared scores to normative values (age-specific and sex-specific scores from healthy populations from the USA matched to the protocol population). We also evaluated the proportion of patients who reported scores that met or exceeded minimum important difference in health utility scores. FINDINGS 331 patients were enrolled in the ADVOCATE trial, of whom 166 were in the avacopan group and 165 were in the prednisone standard of care group. In the avacopan group, the mean age was 61·2 years (SD 14·6), 98 (59%) of 166 patients were men, 68 (41%) were women, and 138 (83%) were White; in the prednisone group, the mean age was 60·5 years (14·5), 88 (54%) of 164 patients were men, 76 (46%) were women, and 140 (85%) were White. Patients treated with avacopan received approximately 2500 mg less median total prednisone up to week 52. Least squares means difference from baseline in physical component summary scores were significantly greater in patients in the avacopan group compared with those in the prednisone group at weeks 26 and 52, as well as in five of eight SF-36 domains at week 26 and two of eight SF-36 domains at week 52. The proportion of patients reporting scores equal to or greater than normative values was higher in the avacopan group than in the prednisone group across all SF-36 domains at both week 26 and 52, although the differences were not statistically significant with the exception of the role physical and vitality domains at week 26. Least squares means change from baseline in EQ-5D-5L visual analogue scale, EQ-5D health utility scores, and SF-6D health utility scores were significantly greater at week 52 in the avacopan group compared with the prednisone group. INTERPRETATION Patients with ANCA-associated vasculitis who received avacopan reported statistically significant and clinically meaningful improvements in health-related quality of life at 26 and 52 weeks and in health utility EQ-5D and SF-6D scores at 52 weeks. These patient-reported outcomes complement investigator assessments and support the efficacy of avacopan in patients with ANCA-associated vasculitis with use of lower prednisone doses. FUNDING ChemoCentryx.
Collapse
Affiliation(s)
- Vibeke Strand
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA.
| | - David R W Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Audra Horomanski
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | | | | | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, and Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
6
|
Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med 2023; 21:322. [PMID: 37179299 PMCID: PMC10182359 DOI: 10.1186/s12967-023-04179-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jiayin Li
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Departments of Neurology and Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Ruppert
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Nilsson K, Skoog E, Edvinsson M, Mårtensson A, Olsen B. Protein biomarker profiles in serum and CSF in 158 patients with PTLDS or persistent symptoms after presumed tick-bite exposure compared to those in patients with confirmed acute neuroborreliosis. PLoS One 2022; 17:e0276407. [PMID: 36327322 PMCID: PMC9632922 DOI: 10.1371/journal.pone.0276407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Current diagnostics for patients with lingering symptoms categorized as post-treatment Lyme disease syndrome (PTLDS) have their limitations and may be difficult to interpret. The aim of this exploratory study was to evaluate the feasibility of protein biomarker profiling as a diagnostic platform for this category of patients and to compare these results with similarly obtained results from a group of patients with acute neuroborreliosis. METHODS AND FINDINGS Two groups of patient cohorts (Cohort 1 and 2) were analyzed for biomarkers in serum and cerebrospinal fluid (CSF); the results were used for group-level comparison. Cohort 1 comprised 158 adult patients selected from 224 previously diagnosed patients, who between October 2015 and December 2018, after referral, were enrolled and structurally investigated based on defined inclusion criteria. They displayed similar lingering symptoms, with a duration of at least 6 months, after presumed previous tick-borne infection (TBI) and are fully described in a previously published study originating from the Center for Vector-borne Infections (CVI), Uppsala University Hospital, Sweden. Cohort 2, comprised 30 patients diagnosed at Uppsala University Hospital between 2016 and 2019 with laboratory-confirmed acute neuroborreliosis. Their proteomic results, based on serum and CSF analyses, were compared with the 158 patients in Cohort 1. The expression and the concentration of potential biomarkers in each patient's serum and CSF samples were measured based on two multiplex protein panels enabling simultaneous analysis of 92 inflammatory and neurology biomarkers. The PTLDS patient subgroup showed no nominally significant proteins compared to the other CVI patients in Cohort 1. However, CVI patients with signs of inflammation, which were evenly distributed in Cohort 1, showed 16 significantly (p <0.05) different proteins in both CSF and serum, but no association was seen with laboratory-confirmed exposure to Borrelia spp or other TBIs. When comparing the two cohorts, different protein profiles were observed, with 125/148 significantly different proteins in CSF and 93/174 in serum, in patients with laboratory confirmed acute neuroborreliosis, of which 6 in CSF and 6 in serum were significant at the p <0.001 level. CONCLUSIONS In this first comprehensive inflammatory and neurological biomarker profile study no differences in biomarker profiles were detected between patients with PTLDS and patients with similar persisting symptoms but who did not meet the PTLDS criteria, regardless of whether laboratory verified previous exposure to Borrelia or other TBI's were present. However, the expressed markers differed from those found in patients with confirmed acute neuroborreliosis, which does not support the view that PTLDS reflects an ongoing Borrelia infection. Further studies are needed to understand and assess the usefulness of biosignatures of patients with PTLDS before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Kenneth Nilsson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabet Skoog
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Marie Edvinsson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Brellier F, Pujades-Rodriguez M, Powell E, Mudie K, Mattos Lacerda E, Nacul L, Wing K. Incidence of Lyme disease in the United Kingdom and association with fatigue: A population-based, historical cohort study. PLoS One 2022; 17:e0265765. [PMID: 35320297 PMCID: PMC8942220 DOI: 10.1371/journal.pone.0265765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Estimations of Lyme disease incidence rates in the United Kingdom vary. There is evidence that this disease is associated with fatigue in its early stage but reports are contradictory as far as long-term fatigue is concerned. Methods and findings A population-based historical cohort study was conducted on patients treated in general practices contributing to IQVIA Medical Research Data: 2,130 patients with a first diagnosis of Lyme disease between 2000 and 2018 and 8,510 randomly-sampled patients matched by age, sex, and general practice, followed-up for a median time of 3 years and 8 months. Main outcome measure was time to consultation for (1) any fatigue-related symptoms or diagnosis; or (2) myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Adjusted hazard ratios (HRs) were estimated from Cox models. Average incidence rate for Lyme disease across the UK was 5.18 per 100,000 person-years, increasing from 2.55 in 2000 to 9.33 in 2018. In total, 929 events of any types of fatigue were observed, leading to an incidence rate of 307.90 per 10,000 person-years in the Lyme cohort (282 events) and 165.60 in the comparator cohort (647 events). Effect of Lyme disease on any subsequent fatigue varied by index season: adjusted HRs were the highest in autumn and winter with 3.14 (95%CI: 1.92–5.13) and 2.23 (1.21–4.11), respectively. For ME/CFS, 17 events were observed in total. Incidence rates were 11.76 per 10,000 person-years in Lyme patients (12 events) and 1.20 in comparators (5 events), corresponding to an adjusted HR of 16.95 (5.17–55.60). Effects were attenuated 6 months after diagnosis but still clearly visible. Conclusions UK primary care records provided strong evidence that Lyme disease was associated with subsequent fatigue and ME/CFS. Albeit weaker on the long-term, these effects persisted beyond 6 months, suggesting patients and healthcare providers should remain alert to fatigue symptoms months to years following Lyme disease diagnosis.
Collapse
Affiliation(s)
| | | | - Emma Powell
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kathleen Mudie
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eliana Mattos Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- British Columbia Womens Hospital and Health Centre, Complex Chronic Diseases Program, Vancouver, Canada
- Department of Family Practice, University of British Columbia, Vancouver, Canada
| | - Kevin Wing
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
O'Boyle S, Nacul L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. A Natural History of Disease Framework for Improving the Prevention, Management, and Research on Post-viral Fatigue Syndrome and Other Forms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 8:688159. [PMID: 35155455 PMCID: PMC8835111 DOI: 10.3389/fmed.2021.688159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
We propose a framework for the treatment, rehabilitation, and research into Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) using a natural history of disease approach to outline the distinct disease stages, with an emphasis on cases following infection to provide insights into prevention. Moving away from the method of subtyping patients based on the various phenotypic presentations and instead reframing along the lines of disease progression could help with defining the distinct stages of disease, each of which would benefit from large prospective cohort studies to accurately describe the pathological mechanisms taking place therein. With a better understanding of these mechanisms, management and research can be tailored specifically for each disease stage. Pre-disease and early disease stages call for management strategies that may decrease the risk of long-term morbidity, by focusing on avoidance of further insults, adequate rest to enable recovery, and pacing of activities. Later disease stages require a more holistic and tailored management approach, with treatment-as this becomes available-targeting the alleviation of symptoms and multi-systemic dysfunction. More stringent and standardised use of case definitions in research is critical to improve generalisability of results and to create the strong evidence-based policies for management that are currently lacking in ME/CFS.
Collapse
Affiliation(s)
- Shennae O'Boyle
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- UK Health Security Agency, London, United Kingdom
| | - Luis Nacul
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Flavio E. Nacul
- Pro-cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
12
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
13
|
Gadila SKG, Rosoklija G, Dwork AJ, Fallon BA, Embers ME. Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens. Front Neurol 2021; 12:628045. [PMID: 34040573 PMCID: PMC8141553 DOI: 10.3389/fneur.2021.628045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 01/30/2023] Open
Abstract
The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.
Collapse
Affiliation(s)
- Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Brian A Fallon
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
14
|
Haghighi S, Forsmark S, Zachrisson O, Carlsson A, Nilsson MKL, Carlsson ML, Schuit RC, Gottfries CG. Open-label study with the monoamine stabilizer (-)-OSU6162 in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav 2021; 11:e02040. [PMID: 33528911 PMCID: PMC8035472 DOI: 10.1002/brb3.2040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES The purpose of the present study was to investigate the safety and tolerability of the monoaminergic stabilizer (-)-OSU6162 in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In addition, a potential therapeutic effect of (-)-OSU6162 in ME/CFS was evaluated by means of observer-rated scales and self-assessment rating scales. MATERIALS AND METHODS In the current study using an open-label single-arm design ME/CFS patient received treatment with (-)-OSU6162 during 12 weeks. The patients received the following doses of (-)-OSU6162: 15 mg b.i.d. during the first 4-week period, up to 30 mg b.i.d. during the second 4-week period and up to 45 mg b.i.d. during the third 4-week period, with follow-up visits after 16 and 20 weeks. RESULTS Out of 33 included patients, 28 completed the 12 weeks treatment period. (-)-OSU6162 was well tolerated; only one patient discontinued due to an adverse event. Vital signs and physical examinations showed no abnormal changes. Blood analyses showed an increase in serum prolactin. Therapeutically, improvements were seen on the Clinical Global Impression of Change scale, the FibroFatigue scale, the Mental Fatigue Scale, the Fatigue Severity Scale, Beck Depression Inventory, and the Short Form 36 Health Survey Questionnaire. CONCLUSIONS (-)-OSU6162 is well tolerated in ME/CFS patients and shows promise as a novel treatment to mitigate fatigue and improve mood and health-related quality of life in ME/CFS. Obviously, the present results need to be confirmed in future placebo-controlled double-blind trials.
Collapse
Affiliation(s)
- Sara Haghighi
- Department of Neurology, Motala Hospital, Motala, Sweden
| | - Sara Forsmark
- Gottfries Clinic, Affiliated with Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olof Zachrisson
- Gottfries Clinic, Affiliated with Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvid Carlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie K L Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria L Carlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert C Schuit
- Amsterdam University Medical Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Carl-Gerhard Gottfries
- Gottfries Clinic, Affiliated with Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Germain A, Levine SM, Hanson MR. In-Depth Analysis of the Plasma Proteome in ME/CFS Exposes Disrupted Ephrin-Eph and Immune System Signaling. Proteomes 2021; 9:6. [PMID: 33572894 PMCID: PMC7931008 DOI: 10.3390/proteomes9010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease with worldwide prevalence and limited therapies exclusively aimed at treating symptoms. To gain insights into the molecular disruptions in ME/CFS, we utilized an aptamer-based technology that quantified 4790 unique human proteins, allowing us to obtain the largest proteomics dataset yet available for this disease, detecting highly abundant proteins as well as rare proteins over a nine-log dynamic range. We report a pilot study of 20 ME/CFS patients and 20 controls, all females. Significant differences in the levels of 19 proteins between cohorts implicate pathways related to the extracellular matrix, the immune system and cell-cell communication. Outputs of pathway and cluster analyses robustly highlight the ephrin pathway, which is involved in cell-cell signaling and regulation of an expansive variety of biological processes, including axon guidance, angiogenesis, epithelial cell migration, and immune response. Receiver Operating Characteristic (ROC) curve analyses distinguish the plasma proteomes of ME/CFS patients from controls with a high degree of accuracy (Area Under the Curve (AUC) > 0.85), and even higher when using protein ratios (AUC up to 0.95), that include some protein pairs with established biological relevance. Our results illustrate the promise of plasma proteomics for diagnosing and deciphering the molecular basis of ME/CFS.
Collapse
Affiliation(s)
| | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
16
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
17
|
Nacul L, O'Boyle S, Palla L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front Neurol 2020; 11:826. [PMID: 32849252 PMCID: PMC7431524 DOI: 10.3389/fneur.2020.00826] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Shennae O'Boyle
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luigi Palla
- Department of Medical Statistics, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Flavio E. Nacul
- Pro-Cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Bynke A, Julin P, Gottfries CG, Heidecke H, Scheibenbogen C, Bergquist J. Autoantibodies to beta-adrenergic and muscarinic cholinergic receptors in Myalgic Encephalomyelitis (ME) patients - A validation study in plasma and cerebrospinal fluid from two Swedish cohorts. Brain Behav Immun Health 2020; 7:100107. [PMID: 34589868 PMCID: PMC8474431 DOI: 10.1016/j.bbih.2020.100107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis (ME) also known as ME/CFS (Chronic Fatigue Syndrome) or ME/SEID (Systemic Exertion Intolerance Disorder), is a disabling and often long-lasting disease that can drastically impair quality of life and physical/social functioning of the patients. Underlying pathological mechanisms are to a large extent unknown, but the presence of autoantibodies, cytokine pattern deviations and the presentation of cognitive and autonomic nervous system related symptoms provide evidence for ME being an immunological disorder with elements of autoimmunity. Increased levels of autoantibodies binding to adrenergic and muscarinic receptors in ME-patients have been reported. It is hypothesized that these autoantibodies have pathological significance and contribute to the ME-specific symptoms, however, these observations need to be validated. This study was designed to investigate potential differences in adrenergic and muscarinic receptor autoantibody levels in plasma and cerebrospinal fluid (CSF) samples between ME patients and gender and age-matched healthy controls, and to correlate the autoantibody levels to disease severity. We collected bodyfluids and health-related questionnaires from two Swedish ME cohorts, plasma and CSF from one of the cohorts (n = 24), only plasma from the second cohort (n = 24) together with plasma samples (n = 24) and CSF (n = 6) from healthy controls. All samples were analysed for IgG autoantibodies directed against Alpha- (α1, α2) and Beta- (β1-3) adrenergic receptors and Muscarinic (M) 1-5 acetylcholine receptors using an ELISA technique. The questionnaires were used as measures of disease severity. Significant increases in autoantibody levels in ME patients compared to controls were found for M3 and M4 -receptors in both cohorts and β1, β2, M3 and M4-receptors in one cohort. No significant correlations were found between autoantibody levels and disease severity. No significant levels of autoantibodies were detected in the CSF samples. These findings support previous findings that there exists a general pattern of increased antibody levels to adrenergic and muscarinic receptors within the ME patient group. However, the role of increased adrenergic and muscarinic receptor autoantibodies in the pathogenesis of ME is still uncertain and further research is needed to evaluate the clinical significance of these findings.
Collapse
Affiliation(s)
- Annie Bynke
- Analytical Chemistry and Neurochemistry, Department of Chemistry – BMC, Box 599, Uppsala University, 75124, Uppsala, Sweden
- The ME/CFS Collaborative Research Centre at Uppsala University, Sweden
| | - Per Julin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- ME/CFS-policlinic, Neurological Rehabiliation Clinic, Stora Sköndal, Stockholm, Sweden
| | - Carl-Gerhard Gottfries
- Gottfries Clinic, Affiliated with Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, Sweden
| | | | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – BMC, Box 599, Uppsala University, 75124, Uppsala, Sweden
- The ME/CFS Collaborative Research Centre at Uppsala University, Sweden
| |
Collapse
|
19
|
Milivojevic M, Che X, Bateman L, Cheng A, Garcia BA, Hornig M, Huber M, Klimas NG, Lee B, Lee H, Levine S, Montoya JG, Peterson DL, Komaroff AL, Lipkin WI. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One 2020; 15:e0236148. [PMID: 32692761 PMCID: PMC7373296 DOI: 10.1371/journal.pone.0236148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.
Collapse
Affiliation(s)
- Milica Milivojevic
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT, United States of America
| | - Aaron Cheng
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Benjamin A. Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Manuel Huber
- German Research Center for Environmental Health, Institute for Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Miami VA Medical Center, Miami, FL, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Hyoungjoo Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan Levine
- Levine Clinic, New York, NY, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Jack S. Remington Laboratory for Specialty Diagnostics of Toxoplasmosis, Palo Alto, CA, United States of America
| | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, United States of America
| | - Anthony L. Komaroff
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| |
Collapse
|
20
|
|
21
|
Sandler CX, Lloyd AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust 2020; 212:428-433. [DOI: 10.5694/mja2.50553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carolina X Sandler
- UNSW Fatigue ClinicUNSW Sydney NSW
- Queensland University of Technology Brisbane QLD
| | - Andrew R Lloyd
- Kirby Institute for Infection and Immunity in SocietyUNSW Sydney NSW
- UNSW Medicine Sydney NSW
| |
Collapse
|
22
|
Nilsson I, Palmer J, Apostolou E, Gottfries CG, Rizwan M, Dahle C, Rosén A. Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Not Due to Anti-mitochondrial Antibodies. Front Med (Lausanne) 2020; 7:108. [PMID: 32296708 PMCID: PMC7136523 DOI: 10.3389/fmed.2020.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic profiling studies have recently indicated dysfunctional mitochondria in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This includes an impaired function of pyruvate dehydrogenase complex (PDC), possibly driven by serum factor(s), which leads to inadequate adenosine triphosphate generation and excessive lactate accumulation. A reminiscent energy blockade is likely to occur in primary biliary cholangitis (PBC), caused by anti-PDC autoantibodies, as recently proposed. PBC is associated with fatigue and post-exertional malaise, also signifying ME/CFS. We herein have investigated whether ME/CFS patients have autoreactive antibodies that could interfere with mitochondrial function. We found that only 1 of 161 examined ME/CFS patients was positive for anti-PDC, while all PBC patients (15/15) presented significant IgM, IgG, and IgA anti-PDC reactivity, as previously shown. None of fibromyalgia patients (0/14), multiple sclerosis patients (0/29), and healthy blood donors (0/44) controls showed reactivities. Anti-mitochondrial autoantibodies (inner and outer membrane) were negative in ME/CFS cohort. Anti-cardiolipin antibody levels in patients did not differ significantly from healthy blood donors. In conclusion, the impaired mitochondrial/metabolic dysfunction, observed in ME/CFS, cannot be explained by presence of circulating autoantibodies against the tested mitochondrial epitopes.
Collapse
Affiliation(s)
- Isabell Nilsson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeremy Palmer
- The Medical School, The University Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Eirini Apostolou
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Muhammad Rizwan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
A Clinical Diagnostic System for Late-Stage Neuropsychiatric Lyme Borreliosis Based upon an Analysis of 100 Patients. Healthcare (Basel) 2020; 8:healthcare8010013. [PMID: 31935905 PMCID: PMC7151210 DOI: 10.3390/healthcare8010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Many late-stage chronic Lyme disease clinical findings are neuropsychiatric. A total clinical assessment is critical in diagnosis, especially since controversy surrounds the reliability of laboratory testing. The clinical findings of one hundred Lyme disease patients with chronic neuropsychiatric symptoms were entered into a database. The prevalence of each clinical finding pre-infection and post-infection was compared and calculated within the 95% confidence interval. Patients had minimal symptoms pre-infection, but a high post-infection prevalence of a broad spectrum of acquired multisystem symptoms. These findings included impairments of attention span, memory, processing, executive functioning, emotional functioning, behavior, psychiatric syndromes, vegetative functioning, neurological, musculoskeletal, cardiovascular, upper respiratory, dental, pulmonary, gastrointestinal, genitourinary, and other symptoms. The most prevalent symptoms included sustained attention impairments, brain fog, unfocused concentration, joint symptoms, distraction by frustration, depression, working memory impairments, decreased school/job performance, recent memory impairments, difficulty prioritizing multiple tasks, fatigue, non-restorative sleep, multitasking difficulties, sudden mood swings, hypersomnia, mental apathy, decreased social functioning, insomnia, tingling, word finding difficulties, name retrieval, headaches, sound hypersensitivity, paresis, anhedonia, depersonalization, cold intolerance, body temperature fluctuations, light sensitivity and dysfluent speech. The average patient had five symptoms pre-infection and 82 post-infection. Pattern recognition is critical in making a diagnosis. This study was used to develop three clinical assessment forms.
Collapse
|
25
|
Bergquist J. Leveraging the power of mass spectrometry to unravel complex brain pathologies. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 14 Pt B:63-65. [PMID: 34977358 PMCID: PMC8686759 DOI: 10.1016/j.clinms.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| |
Collapse
|
26
|
Bharucha T, Gangadharan B, Kumar A, de Lamballerie X, Newton PN, Winterberg M, Dubot-Pérès A, Zitzmann N. Mass spectrometry-based proteomic techniques to identify cerebrospinal fluid biomarkers for diagnosing suspected central nervous system infections. A systematic review. J Infect 2019; 79:407-418. [PMID: 31404562 PMCID: PMC6838782 DOI: 10.1016/j.jinf.2019.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Central nervous system (CNS) infections account for considerable death and disability every year. An urgent research priority is scaling up diagnostic capacity, and introduction of point-of-care tests. We set out to assess current evidence for the application of mass spectrometry (MS) peptide sequencing in identification of diagnostic biomarkers for CNS infections. METHODS We performed a systematic review (PROSPEROCRD42018104257) using PRISMA guidelines on use of MS to identify cerebrospinal fluid (CSF) biomarkers for diagnosing CNS infections. We searched PubMed, Embase, Web of Science, and Cochrane for articles published from 1 January 2000 to 1 February 2019, and contacted experts. Inclusion criteria involved primary research except case reports, on the diagnosis of infectious diseases except HIV, applying MS to human CSF samples, and English language. RESULTS 4,620 papers were identified, of which 11 were included, largely confined to pre-clinical biomarker discovery, and eight (73%) published in the last five years. 6 studies performed further work termed verification or validation. In 2 of these studies, it was possible to extract data on sensitivity and specificity of the biomarkers detected by ELISA, ranging from 89-94% and 58-92% respectively. CONCLUSIONS The findings demonstrate feasibility and potential of the methods in a variety of infectious diseases, but emphasise the need for strong interdisciplinary collaborations to ensure appropriate study design and biomarker validation.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic.
| | - Bevin Gangadharan
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Abhinav Kumar
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F, 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| |
Collapse
|
27
|
Larssen E, Brede C, Hjelle A, Tjensvoll AB, Norheim KB, Bårdsen K, Jonsdottir K, Ruoff P, Omdal R, Nilsen MM. Fatigue in primary Sjögren's syndrome: A proteomic pilot study of cerebrospinal fluid. SAGE Open Med 2019; 7:2050312119850390. [PMID: 31205695 PMCID: PMC6537061 DOI: 10.1177/2050312119850390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: Fatigue is a frequent and often disabling phenomenon that occurs in patients
with chronic inflammatory and immunological diseases, and the underlying
biological mechanisms are largely unknown. Because fatigue is generated in
the brain, we aimed to investigate cerebrospinal fluid and search for
molecules that participate in the pathophysiology of fatigue processes. Methods: A label-free shotgun proteomics approach was applied to analyze the
cerebrospinal fluid proteome of 20 patients with primary Sjögren’s syndrome.
Fatigue was measured with the fatigue visual analog scale. Results: A total of 828 proteins were identified and the 15 top discriminatory
proteins between patients with high and low fatigue were selected. Among
these were apolipoprotein A4, hemopexin, pigment epithelium-derived factor,
secretogranin-1, secretogranin-3, selenium-binding protein 1, and complement
factor B. Conclusion: Most of the discriminatory proteins have important roles in regulation of
innate immunity, cellular stress defense, and/or functions in the central
nervous system. These proteins and their interacting protein networks may
therefore have central roles in the generation and regulation of fatigue,
and the findings contribute with evidence to the concept of fatigue as a
biological phenomenon signaled through specific molecular pathways.
Collapse
Affiliation(s)
- Eivind Larssen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Anne Hjelle
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | | | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Bårdsen
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research (CORE), University of Stavanger, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mari Mæland Nilsen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| |
Collapse
|
28
|
Roitman M, Edgington-Mitchell LE, Mangum J, Ziogas J, Adamides AA, Myles P, Choo-Bunnett H, Bunnett NW, Gunnersen JM. Sez6 levels are elevated in cerebrospinal fluid of patients with inflammatory pain-associated conditions. Pain Rep 2019; 4:e719. [PMID: 31041421 PMCID: PMC6455686 DOI: 10.1097/pr9.0000000000000719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Seizure-related protein 6 (Sez6) contributes to chronic pain development as sez6 knockout mice show attenuated pain behaviours after peripheral nerve injury, compared with control mice. The type I transmembrane isoform of Sez6 is cleaved by the β-amyloid precursor protein cleavage enzyme 1 (BACE1), resulting in Sez6 extracellular domain shedding from the neuron surface. OBJECTIVES To determine whether this BACE1-shed form of Sez6 can be detected in the cerebrospinal fluid (CSF) and whether Sez6 levels in the CSF are altered in neuropathic pain or chronic inflammatory pain (IP). METHODS We analysed the CSF samples collected during surgery from patients with chronic neuropathic pain (n = 8) or IP (n = 33), comparing them to the CSF samples from patients with suspected subarachnoid haemorrhage that was subsequently excluded (nonsurgical group, n = 5). Western blots were used to determine the relative Sez6 levels in the CSF from the different patient and nonsurgical comparison groups. RESULTS The results show that BACE1-shed Sez6 can be readily detected in the CSF by Western blot and that the levels of Sez6 are significantly higher in the IP group than in the nonsurgical comparison group. CONCLUSION The association between elevated Sez6 levels in the CSF and IP is further evidence for persistent alterations in central nervous system activity in chronic IP conditions.
Collapse
Affiliation(s)
- Maria Roitman
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura E. Edgington-Mitchell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
| | - Jon Mangum
- Department of Pharmacology and Therapeutics, The University of Melbourne Parkville, Victoria, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, The University of Melbourne Parkville, Victoria, Australia
| | - Alexios A. Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul Myles
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Hearan Choo-Bunnett
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nigel W. Bunnett
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jenny M. Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Natelson BH. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: Definitions, Similarities, and Differences. Clin Ther 2019; 41:612-618. [PMID: 30795933 DOI: 10.1016/j.clinthera.2018.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
Abstract
This commentary presents a simplified way of making the diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) using the 1994 Centers for Disease Control and Prevention case definition. The format used can easily be modified for other case definitions. The commentary then discusses whether ME/CFS is the same or a different illness from fibromyalgia. Because overlap exists between the 2 syndromes, some investigators have posited that they are variants of the same illness. I have viewed this as an empirically testable hypothesis and have summoned considerable amounts of data that suggest that the 2 illnesses differ. Were differences to exist, that would suggest different pathophysiologic processes for each, leading to different treatments.
Collapse
Affiliation(s)
- Benjamin H Natelson
- Department of Neurology, Pain & Fatigue Study Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Pedroza-Díaz J, Chavarria TPL, Vahos CHM, Hernández Ramírez DF, Olivares-Martínez E, Vásquez G, Llorente L, Fragoso-Loyo H, Röthlisberger S, Ortiz Reyes BL. Proteomic Analysis of Cerebrospinal Fluid: A Search for Biomarkers of Neuropsychiatric Systemic Lupus Erythematosus. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180911125252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background:
Neuropsychiatric systemic lupus erythematosus or NPSLE, as its name suggests, refers to the neurological and psychiatric manifestations of Systemic Lupus Erythematosus (SLE). In clinical practice, it is often difficult to reach an accurate diagnosis, as this disease presents differently in different patients, and the available diagnostic tests are often not specific enough.
Objectives:
The aim of this study was to search for proteomic biomarkers in cerebrospinal fluid that could be proposed as diagnostic aids for this disease.
Methods:
The proteomic profile of cerebrospinal fluid samples of 19 patients with NPSLE, 12 patients with SLE and no neuropsychiatric manifestation (SLEnoNP), 6 patients with neuropsychiatric symptoms but no SLE (NPnoSLE), 5 with Other Autoimmune Disorders without neuropsychiatric manifestations (OADs), and 4 Healthy Controls (HC), were obtained by two-dimensional gel electrophoresis and compared using ImageMaster Platinum 7.0 software.
Results:
The comparative analysis of the different study groups revealed three proteins of interest that were consistently over-expressed in NPSLE patients. These were identified by mass spectrometry as albumin (spot 16), haptoglobin (spot 160), and beta-2 microglobulin (spot 161).
Conclusion:
This work is one of the few proteomic studies of NPSLE that uses cerebrospinal fluid as the biological sample. Albumin has previously been proposed as a potential biomarker of rheumatoid arthritis and SLE, which is coherent with these results; but this is the first report of haptoglobin and beta-2 microglobulin in NPSLE, although haptoglobin has been associated with increased antibody production and beta-2 microglobulin with lupus nephritis.
Collapse
Affiliation(s)
- Johanna Pedroza-Díaz
- Instituto Tecnologico Metropolitano-ITM-, Facultad de Ciencias Exactas y Aplicadas, Grupo de Investigacion e Innovacion Biomedica GI2B, Medellín, Colombia
| | - Tania Paola Luján Chavarria
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunologia Celular e Inmunogenetica-GICIG-, Medellin, Colombia
| | - Carlos Horacio Muñoz Vahos
- Universidad de Antioquia, Facultad de Medicina, Grupo de Reumatologia Universidad de Antioquia - GRUA-, Medellín, Colombia
| | | | - Elizabeth Olivares-Martínez
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Department of Immunology & Rheumatology, Mexico DF, Mexico
| | - Gloria Vásquez
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunologia Celular e Inmunogenetica-GICIG-, Medellin, Colombia
| | - Luis Llorente
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Department of Immunology & Rheumatology, Colombia
| | - Hilda Fragoso-Loyo
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Department of Immunology & Rheumatology, Mexico DF, Mexico
| | - Sarah Röthlisberger
- Instituto Tecnologico Metropolitano-ITM-, Facultad de Ciencias Exactas y Aplicadas, Grupo de Investigacion e Innovacion Biomedica GI2B, Medellín, Colombia
| | - Blanca Lucía Ortiz Reyes
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunologia Celular e Inmunogenetica-GICIG-, Medellin, Colombia
| |
Collapse
|
31
|
Dupree EJ, Goodwin A, Darie CC, Boolani A. A Pilot Exploratory Proteomics Investigation of Mental Fatigue and Mental Energy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:601-611. [PMID: 31347074 DOI: 10.1007/978-3-030-15950-4_36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue is a common and poorly understood problem that impacts approximately 45% of the United States (US) population. Fatigue has also been associated with fatigue-related driving accidents, school absences, decline in school performance and negative health outcomes. Fatigue has been linked to many diseases and is consistently underreported in medical care. Despite these high financial and societal costs, fatigue is a poorly understood problem and there is no consensus on how to measure fatigue. Proteomics is one of the most unbiased approach to measure differences in the protein levels from various biological fluids in two conditions, i.e. before and after mental exercise, aka fatigue. There are, however, challenges associated with such analyses: proteomics experiments are usually expensive and time consuming and also require a large number of participants. Here, we performed a proteomics experiment of three (pre- and post-fatigue) samples and also three matched controls (pre- and post-non-fatigue). We found no particular protein that has significant changes in fatigue sample upon treatment. We did note a potential association between changes in mental energy and Annexin A1. However, the study has value simply because it is an extra study in the field of fatigue, but also allows other to correlate our results with their results.
Collapse
Affiliation(s)
- Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Aurora Goodwin
- Applied Physiology and Psychology Lab, Department of Physical Therapy, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Ali Boolani
- Applied Physiology and Psychology Lab, Department of Physical Therapy, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
32
|
Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018; 6:373. [PMID: 30564562 PMCID: PMC6288442 DOI: 10.3389/fped.2018.00373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness. Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens. Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient's unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.
Collapse
Affiliation(s)
- Amy Proal
- Autoimmunity Research Foundation, Thousand Oaks, CA, United States
| | | |
Collapse
|
33
|
Neuropsychiatric Lyme Borreliosis: An Overview with a Focus on a Specialty Psychiatrist's Clinical Practice. Healthcare (Basel) 2018; 6:healthcare6030104. [PMID: 30149626 PMCID: PMC6165408 DOI: 10.3390/healthcare6030104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence and recognition that Lyme borreliosis (LB) causes mental symptoms. This article draws from databases, search engines and clinical experience to review current information on LB. LB causes immune and metabolic effects that result in a gradually developing spectrum of neuropsychiatric symptoms, usually presenting with significant comorbidity which may include developmental disorders, autism spectrum disorders, schizoaffective disorders, bipolar disorder, depression, anxiety disorders (panic disorder, social anxiety disorder, generalized anxiety disorder, posttraumatic stress disorder, intrusive symptoms), eating disorders, decreased libido, sleep disorders, addiction, opioid addiction, cognitive impairments, dementia, seizure disorders, suicide, violence, anhedonia, depersonalization, dissociative episodes, derealization and other impairments. Screening assessment followed by a thorough history, comprehensive psychiatric clinical exam, review of systems, mental status exam, neurological exam and physical exam relevant to the patient's complaints and findings with clinical judgment, pattern recognition and knowledgeable interpretation of laboratory findings facilitates diagnosis. Psychotropics and antibiotics may help improve functioning and prevent further disease progression. Awareness of the association between LB and neuropsychiatric impairments and studies of their prevalence in neuropsychiatric conditions can improve understanding of the causes of mental illness and violence and result in more effective prevention, diagnosis and treatment.
Collapse
|
34
|
Valko PO, Roschitzki B, Faigle W, Grossmann J, Panse C, Biro P, Dambach M, Spahn DR, Weller M, Martin R, Baumann CR. In search of cerebrospinal fluid biomarkers of fatigue in multiple sclerosis: A proteomics study. J Sleep Res 2018; 28:e12721. [DOI: 10.1111/jsr.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Philipp O. Valko
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Wolfgang Faigle
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Christian Panse
- Functional Genomics Center Zurich University of Zurich/ETH Zurich Zurich Switzerland
| | - Peter Biro
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Micha Dambach
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Donat R. Spahn
- Department of AnesthesiologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Michael Weller
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Roland Martin
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital ZurichUniversity of Zurich Zurich Switzerland
| |
Collapse
|
35
|
Blomberg J, Gottfries CG, Elfaitouri A, Rizwan M, Rosén A. Infection Elicited Autoimmunity and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An Explanatory Model. Front Immunol 2018; 9:229. [PMID: 29497420 PMCID: PMC5818468 DOI: 10.3389/fimmu.2018.00229] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis (ME) often also called chronic fatigue syndrome (ME/CFS) is a common, debilitating, disease of unknown origin. Although a subject of controversy and a considerable scientific literature, we think that a solid understanding of ME/CFS pathogenesis is emerging. In this study, we compiled recent findings and placed them in the context of the clinical picture and natural history of the disease. A pattern emerged, giving rise to an explanatory model. ME/CFS often starts after or during an infection. A logical explanation is that the infection initiates an autoreactive process, which affects several functions, including brain and energy metabolism. According to our model for ME/CFS pathogenesis, patients with a genetic predisposition and dysbiosis experience a gradual development of B cell clones prone to autoreactivity. Under normal circumstances these B cell offsprings would have led to tolerance. Subsequent exogenous microbial exposition (triggering) can lead to comorbidities such as fibromyalgia, thyroid disorder, and orthostatic hypotension. A decisive infectious trigger may then lead to immunization against autoantigens involved in aerobic energy production and/or hormone receptors and ion channel proteins, producing postexertional malaise and ME/CFS, affecting both muscle and brain. In principle, cloning and sequencing of immunoglobulin variable domains could reveal the evolution of pathogenic clones. Although evidence consistent with the model accumulated in recent years, there are several missing links in it. Hopefully, the hypothesis generates testable propositions that can augment the understanding of the pathogenesis of ME/CFS.
Collapse
Affiliation(s)
- Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | | | - Amal Elfaitouri
- Department of Infectious Disease and Tropical Medicine, Faculty of Public Health, Benghazi University, Benghazi, Libya
| | - Muhammad Rizwan
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Abstract
The Centers for Disease Control and Prevention estimates that more than 300 000 new cases of Lyme disease occur each year in the United States and that 10% to 20% of these patients will remain symptomatic despite receiving appropriate antibiotic therapy. Many elements of the disease are poorly understood and have generated considerable controversy. This paper discusses the medical controversies related to posttreatment manifestations and their potential impact on infusion nurses.
Collapse
|
37
|
Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations. Transl Psychiatry 2017; 7:e1080. [PMID: 28375204 PMCID: PMC5416687 DOI: 10.1038/tp.2017.44] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/23/2016] [Accepted: 01/24/2017] [Indexed: 12/26/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and debilitating disorder marked by cognitive and sensory dysfunction and unexplained physical fatigue. Classically, cases present after a prodrome consistent with infection; however, some cases are atypical and have a different presentation and comorbidities that pose challenges for differential diagnosis. We analyzed cerebrospinal fluid (CSF) from 32 cases with classical ME/CFS and 27 cases with atypical ME/CFS using a 51-plex cytokine assay. Atypical subjects differed in cytokine profiles from classical subjects. In logistic regression models incorporating immune molecules that were identified as potential predictor variables through feature selection, we found strong associations between the atypical ME/CFS phenotype and lower CSF levels of the inflammatory mediators, interleukin 17A and CXCL9. Network analysis revealed an absence of inverse inter-cytokine relationships in CSF from atypical patients, and more sparse positive intercorrelations, than classical subjects. Interleukin 1 receptor antagonist appeared to be a negative regulator in classical ME/CFS, with patterns suggestive of disturbances in interleukin 1 signaling and autoimmunity-type patterns of immune activation. Immune signatures in the central nervous system of ME/CFS patients with atypical features may be distinct from those with more typical clinical presentations.
Collapse
|
38
|
Mitchell WM. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Rev Clin Pharmacol 2017; 9:755-70. [PMID: 27045557 PMCID: PMC4917909 DOI: 10.1586/17512433.2016.1172960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic fatigue syndrome/ Myalgic encephalomyelitis (CFS/ME) is a poorly understood seriously debilitating disorder in which disabling fatigue is an universal symptom in combination with a variety of variable symptoms. The only drug in advanced clinical development is rintatolimod, a mismatched double stranded polymer of RNA (dsRNA). Rintatolimod is a restricted Toll-Like Receptor 3 (TLR3) agonist lacking activation of other primary cellular inducers of innate immunity (e.g.- cytosolic helicases). Rintatolimod also activates interferon induced proteins that require dsRNA for activity (e.g.- 2ʹ-5ʹ adenylate synthetase, protein kinase R). Rintatolimod has achieved statistically significant improvements in primary endpoints in Phase II and Phase III double-blind, randomized, placebo-controlled clinical trials with a generally well tolerated safety profile and supported by open-label trials in the United States and Europe. The chemistry, mechanism of action, clinical trial data, and current regulatory status of rintatolimod for CFS/ME including current evidence for etiology of the syndrome are reviewed.
Collapse
Affiliation(s)
- William M Mitchell
- a Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , USA
| |
Collapse
|
39
|
Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. mBio 2016; 7:e00100-16. [PMID: 26873097 PMCID: PMC4791844 DOI: 10.1128/mbio.00100-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the development of post-treatment symptoms, we conducted the first longitudinal gene expression (transcriptome) study of patients enrolled at the time of diagnosis and followed up for up to 6 months after treatment. Importantly, we found that the gene expression signature of early Lyme disease is distinct from that of other acute infectious diseases and persists for at least 3 weeks following infection. This study also uncovered multiple previously undescribed pathways and genes that may be useful in the future as human host biomarkers for diagnosis and that constitute potential targets for the development of new therapies.
Collapse
|
40
|
Hornig M, Gottschalk G, Peterson DL, Knox KK, Schultz AF, Eddy ML, Che X, Lipkin WI. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Psychiatry 2016; 21:261-9. [PMID: 25824300 DOI: 10.1038/mp.2015.29] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/19/2015] [Accepted: 02/09/2015] [Indexed: 12/15/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is an unexplained debilitating disorder that is frequently associated with cognitive and motor dysfunction. We analyzed cerebrospinal fluid from 32 cases, 40 subjects with multiple sclerosis and 19 normal subjects frequency-matched for age and sex using a 51-plex cytokine assay. Group-specific differences were found for the majority of analytes with an increase in cases of CCL11 (eotaxin), a chemokine involved in eosinophil recruitment. Network analysis revealed an inverse relationship between interleukin 1 receptor antagonist and colony-stimulating factor 1, colony-stimulating factor 2 and interleukin 17F, without effects on interleukin 1α or interleukin 1β, suggesting a disturbance in interleukin 1 signaling. Our results indicate a markedly disturbed immune signature in the cerebrospinal fluid of cases that is consistent with immune activation in the central nervous system, and a shift toward an allergic or T helper type-2 pattern associated with autoimmunity.
Collapse
Affiliation(s)
- M Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA.,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - G Gottschalk
- Sierra Internal Medicine at Incline Village, Incline Village, NV, USA
| | - D L Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, USA
| | - K K Knox
- Coppe Healthcare Solutions, Waukesha, WI, USA.,Simmaron Research, Incline Village, NV, USA
| | - A F Schultz
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - M L Eddy
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - X Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W I Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA.,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.,Departments of Pathology and Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
41
|
Wu C, Duan J, Liu T, Smith RD, Qian WJ. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:57-68. [PMID: 26868616 DOI: 10.1016/j.jchromb.2016.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed.
Collapse
Affiliation(s)
- Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
42
|
Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 2015; 13:346. [PMID: 26537892 PMCID: PMC4634744 DOI: 10.1186/s12967-015-0701-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. METHOD We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. RESULTS OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10(-6)). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein. CONCLUSIONS OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.
Collapse
|
43
|
Bergman N, Bergquist J. Recent developments in proteomic methods and disease biomarkers. Analyst 2015; 139:3836-51. [PMID: 24975697 DOI: 10.1039/c4an00627e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic methodologies for identification and analysis of biomarkers have gained more attention during recent years and have evolved rapidly. Identification and detection of disease biomarkers are important to foresee outbreaks of certain diseases thereby avoiding surgery and other invasive and expensive medical treatments for patients. Thus, more research into discovering new biomarkers and new methods for faster and more accurate detection is needed. It is often difficult to detect and measure biomarkers because of their low concentrations and the complexity of their respective matrices. Therefore it is hard to find and validate methods for accurate screening methods suitable for clinical use. The most recent developments during the last three years and also some historical considerations of proteomic methodologies for identification and validation of disease biomarkers are presented in this review.
Collapse
Affiliation(s)
- Nina Bergman
- Analytical Chemistry, BMC, Department of Chemistry, Uppsala University, Sweden.
| | | |
Collapse
|
44
|
Sundberg M, Bergquist J, Ramström M. High-abundant protein depletion strategies applied on dog cerebrospinal fluid and evaluated by high-resolution mass spectrometry. Biochem Biophys Rep 2015; 3:68-75. [PMID: 30338299 PMCID: PMC6189695 DOI: 10.1016/j.bbrep.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. We evaluated four high-abundant protein depletion kits on dog CSF. High abundant depletion kit developed for humans/rats can be used for dog CSF. Protein depletion of dog CSF gives extended coverage of the CSF proteome. In total, 983 dog proteins were identified in this study.
Collapse
Affiliation(s)
- Mårten Sundberg
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
45
|
Holmes WE, Angel TE, Li KW, Hellerstein MK. Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics Using Metabolic Labeling. Methods Enzymol 2015; 561:219-76. [PMID: 26358907 DOI: 10.1016/bs.mie.2015.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of biosynthetic and catabolic rates of polymers, including proteins, stands at the center of phenotype, physiologic adaptation, and disease pathogenesis. Advances in stable isotope-labeling concepts and mass spectrometric instrumentation now allow accurate in vivo measurement of protein synthesis and turnover rates, both for targeted proteins and for unbiased screening across the proteome. We describe here the underlying principles and operational protocols for measuring protein dynamics, focusing on metabolic labeling with (2)H2O (heavy water) combined with tandem mass spectrometric analysis of mass isotopomer abundances in trypsin-generated peptides. The core principles of combinatorial analysis (mass isotopomer distribution analysis or MIDA) are reviewed in detail, including practical advantages, limitations, and technical procedures to ensure optimal kinetic results. Technical factors include heavy water labeling protocols, optimal duration of labeling, clean up and simplification of sample matrices, accurate quantitation of mass isotopomer abundances in peptides, criteria for adequacy of mass spectrometric abundance measurements, and calculation algorithms. Some applications are described, including the noninvasive "virtual biopsy" strategy for measuring molecular flux rates in tissues through measurements in body fluids. In addition, application of heavy water labeling to measure flux lipidomics is noted. In summary, the combination of stable isotope labeling, particularly from (2)H2O, with tandem mass spectrometric analysis of mass isotopomer abundances in peptides, provides a powerful approach for characterizing the dynamics of proteins across the global proteome. Many applications in research and clinical medicine have been achieved and many others can be envisioned.
Collapse
Affiliation(s)
- W E Holmes
- KineMed Inc., Emeryville, California, USA
| | - T E Angel
- KineMed Inc., Emeryville, California, USA
| | - K W Li
- KineMed Inc., Emeryville, California, USA
| | - M K Hellerstein
- KineMed Inc., Emeryville, California, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
46
|
Twisk FNM. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms. World J Methodol 2015; 5:68-87. [PMID: 26140274 PMCID: PMC4482824 DOI: 10.5662/wjm.v5.i2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/10/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional “malaise”: a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional “malaise” and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially.
Collapse
|
47
|
Rajeevan MS, Dimulescu I, Murray J, Falkenberg VR, Unger ER. Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome. Hum Immunol 2015; 76:553-60. [PMID: 26116897 DOI: 10.1016/j.humimm.2015.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/09/2014] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
Abstract
Recent evidence suggests immune and inflammatory alterations are important in chronic fatigue syndrome (CFS). This study was done to explore the association of functionally important genetic variants in inflammation and immune pathways with CFS. Peripheral blood DNA was isolated from 50 CFS and 121 non-fatigued (NF) control participants in a population-based study. Genotyping was performed with the Affymetrix Immune and Inflammation Chip that covers 11K single nucleotide polymorphisms (SNPs) following the manufacturer's protocol. Genotyping accuracy for specific genes was validated by pyrosequencing. Golden Helix SVS software was used for genetic analysis. SNP functional annotation was done using SPOT and GenomePipe programs. CFS was associated with 32 functionally important SNPs: 11 missense variants, 4 synonymous variants, 11 untranslated regulatory region (UTR) variants and 6 intronic variants. Some of these SNPs were in genes within pathways related to complement cascade (SERPINA5, CFB, CFH, MASP1 and C6), chemokines (CXCL16, CCR4, CCL27), cytokine signaling (IL18, IL17B, IL2RB), and toll-like receptor signaling (TIRAP, IRAK4). Of particular interest is association of CFS with two missense variants in genes of complement activation, rs4151667 (L9H) in CFB and rs1061170 (Y402H) in CFH. A 5' UTR polymorphism (rs11214105) in IL18 also associated with physical fatigue, body pain and score for CFS case defining symptoms. This study identified new associations of CFS with genetic variants in pathways including complement activation providing additional support for altered innate immune response in CFS. Additional studies are needed to validate the findings of this exploratory study.
Collapse
Affiliation(s)
- Mangalathu S Rajeevan
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Irina Dimulescu
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janna Murray
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia R Falkenberg
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
48
|
Goyallon A, Cholet S, Chapelle M, Junot C, Fenaille F. Evaluation of a combined glycomics and glycoproteomics approach for studying the major glycoproteins present in biofluids: Application to cerebrospinal fluid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:461-473. [PMID: 26160412 DOI: 10.1002/rcm.7125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Glycosylation is one of the most complex types of post-translational modifications of proteins. The alteration of glycans bound to proteins from cerebrospinal fluid (CSF) in relation to disorders of the central nervous system is a highly relevant subject, but only few studies have focused on the glycosylation of CSF proteins. METHODS Reproducible profiles of CSF N-glycans were first obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after permethylation. Tryptic glycopeptides from CSF proteins were also enriched by hydrophilic interaction, and the resulting extracts divided into two equal aliquots. A first aliquot was enzymatically deglycosylated and analyzed by nano-liquid chromatography/tandem mass spectrometry while the second one, containing intact enriched glycopeptides, was directly analyzed. Site-specific data were obtained by combining the data from these three experiments. RESULTS We describe the development of a versatile approach for obtaining site-specific information on the N-glycosylation of CSF glycoproteins. Under these conditions, 124 N-glycopeptides representing 55 N-glycosites from 36 glycoproteins were tentatively identified. Special emphasis was placed on the analysis of glycoproteins/glycopeptides bearing 'brain-type' N-glycans, representing potential biologically relevant structures in the field of neurodegenerative disorders. Using our workflow, only a few proteins were shown to carry such particular glycan motifs. CONCLUSIONS We developed an approach combining N-glycomics and N-glycoproteomics and underline its usefulness to study the site-specific glycosylation of major human CSF proteins. The final rather long-term objective is to combine these data with those from other omics approaches to delve deeper into the understanding of particular neurological disorders.
Collapse
Affiliation(s)
- Arnaud Goyallon
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - Sophie Cholet
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | | | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| |
Collapse
|
49
|
Twisk FNM. A critical analysis of the proposal of the Institute of Medicine to replace myalgic encephalomyelitis and chronic fatigue syndrome by a new diagnostic entity called systemic exertion intolerance disease. Curr Med Res Opin 2015; 31:1333-47. [PMID: 25912615 DOI: 10.1185/03007995.2015.1045472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Institute of Medicine (IOM) recently published their report in response to an assignment "to define diagnostic criteria for Myalgic Encephalomyelitis (ME)/chronic fatigue syndrome (CFS), to propose a process for reevaluation of these criteria in the future, and to consider whether a new name for this disease is warranted". The basic pre-assumption of the IOM committee for the development of evidence-based diagnostic criteria for ME/CFS was that ME and CFS denote conditions with similar symptoms, hence ME/CFS. The IOM committee recommends: (1) that ME/CFS will be renamed 'systemic exertion intolerance disease' (SEID); and that a new code should be assigned to SEID in the International Classification of Diseases (ICD), replacing the existing codes for ME (a neurological disease: G93.3) and CFS ('signs, symptoms, and abnormal clinical and laboratory findings, not elsewhere classified': R53.82); (2) that a diagnosis of SEID should be made if the new diagnostic criteria are met; (3) that the Department of Health and Human Services develops a toolkit appropriate for screening and diagnosing patients; and (4) that a multidisciplinary group re-examines the new diagnostic criteria when necessary. This editorial reviews the working procedure of the IOM and two of the outcomes: the recommendation to introduce a new clinical entity (SEID) and new diagnostic criteria. Based upon the contents of the report, and the arguments of the IOM, a search of PubMed and the archive of the Journal of Chronic Fatigue Syndrome using the search terms ME (and old synonyms) and CFS, and a search of PubMed related to the five core symptoms of SEID was conducted. Reviewing the working method and the recommendations, it is concluded that the new diagnostic criteria for SEID are based upon important methodological shortcomings and that the introduction of SEID to replace both ME and CFS has several profound negative consequences outweighing the advantages.
Collapse
|
50
|
Borgermans L, Goderis G, Vandevoorde J, Devroey D. Relevance of chronic lyme disease to family medicine as a complex multidimensional chronic disease construct: a systematic review. INTERNATIONAL JOURNAL OF FAMILY MEDICINE 2014; 2014:138016. [PMID: 25506429 PMCID: PMC4258916 DOI: 10.1155/2014/138016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Lyme disease has become a global public health problem and a prototype of an emerging infection. Both treatment-refractory infection and symptoms that are related to Borrelia burgdorferi infection remain subject to controversy. Because of the absence of solid evidence on prevalence, causes, diagnostic criteria, tools and treatment options, the role of autoimmunity to residual or persisting antigens, and the role of a toxin or other bacterial-associated products that are responsible for the symptoms and signs, chronic Lyme disease (CLD) remains a relatively poorly understood chronic disease construct. The role and performance of family medicine in the detection, integrative treatment, and follow-up of CLD are not well studied either. The purpose of this paper is to describe insights into the complexity of CLD as a multidimensional chronic disease construct and its relevance to family medicine by means of a systematic literature review.
Collapse
Affiliation(s)
- Liesbeth Borgermans
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Geert Goderis
- Department of General Practice and University Hospitals Leuven, Katholieke Universiteit Leuven (KUL), Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Jan Vandevoorde
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dirk Devroey
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|