1
|
Pogany J, Inaba JI, Liu Y, Nagy PD. Screening bacterial effectors and human virus proteins in yeast to identify host factors driving tombusvirus RNA recombination: a role for autophagy and membrane phospholipid content. J Virol 2025:e0166124. [PMID: 40422074 DOI: 10.1128/jvi.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 05/28/2025] Open
Abstract
Recombination in RNA viruses contributes to virus evolution and rapid emergence of new viral variants that helps evade host's antiviral strategies. Host factors play important but poorly characterized roles in viral RNA recombination. The authors expressed Legionella bacterium effector proteins and SARS-CoV-2 and human metapneumovirus (HMPV) proteins in yeast to test their effects on tomato bushy stunt virus (TBSV) RNA recombination. The identified 16 Legionella effectors, six SARS-CoV-2, and two HMPV proteins affecting TBSV recombination likely target shared host factors with TBSV. Among the targets of the effectors/viral proteins was the autophagy pathway. Inhibition of autophagy by expression of RavZ and LegA9 Legionella effectors reduced the production of TBSV recombinants in yeast and plants. Induction of autophagy by rapamycin, via nitrogen starvation of yeast or overexpression of ATG2 lipid transfer protein, led to enhanced viral RNA recombination. Using in vitro TBSV replicase assembly on giant unilamellar vesicles confirmed the critical role of phosphatidylethanolamine in RNA recombination. We suggest that the pro-recombination role of co-opted autophagy is to provide abundant phospholipids for viral replication organelle biogenesis. Overall, this work highlights the critical roles of membrane phospholipids and lipid context in the regulation of viral RNA recombination. We show that SARS-CoV-2 N and HMPV M2-1 proteins enhance TBSV RNA replication and recombination by protecting the viral RNAs from host Xrn1 5´-3´ exoribonuclease in yeast. Altogether, the novel strategy of using TBSV as a cellular system sensor might assist in the identification of novel functional targets of various viral and bacterial effectors in yeast. IMPORTANCE Positive-strand (+)RNA viruses replicate in the cytosol of infected cells by exploiting cellular proteins and resources that frequently lead to diseases. Virus replication results in the generation of viral RNA recombinants that contribute to the emergence of new viral variants and adaptation to new hosts. The authors expressed Legionella bacterium effector proteins, SARS-CoV-2 and human metapneumovirus proteins in yeast to test their effects on tomato bushy stunt virus (TBSV) RNA recombination. This novel approach revealed that Legionella effectors and heterologous viral proteins target shared host factors with TBSV, including the autophagy pathway. In vitro approach revealed that the pro-recombination role of co-opted autophagy is to provide abundant phospholipids for viral replication. SARS-CoV-2 nucleocapsid protein and human metapneumovirus M2-1 protein are shown to enhance TBSV RNA replication and recombination by protecting the viral RNAs from host Xrn1 5´-3´ exoribonuclease in yeast. Thus, the TBSV/yeast system can be used as a cellular system sensor to find new functions of heterologous viral proteins.
Collapse
Affiliation(s)
- Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Metur SP, Song X, Mehta S, Dialynaki D, Bhattacharyya D, Yin Z, Tang D, Klionsky DJ. Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation. Cell Rep 2025; 44:115316. [PMID: 39954250 PMCID: PMC11913251 DOI: 10.1016/j.celrep.2025.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
Macroautophagy/autophagy is crucial for cell survival during nutrient starvation. Autophagy requires the coordinated function of several Atg proteins, including the Atg1 kinase, for efficient induction and execution. Recently, several RNA-binding proteins (RBPs) have been shown to post-transcriptionally regulate ATG1. However, a comprehensive understanding of autophagy regulation by RBPs via ATG1 is yet to be elucidated. Here, we utilize an in vitro approach to identify RBPs that specifically interact with ATG1 untranslated regions. We show that Npl3 and Pub1 interact with the ATG1 5' and 3' untranslated regions during nitrogen starvation. Furthermore, Npl3 and Pub1 coordinate to facilitate ATG1 mRNA export to the cytoplasm and its subsequent interaction with the translational machinery. Significantly, in non-small cell lung cancer cell lines, mammalian Pub1, TIA1, also positively regulates ULK1 protein expression and autophagy during serum starvation. Overall, our study highlights the regulatory landscape that fine-tunes Atg1 protein expression to sustain autophagy during nutrient starvation.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie Mehta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dimitra Dialynaki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Li Z, Mochida K, Nakatogawa H. Macronucleophagy maintains cell viability under nitrogen starvation by modulating micronucleophagy. Nat Commun 2024; 15:10670. [PMID: 39690163 PMCID: PMC11652641 DOI: 10.1038/s41467-024-55045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Lysosome/vacuole-mediated intracellular degradation pathways, collectively known as autophagy, play crucial roles in the maintenance and regulation of various cellular functions. However, little is known about the relationship between different modes of autophagy. In the budding yeast Saccharomyces cerevisiae, nitrogen starvation triggers both macronucleophagy and micronucleophagy, in which nuclear components are degraded via macroautophagy and microautophagy, respectively. We previously revealed that Atg39-mediated macronucleophagy is important for cell survival under nitrogen starvation; however, the underlying mechanism remains unknown. Here, we reveal that defective Atg39-mediated macronucleophagy leads to the hyperactivation of micronucleophagy, resulting in the excessive transport of various nuclear components into the vacuole. Micronucleophagy occurs at the nucleus-vacuole junction (NVJ). We show that nuclear membrane proteins localized to the NVJ, including Nvj1, which is responsible for micronucleophagy, are degraded via macronucleophagy. Therefore, defective Atg39-mediated macronucleophagy results in the accumulation of Nvj1, which contributes to micronucleophagy enhancement. Blocking micronucleophagy almost completely suppresses cell death caused by the absence of Atg39, whereas enhanced micronucleophagy correlates with death in Atg39-mutant cells under nitrogen starvation. These results suggest that macronucleophagy modulates micronucleophagy in order to prevent the excess removal of nuclear components, thereby maintaining nuclear and cellular homeostasis during nitrogen starvation.
Collapse
Affiliation(s)
- Ziyang Li
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Keisuke Mochida
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan.
| |
Collapse
|
4
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
- Université Paris Saclay , Gif-sur-Yvette 91190, France
| | - Matteo Scarsini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| |
Collapse
|
5
|
Thaprawat P, Zhang Z, Rentchler EC, Wang F, Chalasani S, Giuliano CJ, Lourido S, Di Cristina M, Klionsky DJ, Carruthers VB. TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in Toxoplasma gondii. AUTOPHAGY REPORTS 2024; 3:2418256. [PMID: 39600488 PMCID: PMC11588310 DOI: 10.1080/27694127.2024.2418256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway that is required for T. gondii chronic infection, although the molecular details of this process remain poorly understood. A key step in autophagy is the initial formation of the phagophore that sequesters cytoplasmic components and matures into a double-membraned autophagosome for delivery of the cargo to a cell's digestive organelle for degradative recycling. While T. gondii appears to have a reduced repertoire of autophagy proteins, it possesses a putative phospholipid scramblase, TgATG9. Through structural modeling and complementation assays, we show herein that TgATG9 can partially rescue bulk autophagy in atg9Δ yeast. We demonstrated the importance of TgATG9 for proper autophagosome dynamics at the subcellular level using three-dimensional live cell lattice light sheet microscopy. Conditional knockdown of TgATG9 in T. gondii after bradyzoite differentiation resulted in markedly reduced parasite viability. Together, our findings provide insights into the molecular dynamics of autophagosome biogenesis within an early-branching eukaryote and pinpoint the indispensable role of autophagy in maintaining T. gondii chronic infection.
Collapse
Affiliation(s)
- Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eric C. Rentchler
- Biomedical Research Core Facilities, Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shreya Chalasani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher J. Giuliano
- Whitehead Institute, Cambridge, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Avci H, Ozturk S, Andeden EE. The evaluation of Starmerella magnoliae X3 as a biodiesel feedstock based on triacylglycerol (TAG) production, lipid productivity, and fatty acid profile under nitrogen limitation and acidic pH conditions. 3 Biotech 2024; 14:254. [PMID: 39350933 PMCID: PMC11438752 DOI: 10.1007/s13205-024-04090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
The effects of four initial culture pH values (3, 4, 5, and 6) and nitrogen limitation on growth, TAG accumulation, lipid production, fatty acid profile, and estimated biodiesel quality of Starmerella magnoliae X3 were investigated. TAG and lipid levels were measured by Nile Red fluorescence and sulfo-phospho-vanilin (SPV) techniques, respectively. The results showed that a combination of nitrogen limitation and acidic pH significantly (p < 0.05) increased TAG accumulation, total lipid contents, and lipid productivity in Starmerella magnoliae X3 compared to the control group. Under nitrogen limitation, the highest TAG accumulation was achieved at initial pHs of 3 and 5 after 72 h of cultivation, and the highest lipid productivity (0.306 g L-1 d-1) was observed after 48 h at pH 3; the major fatty acids at the four pH values were oleic acid (63.6%-64%), palmitoleic acid (11.3%-12.5%), stearic acid (9.7%-11.4%), and palmitic acid (9.4%-10%). In addition, both stresses were associated with lower iodine value and higher cetane number of the biodiesel compared to the control. These findings suggest that cultivation in a low-nitrogen medium at an initial pH of 3 or 5 holds promise in increasing TAG production in Starmerella magnoliae X3.
Collapse
Affiliation(s)
- Hüseyin Avci
- Institute of Science and Technology, Department of Environmental Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Sahlan Ozturk
- Institute of Science and Technology, Department of Environmental Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Enver Ersoy Andeden
- Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| |
Collapse
|
7
|
Xian J, Gao L, Ren Z, Jiang Y, Pan J, Ying Z, Guo Z, Du Q, Zhao X, Jin H, Yi H, Guan J, Hu S. Inhibition of Autophagy by Berbamine Hydrochloride Mitigates Tumor Immune Escape by Elevating MHC-I in Melanoma Cells. Cells 2024; 13:1537. [PMID: 39329721 PMCID: PMC11430705 DOI: 10.3390/cells13181537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.
Collapse
Affiliation(s)
- Jinhuan Xian
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Leilei Gao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenyang Ren
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Junjun Pan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zheng Ying
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zhenyuan Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Qingsong Du
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Xu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - He Jin
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Yi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jieying Guan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shan Hu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Hofer SJ, Daskalaki I, Bergmann M, Friščić J, Zimmermann A, Mueller MI, Abdellatif M, Nicastro R, Masser S, Durand S, Nartey A, Waltenstorfer M, Enzenhofer S, Faimann I, Gschiel V, Bajaj T, Niemeyer C, Gkikas I, Pein L, Cerrato G, Pan H, Liang Y, Tadic J, Jerkovic A, Aprahamian F, Robbins CE, Nirmalathasan N, Habisch H, Annerer E, Dethloff F, Stumpe M, Grundler F, Wilhelmi de Toledo F, Heinz DE, Koppold DA, Rajput Khokhar A, Michalsen A, Tripolt NJ, Sourij H, Pieber TR, de Cabo R, McCormick MA, Magnes C, Kepp O, Dengjel J, Sigrist SJ, Gassen NC, Sedej S, Madl T, De Virgilio C, Stelzl U, Hoffmann MH, Eisenberg T, Tavernarakis N, Kroemer G, Madeo F. Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 2024; 26:1571-1584. [PMID: 39117797 PMCID: PMC11392816 DOI: 10.1038/s41556-024-01468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jasna Friščić
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Melanie I Mueller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sarah Masser
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Alexander Nartey
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mara Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sarah Enzenhofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Isabella Faimann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christine Niemeyer
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - YongTian Liang
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrea Jerkovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Elisabeth Annerer
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | | | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Daniel E Heinz
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas R Pieber
- BioTechMed Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christoph Magnes
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tobias Madl
- BioTechMed Graz, Graz, Austria
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | | | - Ulrich Stelzl
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Markus H Hoffmann
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
9
|
Thaprawat P, Zhang Z, Rentchler EC, Wang F, Chalasani S, Giuliano CJ, Lourido S, Di Cristina M, Klionsky DJ, Carruthers VB. TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602581. [PMID: 39026823 PMCID: PMC11257638 DOI: 10.1101/2024.07.08.602581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway that is required for T. gondii chronic infection, although the molecular details of this process remain poorly understood. A key step in autophagy is the initial formation of the phagophore that sequesters cytoplasmic components and matures into a double-membraned autophagosome for delivery of the cargo to a cell's digestive organelle for degradative recycling. While T. gondii appears to have a reduced repertoire of autophagy proteins, it possesses a putative phospholipid scramblase, TgATG9. Through structural modeling and complementation assays, we show herein that TgATG9 can partially rescue bulk autophagy in atg9Δ yeast. We demonstrated the importance of TgATG9 for proper autophagosome dynamics at the subcellular level using three-dimensional live cell lattice light sheet microscopy. Conditional knockdown of TgATG9 in T. gondii after bradyzoite differentiation resulted in markedly reduced parasite viability. Together, our findings provide insights into the molecular dynamics of autophagosome biogenesis within an early-branching eukaryote and pinpoint the indispensable role of autophagy in maintaining T. gondii chronic infection.
Collapse
|
10
|
Fu Y, Zhang F, Wang W, Xu J, Zhao M, Ma C, Cheng Y, Chen W, Su Z, Lv X, Liu Z, Ma K, Ma L. Temporal and Spatial Signatures of Scylla paramamosain Transcriptome Reveal Mechanistic Insights into Endogenous Ovarian Maturation under Risk of Starvation. Int J Mol Sci 2024; 25:700. [PMID: 38255774 PMCID: PMC10815400 DOI: 10.3390/ijms25020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Variability in food availability leads to condition-dependent investments in reproduction. This study is aimed at understanding the metabolic response and regulatory mechanism of female Scylla paramamosain in response to starvation in a temporal- and tissue-specific manner. The mud crabs were starved for 7 (control), 14, 28, and 40 days for histological and biochemical analysis in the hepatopancreas, ovary, and serum, as well as for RNA sequencing on the hepatopancreas and ovary. We further highlighted candidate gene modules highly linked to physiological traits. Collectively, our observations suggested that starvation triggered endogenous ovarian maturation at the expense of hepatopancreas mass, with both metabolic adjustments to optimize energy and fatty acid supply from hepatopancreas to ovary in the early phase, followed by the activation of autophagy-related pathways in both organs over prolonged starvation. These specific adaptive responses might be considered efficient strategies to stimulate ovarian maturation of Scylla paramamosain under fasting stress, which improves the nutritional value of female mud crabs and other economically important crustaceans.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Jiayuan Xu
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Zhixing Su
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Xiaokang Lv
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| |
Collapse
|
11
|
Perucho-Jaimes L, Do J, Van Elgort A, Kaplan KB. Septins modulate the autophagy response after nutrient starvation. Mol Biol Cell 2024; 35:ar4. [PMID: 37910217 PMCID: PMC10881159 DOI: 10.1091/mbc.e22-11-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The pathways that induce macroautophagy (referred to as autophagy hereafter) in response to the stress of starvation are well conserved and essential under nutrient-limiting conditions. However, less is understood about the mechanisms that modulate the autophagy response. Here we present evidence that after induction of autophagy in budding yeast septin filaments rapidly assemble into discrete patches distributed along the cell cortex. These patches gradually mature over 12 h of nutrient deprivation to form extended structures around Atg9 membranes tethered at the cortical endoplasmic reticulum, a class of membranes that are limiting for autophagosome biogenesis. Loss of cortical septin structures alters the kinetics of autophagy activation and most dramatically extends the duration of the autophagy response. In wild-type cells, diffusion of Atg9 membranes at the cell cortex undergoes transient pauses that are dependent on septins, and septins at the bud neck block the diffusion of Atg9 membranes between mother and daughter cells. We conclude that septins reorganize at the cell cortex during autophagy to locally limit access of Atg9 membranes to autophagosome assembly sites, and thus modulate the autophagy response during nutrient deprivation.
Collapse
Affiliation(s)
- Luis Perucho-Jaimes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Jonathan Do
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Alexandria Van Elgort
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Kenneth B. Kaplan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
12
|
Yuan J, Zhao F, Liu Y, Liu H, Zhang K, Tian X, Mu Y, Zhao J, Wang Y. Effects of Lactiplantibacillus plantarum on oxidative stress, mitophagy, and NLRP3 inflammasome activation in broiler breast meat. Poult Sci 2023; 102:103128. [PMID: 37832190 PMCID: PMC10568568 DOI: 10.1016/j.psj.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Poultry meat has a high polyunsaturated fatty acids content, making it vulnerable to oxidative stress. Mitophagy participates in the regulation of oxidative stress and the nucleotide-binding and oligomerization domain (NOD)-like receptor family as well as pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Lactiplantibacillus plantarum P8 (P8) is a probiotic strain with an antioxidant capacity. In the present study, we investigated the effects of P8 on oxidative stress, mitochondrial function, mitophagy, and NLRP3 inflammasome in the breast meat of oxidatively stressed broilers. Four hundred 1-day-old male broilers were assigned to a 2 × 2 factorial design with 2 P8 levels (0 or 1 × 108 cfu/g), either with or without dexamethasone (DEX) injection, for a 21-day experimental period. DEX was injected intraperitoneally once daily from d 16 to 21. The breast meat was collected on d 21. The results showed that P8 supplementation decreased malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and activated the Keap1-Nrf2 pathway in DEX-injected broilers. Moreover, P8 supplementation downregulated mitochondrial DNA (mtDNA) copy number and increased the expressions of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), silent information regulator 1 (SIRT1), mitochondrial fusion protein 1 (Mfn1), and optic atrophy protein 1 (OPA1) in DEX-treated broilers. In addition, the decreased mitophagy level in DEX-treated broilers was elevated with P8 supplementation, as reflected by the increased gene expression of autophagy-related gene 5 (ATG5), Bcl-2-interacting protein (Becline-1), Parkin, PTEN-induced kinase 1 (PINK1), light chain 3 II (LC3II)/LC31, and the protein expression of Parkin as well as decreased p62 expression. In addition, P8 supplementation inhibited NLRP3 inflammasome activation by decreasing the transcription of NLRP3, IL-18, cysteinyl aspartate-specific proteinase-1 (Caspase-1), and the expression of NLRP3 and IL-18 in DEX-treated broilers. In conclusion, dietary P8 supplementation alleviates oxidative stress, improves mitophagy, and inhibits NLRP3 inflammasome activation in the breast meat of oxidatively stressed broilers.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyu Tian
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxin Mu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
13
|
Caraba B, Stirpe M, Palermo V, Vaccher U, Bianchi MM, Falcone C, Mazzoni C. Yeast Lsm Pro-Apoptotic Mutants Show Defects in Autophagy. Int J Mol Sci 2023; 24:13708. [PMID: 37762007 PMCID: PMC10530990 DOI: 10.3390/ijms241813708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
LSM4 is an essential yeast gene encoding a component of different LSM complexes involved in the regulation of mRNA splicing, stability, and translation. In previous papers, we reported that the expression in S. cerevisiae of the K. lactis LSM4 gene lacking the C-terminal Q/N-rich domain in an Lsm4 null strain S. cerevisiae (Sclsm4Δ1) restored cell viability. Nevertheless, in this transformed strain, we observed some phenotypes that are typical markers of regulated cell death, reactive oxygen species (ROS), and oxidated RNA accumulation. In this paper, we report that a similar truncation operated in the S. cerevisiae LSM4 gene confers on cells the same phenotypes observed with the K. lactis lsm4Δ1 gene. Up until now, there was no evidence of the direct involvement of LSM4 in autophagy. Here we found that the Sclsm4Δ1 mutant showed a block in the autophagic process and was very sensitive to nitrogen starvation or treatment with low doses of rapamycin, an inducer of autophagy. Moreover, both during nitrogen starvation and aging, the Sclsm4Δ1 mutant accumulated cytoplasmic autophagy-related structures, suggesting a role of Lsm4 in a later step of the autophagy process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Mazzoni
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (B.C.); (M.S.); (V.P.); (U.V.); (M.M.B.); (C.F.)
| |
Collapse
|
14
|
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, Palhegyi AM, Acharjee A, Sedlackova L, Kataura T, Otten EG, Panda PK, Lara-Reyna S, Korsgen ME, Kauffman KJ, Huerta-Uribe A, Zatyka M, Silva LFSE, Torresi J, Zhang S, Hughes GW, Ward C, Kuechler ER, Cartwright D, Trushin S, Trushina E, Sahay G, Buganim Y, Lavery GG, Gsponer J, Anderson DG, Frickel EM, Rosenstock TR, Barrett T, Maddocks ODK, Tennant DA, Wang H, Jaenisch R, Korolchuk VI, Sarkar S. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep 2023; 42:112372. [PMID: 37086404 PMCID: PMC10556436 DOI: 10.1016/j.celrep.2023.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.
Collapse
Affiliation(s)
- Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Elsje G Otten
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Prashanta K Panda
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kevin J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alejandro Huerta-Uribe
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Luiz F S E Silva
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erich R Kuechler
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | | | - Gaurav Sahay
- Department of Pharmaceutical Sciences and Department of Biomedical Engineering, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Joerg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelehouse Lane, Birmingham B4 6NH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haoyi Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Ge J, Li H, Yang JQ, Yue Y, Lu SY, Nie HY, Zhang T, Sun PM, Yan HF, Sun HW, Yang JW, Zhou JL, Cui Y. Autophagy in hepatic macrophages can be regulator and potential therapeutic target of liver diseases: A review. Medicine (Baltimore) 2023; 102:e33698. [PMID: 37171337 PMCID: PMC10174421 DOI: 10.1097/md.0000000000033698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Hepatic macrophages are a complex population of cells that play an important role in the normal functioning of the liver and in liver diseases. Autophagy, as a maintainer of cellular homeostasis, is closely connected to many liver diseases. And its roles are not always beneficial, but manifesting as a double-edged sword. The polarization of macrophages and the activation of inflammasomes are mediated by intracellular and extracellular signals, respectively, and are important ways for macrophages to take part in a variety of liver diseases. More attention should be paid to autophagy of hepatic macrophages in liver diseases. In this review, we focus on the regulatory role of hepatic macrophages' autophagy in a variety of liver diseases; especially on the upstream regulator of polarization and inflammasomes activation of the hepatic macrophages. We believe that the autophagy of hepatic macrophages can become a potential therapeutic target for management of liver diseases.
Collapse
Affiliation(s)
- Jun Ge
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
| |
Collapse
|
16
|
Mejias-Ortiz M, Mencher A, Morales P, Tronchoni J, Gonzalez R. Saccharomyces cerevisiae responds similarly to co-culture or to a fraction enriched in Metschnikowia pulcherrima extracellular vesicles. Microb Biotechnol 2023; 16:1027-1040. [PMID: 36840970 PMCID: PMC10128137 DOI: 10.1111/1751-7915.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
The recent introduction of non-conventional yeast species as companion wine starters has prompted a growing interest in microbial interactions during wine fermentation. There is evidence of interactions through interference and exploitation competition, as well as interactions depending on physical contact. Furthermore, the results of some transcriptomic analyses suggest interspecific communication, but the molecules or biological structures involved in recognition are not well understood. In this work, we explored extracellular vesicles (EVs) as possible mediators of interspecific communication between wine yeasts. The transcriptomic response of Saccharomyces cerevisiae after 3 h of contact with a fraction enriched in EVs of Metschnikowia pulcherrima was compared with that induced by active M. pulcherrima cells. Interestingly, there is a high level of overlap between the transcriptomic profiles of yeast cells challenged by either M. pulcherrima whole cells or the EV-enriched fraction. The results indicate an upregulation of yeast metabolism in response to competing species (in line with previous results). This finding points to the presence of a signal, in the EV-enriched fraction, that can be perceived by the yeast cells as a cue for the presence of competitors, even in the absence of metabolically active cells of the other species.
Collapse
Affiliation(s)
- Miguel Mejias-Ortiz
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, Spain
| | - Ana Mencher
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, Spain
| | | | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, Spain
| |
Collapse
|
17
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
18
|
Kataura T, Sedlackova L, Otten EG, Kumari R, Shapira D, Scialo F, Stefanatos R, Ishikawa KI, Kelly G, Seranova E, Sun C, Maetzel D, Kenneth N, Trushin S, Zhang T, Trushina E, Bascom CC, Tasseff R, Isfort RJ, Oblong JE, Miwa S, Lazarou M, Jaenisch R, Imoto M, Saiki S, Papamichos-Chronakis M, Manjithaya R, Maddocks ODK, Sanz A, Sarkar S, Korolchuk VI. Autophagy promotes cell survival by maintaining NAD levels. Dev Cell 2022; 57:2584-2598.e11. [PMID: 36413951 PMCID: PMC11475545 DOI: 10.1016/j.devcel.2022.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan; Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Elsje G Otten
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ruchika Kumari
- Autophagy lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - David Shapira
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Filippo Scialo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rhoda Stefanatos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK; School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - George Kelly
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Dorothea Maetzel
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Niall Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; Novartis Institutes for Biomedical Research, Shanghai, China
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | - Ryan Tasseff
- The Procter & Gamble Company, Cincinnati, OH 45040, USA
| | | | - John E Oblong
- The Procter & Gamble Company, Cincinnati, OH 45040, USA
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Masaya Imoto
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan; Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan; Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | | | - Ravi Manjithaya
- Autophagy lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | | | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
19
|
Wu Z, Xu H, Wang P, Liu L, Cai J, Chen Y, Zhao X, You X, Liu J, Guo X, Xie T, Feng J, Zhou F, Li R, Xie Z, Xue Y, Fu C, Liang Y. The entry of unclosed autophagosomes into vacuoles and its physiological relevance. PLoS Genet 2022; 18:e1010431. [PMID: 36227834 PMCID: PMC9562215 DOI: 10.1371/journal.pgen.1010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/04/2022] Open
Abstract
It is widely stated in the literature that closed mature autophagosomes (APs) fuse with lysosomes/vacuoles during macroautophagy/autophagy. Previously, we showed that unclosed APs accumulated as clusters outside vacuoles in Vps21/Rab5 and ESCRT mutants after a short period of nitrogen starvation. However, the fate of such unclosed APs remains unclear. In this study, we used a combination of cellular and biochemical approaches to show that unclosed double-membrane APs entered vacuoles and formed unclosed single-membrane autophagic bodies after prolonged nitrogen starvation or rapamycin treatment. Vacuolar hydrolases, vacuolar transport chaperon (VTC) proteins, Ypt7, and Vam3 were all involved in the entry of unclosed double-membrane APs into vacuoles in Vps21-mutant cells. Overexpression of the vacuolar hydrolases, Pep4 or Prb1, or depletion of most VTC proteins promoted the entry of unclosed APs into vacuoles in Vps21-mutant cells, whereas depletion of Pep4 and/or Prb1 delayed the entry into vacuoles. In contrast to the complete infertility of diploid cells of typical autophagy mutants, diploid cells of Vps21 mutant progressed through meiosis to sporulation, benefiting from the entry of unclosed APs into vacuoles after prolonged nitrogen starvation. Overall, these data represent a new observation that unclosed double-membrane APs can enter vacuoles after prolonged autophagy induction, most likely as a survival strategy.
Collapse
Affiliation(s)
- Zulin Wu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Haiqian Xu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Cai
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yun Chen
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xiaomin Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xia You
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Junze Liu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Guo
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Tingting Xie
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jiajie Feng
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Rui Li
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YX); (CF); (YL)
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- * E-mail: (YX); (CF); (YL)
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
- * E-mail: (YX); (CF); (YL)
| |
Collapse
|
20
|
Srinivasan AR, Tran TT, Bonini NM. Loss of miR-34 in Drosophila dysregulates protein translation and protein turnover in the aging brain. Aging Cell 2022; 21:e13559. [PMID: 35166006 PMCID: PMC8920459 DOI: 10.1111/acel.13559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Aging is a risk factor for neurodegenerative disease, but precise mechanisms that influence this relationship are still under investigation. Work in Drosophila melanogaster identified the microRNA miR‐34 as a modifier of aging and neurodegeneration in the brain. MiR‐34 mutants present aspects of early aging, including reduced lifespan, neurodegeneration, and a buildup of the repressive histone mark H3K27me3. To better understand how miR‐34 regulated pathways contribute to age‐associated phenotypes in the brain, here we transcriptionally profiled the miR‐34 mutant brain. This identified that genes associated with translation are dysregulated in the miR‐34 mutant. The brains of these animals show increased translation activity, accumulation of protein aggregation markers, and altered autophagy activity. To determine if altered H3K27me3 was responsible for this proteostasis dysregulation, we studied the effects of increased H3K27me3 by mutating the histone demethylase Utx. Reduced Utx activity enhanced neurodegeneration and mimicked the protein accumulation seen in miR‐34 mutant brains. However, unlike the miR‐34 mutant, Utx mutant brains did not show similar altered autophagy or translation activity, suggesting that additional miR‐34‐targeted pathways are involved. Transcriptional analysis of predicted miR‐34 targets identified Lst8, a subunit of Tor Complex 1 (TORC1), as a potential target. We confirmed that miR‐34 regulates the 3’ UTR of Lst8 and identified several additional predicted miR‐34 targets that may be critical for maintaining proteostasis and brain health. Together, these results present novel understanding of the brain and the role of the conserved miRNA miR‐34 in impacting proteostasis in the brain with age.
Collapse
Affiliation(s)
| | - Tracy T. Tran
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania USA
| | - Nancy M. Bonini
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
21
|
Stergiou IE, Kapsogeorgou EK. Autophagy and Metabolism in Normal and Malignant Hematopoiesis. Int J Mol Sci 2021; 22:8540. [PMID: 34445246 PMCID: PMC8395194 DOI: 10.3390/ijms22168540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
22
|
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. Autophagy in healthy aging and disease. NATURE AGING 2021; 1:634-650. [PMID: 34901876 PMCID: PMC8659158 DOI: 10.1038/s43587-021-00098-4] [Citation(s) in RCA: 723] [Impact Index Per Article: 180.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | | | - Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, The University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - John Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
23
|
Abstract
Autophagy is an evolutionarily conservative biological process in eukaryotes. Since the lysosomes were discovered by De Duve in the 1950s, autophagy has been studied for more than half a century and the mechanism of autophagy process has been discovered in many model organisms. In the rice blast fungus Magnaporthe oryzae, autophagy relative proteins are essential for appressorium formation, penetration, and invasive growth. The null mutants for the expression of autophagy gene homologs in M. oryzae lose their pathogenicity for infection of host plants. In this chapter, we provide some methods for monitoring autophagy process using physics and biochemistry assays in M. oryzae. Moreover, similar approaches can be used to monitor autophagy in other plant filamentous pathogenic fungi.
Collapse
|
24
|
Wu C, Li Y, Zhong S, Chen Y, Xie Y, Feng Y, Yao W, Fu S, Zhu Y, Wang L, Chen Y, Zhang L, Tong J, Yi C. ROS is essential for initiation of energy deprivation-induced autophagy. J Genet Genomics 2021; 48:512-515. [PMID: 34257045 DOI: 10.1016/j.jgg.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yixing Li
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Zhong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yingcong Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Xie
- College of Chemistry and Bio-Engineering, Yichun University, Yichun 336000, China
| | - Yuyao Feng
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weijing Yao
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Suping Fu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yanlan Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yuting Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
25
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
26
|
Mitophagy and Oxidative Stress: The Role of Aging. Antioxidants (Basel) 2021; 10:antiox10050794. [PMID: 34067882 PMCID: PMC8156559 DOI: 10.3390/antiox10050794] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of aging. Dysfunctional mitochondria are recognized and degraded by a selective type of macroautophagy, named mitophagy. One of the main factors contributing to aging is oxidative stress, and one of the early responses to excessive reactive oxygen species (ROS) production is the induction of mitophagy to remove damaged mitochondria. However, mitochondrial damage caused at least in part by chronic oxidative stress can accumulate, and autophagic and mitophagic pathways can become overwhelmed. The imbalance of the delicate equilibrium among mitophagy, ROS production and mitochondrial damage can start, drive, or accelerate the aging process, either in physiological aging, or in pathological age-related conditions, such as Alzheimer’s and Parkinson’s diseases. It remains to be determined which is the prime mover of this imbalance, i.e., whether it is the mitochondrial damage caused by ROS that initiates the dysregulation of mitophagy, thus activating a vicious circle that leads to the reduced ability to remove damaged mitochondria, or an alteration in the regulation of mitophagy leading to the excessive production of ROS by damaged mitochondria.
Collapse
|
27
|
Kim H, Lee DG. Naringin-generated ROS promotes mitochondria-mediated apoptosis in Candida albicans. IUBMB Life 2021; 73:953-967. [PMID: 33934490 DOI: 10.1002/iub.2476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/06/2022]
Abstract
Naringin is a flavonoid which has a therapeutic effect. However, the details of its antifungal mechanism have not yet been fully elucidated. This study focused on clarifying the relationship between naringin and Candida albicans, to understand its mode of antifungal action. In general, naringin is an antioxidant, but our results indicated that 1 mM naringin generates intracellular superoxide (O2 - ) and hydroxyl radicals (OH- ). Reactive oxygen species (ROS) have a serious impact on Ca2+ signaling and the production of mitochondrial ROS. After exposure to enhanced O2 - and OH- , mitochondrial Ca2+ overload and mitochondrial O2 - generation were confirmed in C. albicans. It was verified that mitochondrial O2 - transforms mitochondrial glutathione (GSH) to oxidized GSH (GSSG), leading to extreme oxidative stress in mitochondria. The previously observed Ca2+ accumulation and oxidative stress resulted in mitochondrial membrane potential (MMP) alteration and increased mitochondrial mass. In succession, cytochrome c release from the mitochondria to the cytosol was detected due to MMP loss. Cytochrome c promotes the initiation of apoptosis, and further experiments were performed to assess the apoptotic hallmarks. Metacaspases activation, chromosomal condensation, DNA fragmentation, and phosphatidylserine exposure were observed, indicating that naringin induces apoptosis in C. albicans. In conclusion, our findings manifested that naringin-generated O2 - and OH- damage the mitochondria and that mitochondrial dysfunction-mediated apoptosis is novel antifungal mechanism of naringin.
Collapse
Affiliation(s)
- Heesu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
28
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
29
|
Transcription factor EB (TFEB)-mediated autophagy protects bovine mammary epithelial cells against H 2O 2-induced oxidative damage in vitro. J Anim Sci Biotechnol 2021; 12:35. [PMID: 33685494 PMCID: PMC7941962 DOI: 10.1186/s40104-021-00561-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
Background Bovine mammary epithelial cells after calving undergo serious metabolic challenges and oxidative stress both of which could compromise autophagy. Transcription factor EB (TFEB)-mediated autophagy is an important cytoprotective mechanism against oxidative stress. However, effects of TFEB-mediated autophagy on the oxidative stress of bovine mammary epithelial cells remain unknown. Therefore, the main aim of the study was to investigate the role of TFEB-mediated autophagy in bovine mammary epithelial cells experiencing oxidative stress. Results H2O2 challenge of the bovine mammary epithelial cell MAC-T increased protein abundance of LC3-II, increased number of autophagosomes and autolysosomes while decreased protein abundance of p62. Inhibition of autophagy via bafilomycin A1 aggravated H2O2-induced reactive oxygen species (ROS) accumulation and apoptosis in MAC-T cells. Furthermore, H2O2 treatment triggered the translocation of TFEB into the nucleus. Knockdown of TFEB by siRNA reversed the effect of H2O2 on protein abundance of LC3-II and p62 as well as the number of autophagosomes and autolysosomes. Overexpression of TFEB activated autophagy and attenuated H2O2-induced ROS accumulation. Furthermore, TFEB overexpression attenuated H2O2-induced apoptosis by downregulating the caspase apoptotic pathway. Conclusions Our results indicate that activation of TFEB mediated autophagy alleviates H2O2-induced oxidative damage by reducing ROS accumulation and inhibiting caspase-dependent apoptosis.
Collapse
|
30
|
Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism. Nat Commun 2020; 11:5052. [PMID: 33028817 PMCID: PMC7542147 DOI: 10.1038/s41467-020-18805-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
The mechanism and function of autophagy as a highly-conserved bulk degradation pathway are well studied, but the physiological role of autophagy remains poorly understood. We show that autophagy is involved in the adaptation of Saccharomyces cerevisiae to respiratory growth through its recycling of serine. On respiratory media, growth onset, mitochondrial initiator tRNA modification and mitochondrial protein expression are delayed in autophagy defective cells, suggesting that mitochondrial one-carbon metabolism is perturbed in these cells. The supplementation of serine, which is a key one-carbon metabolite, is able to restore mitochondrial protein expression and alleviate delayed respiratory growth. These results indicate that autophagy-derived serine feeds into mitochondrial one-carbon metabolism, supporting the initiation of mitochondrial protein synthesis and allowing rapid adaptation to respiratory growth. Autophagy is important during stress and development, but how the metabolites generated are used by the cell remains unclear. Here, the authors demonstrate that budding yeast require autophagy to provide serine for one-carbon metabolism during the switch from glycolytic to respiratory growth.
Collapse
|
31
|
Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death Dis 2020; 11:611. [PMID: 32792495 PMCID: PMC7426971 DOI: 10.1038/s41419-020-02880-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
Autophagy inhibition has been demonstrated to increase the efficacy of conventional chemotherapy. In this study, we identified hederagenin, a triterpenoid derived from Hedera helix, as a potent inhibitor of autophagy and then hypothesized that hederagenin might synergize with chemotherapeutic drugs (e.g., cisplatin and paclitaxel) to kill lung cancer cells. Firstly, we observed that hederagenin induced the increased autophagosomes in lung cancer cells concomitantly with the upregulation of LC3-II and p62, which indicated the impairment of autophagic flux. The colocalization assay indicated hederagenin could not block the fusion of lysosomes and autophagosomes, whereas the lysosomal acidification might be inhibited by hederagenin as revealed by the reduced staining of acidity-sensitive reagents (i.e., Lysotracker and acridine orange). The aberrant acidic environment then impaired the function of lysosome, which was evidenced by the decrease of mature cathepsin B and cathepsin D. Lastly, hederagenin, in agree with our hypothesis, promoted pro-apoptotic effect of cisplatin and paclitaxel with the accumulation of reactive oxygen species (ROS); while the synergistic effect could be abolished by the ROS scavenger, N-acetyl-L-cysteine. These data summarily demonstrated hederagenin-induced accumulation of ROS by blocking autophagic flux potentiated the cytotoxicity of cisplatin and paclitaxel in lung cancer cells.
Collapse
|
32
|
Goldsmith J, Marsh T, Asthana S, Leidal AM, Suresh D, Olshen A, Debnath J. Ribosome profiling reveals a functional role for autophagy in mRNA translational control. Commun Biol 2020; 3:388. [PMID: 32681145 PMCID: PMC7367890 DOI: 10.1038/s42003-020-1090-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/19/2020] [Indexed: 01/09/2023] Open
Abstract
Autophagy promotes protein degradation, and therefore has been proposed to maintain amino acid pools to sustain protein synthesis during metabolic stress. To date, how autophagy influences the protein synthesis landscape in mammalian cells remains unclear. Here, we utilize ribosome profiling to delineate the effects of genetic ablation of the autophagy regulator, ATG12, on translational control. In mammalian cells, genetic loss of autophagy does not impact global rates of cap dependent translation, even under starvation conditions. Instead, autophagy supports the translation of a subset of mRNAs enriched for cell cycle control and DNA damage repair. In particular, we demonstrate that autophagy enables the translation of the DNA damage repair protein BRCA2, which is functionally required to attenuate DNA damage and promote cell survival in response to PARP inhibition. Overall, our findings illuminate that autophagy impacts protein translation and shapes the protein landscape.
Collapse
Affiliation(s)
- Juliet Goldsmith
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Marsh
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Asthana
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Andrew M Leidal
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Deepthisri Suresh
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Adam Olshen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jayanta Debnath
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
33
|
Effect of Candida intermedia LAMAP1790 Antimicrobial Peptides against Wine-Spoilage Yeasts Brettanomyces bruxellensis and Pichia guilliermondii. FERMENTATION 2020. [DOI: 10.3390/fermentation6030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wine spoilage yeasts are one of the main issues in the winemaking industry, and the control of the Brettanomyces and Pichia genus is an important goal to reduce economic loses from undesired aromatic profiles. Previous studies have demonstrated that Candida intermedia LAMAP1790 produces antimicrobial peptides of molecular mass under 10 kDa with fungicide activity against Brettanomyces bruxellensis, without affecting the yeast Saccharomyces cerevisiae. So far, it has not been determined whether these peptides show biocontroller effect in this yeast or other spoilage yeasts, such as Pichia guilliermondii. In this work, we determined that the exposure of B. bruxellensis to the low-mass peptides contained in the culture supernatant of C. intermedia LAMAP1790 produces a continuous rise of reactive oxygen species (ROS) in this yeast, without presenting a significant effect on membrane damage. These observations can give an approach to the antifungal mechanism. In addition, we described a fungicide activity of these peptides fraction against two strains of P. guilliermondii in a laboratory medium. However, carrying out assays on synthetic must, peptides must show an effect on the growth of B. bruxellensis. Moreover, these results can be considered as a start to develop new strategies for the biocontrol of spoilage yeast.
Collapse
|
34
|
Roberto TN, Lima RF, Pascon RC, Idnurm A, Vallim MA. Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans. PLoS One 2020; 15:e0230981. [PMID: 32251488 PMCID: PMC7135279 DOI: 10.1371/journal.pone.0230981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.
Collapse
Affiliation(s)
- Thiago Nunes Roberto
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Ricardo Ferreira Lima
- Departamento de Infectologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Marcelo Afonso Vallim
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 2020; 51:105-117. [PMID: 31972372 DOI: 10.1016/j.mito.2020.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous homeostatic mechanism for the degradation or turnover of cellular components. Degradation of mitochondria via autophagy (mitophagy) is involved in a number of physiological processes including cellular homeostasis, differentiation and aging. Upon stress or injury, mitophagy prevents the accumulation of damaged mitochondria and the increased steady state levels of reactive oxygen species leading to oxidative stress and cell death. A number of human diseases, particularly neurodegenerative disorders, have been linked to the dysregulation of mitophagy. In this mini-review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and their relationship with redox signaling and oxidative stress.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
36
|
Kovaleva TF, Maksimova NS, Pchelin PV, Pershin VI, Tkachenko NM, Gainullin MR, Mukhina IV. A New Cofilin-Dependent Mechanism for the Regulation of Brain Mitochondria Biogenesis and Degradation. Sovrem Tekhnologii Med 2020; 12:6-13. [PMID: 34513032 PMCID: PMC8353704 DOI: 10.17691/stm2020.12.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/14/2022] Open
Abstract
The aim Was to study the role of post-translational modifications of cofilin in the regulation of respiration and autophagy in murine brain mitochondria.
Collapse
Affiliation(s)
- T F Kovaleva
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N S Maksimova
- PhD Student, Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P V Pchelin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V I Pershin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N M Tkachenko
- Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M R Gainullin
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Researcher, Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, Oslo, 0424, Norway, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, Oslo, 0318, Norway
| | - I V Mukhina
- Professor, Director of the Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Head of the Department of Normal Physiology named after N.Y. Belenkov, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
37
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
38
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
39
|
Abstract
Macroautophagy is an intracellular degradation system that delivers diverse cytoplasmic materials to lysosomes via autophagosomes. Recent advances have enabled identification of several selective autophagy substrates and receptors, greatly expanding our understanding of the cellular functions of autophagy. In this review, we describe the diverse cellular functions of macroautophagy, including its essential contribution to metabolic adaptation and cellular homeostasis. We also discuss emerging findings on the mechanisms and functions of various types of selective autophagy.
Collapse
Affiliation(s)
- Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; ,
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; ,
| |
Collapse
|
40
|
Gao H, Khawar MB, Li W. Essential role of autophagy in resource allocation during sexual reproduction. Autophagy 2019; 16:18-27. [PMID: 31203720 DOI: 10.1080/15548627.2019.1628543] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sexual reproduction is the most common form of reproduction among eukaryotes, which is characterized by a series of massive cellular or tissue renovations. Recent studies have revealed novel functions of autophagy during sexual reproductive processes, ranging from yeast to mammals. In mammals, autophagy is indispensable for spermatogenesis and oogenesis, and it participates in early embryonic development and maternal-fetus crosstalk to ensure the development of embryos or fetuses. Thus, autophagy provides the molecular basis for resource allocation among parents and their offspring, providing an important way to benefit the next generation.Abbreviations: ATG: autophagy-related; Becn1: beclin 1, autophagy related; CMA: chaperone-mediated autophagy; epg: ectopic PGL granules; ES: ectoplasmic specialization; EVTs: extravillous trophoblasts; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PCD: programmed cell death; PTB: preterm birth; STB: syncytiotrophoblast.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci Rep 2019; 9:2002. [PMID: 30765730 PMCID: PMC6376057 DOI: 10.1038/s41598-018-37862-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective anticancer drug but cause acute ventricular dysfunction, and also induce late-onset cardiomyopathy and heart failure. Despite extensive studies, the pathogenic sequelae leading to the progression of Dox-associated cardiomyopathy remains unknown. We assessed temporal changes in autophagy, mitochondrial dynamics, and bioenergetics in mouse models of acute and chronic Dox-cardiomyopathy. Time course study of acute Dox-treatment showed accumulation of LC3B II in heart lysates. Autophagy flux assays confirmed that the Dox-induced accumulation of autophagosomes occurs due to blockage of the lysosomal degradation process. Dox-induced autophagosomes and autolysosome accumulation were confirmed in vivo by using GFP-LC3 and mRFP-GFP-LC3 transgenic (Tg) mice. Mitochondria isolated from acute Dox-treated hearts showed significant suppression of oxygen consumption rate (OCR). Chronic Dox-cardiotoxicity also exhibited time-dependent accumulation of LC3B II levels and increased accumulation of green puncta in GFP-LC3 Tg hearts. Mitochondria isolated from chronic Dox-treated hearts also showed significant suppression of mitochondrial OCR. The in vivo impairment of autophagic degradation process and mitochondrial dysfunction data were confirmed in vitro using cultured neonatal cardiomyocytes. Both acute and chronic Dox-associated cardiomyopathy involves a multifocal disease process resulting from autophagosomes and autolysosomes accumulation, altered expression of mitochondrial dynamics and oxidative phosphorylation regulatory proteins, and mitochondrial respiratory dysfunction.
Collapse
|
42
|
Iwama R, Ohsumi Y. Analysis of autophagy activated during changes in carbon source availability in yeast cells. J Biol Chem 2019; 294:5590-5603. [PMID: 30755486 DOI: 10.1074/jbc.ra118.005698] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/05/2019] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a conserved intracellular degradation system in eukaryotes. Recent studies have revealed that autophagy can be induced not only by nitrogen starvation but also by many other stimuli. However, questions persist regarding the types of conditions that induce autophagy, as well as the particular kinds of autophagy that are induced under these specific conditions. In experimental studies, abrupt nutrient changes are often used to induce autophagy. In this study, we investigated autophagy induction in batch culture on low-glucose medium, in which growth of yeast (Saccharomyces cerevisiae) cells is clearly reflected exclusively by carbon source state. In this medium, cells pass sequentially through three stages: glucose-utilizing, ethanol-utilizing, and ethanol-depleted phases. Using GFP cleavage assay by immunoblotting methods, fluorescence microscopy, and transmission electron microscopy ultrastructural analysis, we found that bulk autophagy and endoplasmic reticulum-phagy are induced starting at the ethanol-utilizing phase, and bulk autophagy is activated to a greater extent in the ethanol-depleted phase. Furthermore, we found that mitophagy is induced by ethanol depletion. Microautophagy occurred after glucose depletion and involved incorporation of cytosolic components and lipid droplets into the vacuolar lumen. Moreover, we observed that autophagy-deficient cells grow more slowly in the ethanol-utilizing phase and exhibit a delay in growth resumption when they are shifted to fresh medium from the ethanol-depleted phase. Our findings suggest that distinct types of autophagy are induced in yeast cells undergoing gradual changes in carbon source availability.
Collapse
Affiliation(s)
- Ryo Iwama
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yoshinori Ohsumi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
43
|
Kang SJ, Rhee WJ. Silkworm Storage Protein 1 Inhibits Autophagy-Mediated Apoptosis. Int J Mol Sci 2019; 20:ijms20020318. [PMID: 30646576 PMCID: PMC6359030 DOI: 10.3390/ijms20020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
Autophagy is a natural physiological process, and it induces the lysosomal degradation of intracellular components in response to environmental stresses, including nutrient starvation. Although an adequate autophagy level helps in cell survival, excessive autophagy triggered by stress such as starvation leads to autophagy-mediated apoptosis. Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, including monoclonal antibodies. However, apoptosis induced by high stress levels, including nutrient deficiency, is a major problem in cell cultures grown in bioreactors, which should be overcome. Therefore, it is necessary to develop a method for suppressing excessive autophagy and for maintaining an appropriate autophagy level in cells. Therefore, we investigated the effect of silkworm storage protein 1 (SP1), an antiapoptotic protein, on autophagy-mediated apoptosis. SP1-expressing CHO cells were generated to assess the effect and molecular mechanism of SP1 in suppressing autophagy. These cells were cultured under starvation conditions by treatment with Earle’s balanced salt solution (EBSS) to induce autophagy. We observed that SP1 significantly inhibited autophagy-mediated apoptosis by suppressing caspase-3 activation and reactive oxygen species generation. In addition, SP1 suppressed EBSS-induced conversion of LC3-I to LC3-II and the expression of autophagy-related protein 7. Notably, basal Beclin-1 level was significantly low in the SP1-expressing cells, indicating that SP1 regulated upstream events in the autophagy pathway. Together, these findings suggest that SP1 offers a new strategy for overcoming severe autophagy-mediated apoptosis in mammalian cells, and it can be used widely in biopharmaceutical production.
Collapse
Affiliation(s)
- Su Jin Kang
- Division of Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea.
| |
Collapse
|
44
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
45
|
Li H, Hu P, Wang Y, Pan Y, Liu G. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Microb Cell Fact 2018; 17:175. [PMID: 30424777 PMCID: PMC6233533 DOI: 10.1186/s12934-018-1021-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
Background Autophagy is used for degradation of cellular components and nutrient recycling. Atg8 is one of the core proteins in autophagy and used as a marker for autophagic detection. However, the autophagy of filamentous fungi is poorly understood compared with that of Saccharomyces cerevisiae. Our previous study revealed that disruption of the autophagy related gene Acatg1 significantly enhanced cephalosporin C yield through reducing degradation of cephalosporin biosynthetic proteins in Acremonium chrysogenum, suggesting that modulation of autophagic process is one promising way to increase antibiotic production in A. chrysogenum. Results In this study, a S. cerevisiae ATG8 homologue gene Acatg8 was identified from A. chrysogenum. Acatg8 could complement the ATG8 mutation in S. cerevisiae, indicating that Acatg8 is a functional homologue of ATG8. Microscope observation demonstrated the fluorescently labeled AcAtg8 was localized in the cytoplasm and autophagosome of A. chrysogenum, and the expression of Acatg8 was induced by nutrient starvation. Gene disruption and genetic complementation revealed that Acatg8 is essential for autophagosome formation. Disruption of Acatg8 significantly reduced fungal conidiation and delayed conidial germination. Localization of GFP-AcAtg8 implied that autophagy is involved in the early phase of conidial germination. Similar to Acatg1, disruption of Acatg8 remarkably enhanced cephalosporin C yield. The cephalosporin C biosynthetic enzymes (isopenicillin N synthase PcbC and isopenicillin N epimerase CefD2) and peroxisomes were accumulated in the Acatg8 disruption mutant (∆Acatg8), which might be the main reasons for the enhancement of cephalosporin C production. However, the biomass of ΔAcatg8 decreased drastically at the late stage of fermentation, suggesting that autophagy is critical for A. chrysogenum cell survival under nutrition deprived condition. Disruption of Acatg8 also resulted in accumulation of mitochondria, which might produce more reactive oxygen species (ROS) which promotes fungal death. However, the premature death is unfavorable for cephalosporin C production. To solve this problem, a plasmid containing Acatg8 under control of the xylose/xylan-inducible promoter was introduced into ∆Acatg8. Conidiation and growth of the recombinant strain restored to the wild-type level in the medium supplemented with xylose, while the cephalosporin C production maintained at a high level even prolonged fermentation. Conclusions Our results demonstrated inducible expression of Acatg8 and disruption of Acatg8 remarkably increased cephalosporin C production. This study provides a promising approach for yield improvement of cephalosporin C in A. chrysogenum. Electronic supplementary material The online version of this article (10.1186/s12934-018-1021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Honghua Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
The Novel Autophagy Inhibitor Alpha-Hederin Promoted Paclitaxel Cytotoxicity by Increasing Reactive Oxygen Species Accumulation in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2018; 19:ijms19103221. [PMID: 30340379 PMCID: PMC6214018 DOI: 10.3390/ijms19103221] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/07/2023] Open
Abstract
Chemoresistance is a major limiting factor that impairs the outcome of non-small cell lung cancer (NSCLC) chemotherapy. Paclitaxel (Tax) induces protective autophagy in NSCLC cells, leading to the development of drug resistance. We recently identified a new autophagy inhibitor (alpha-hederin) and hypothesized that it may promote the killing effect of Tax on NSCLC cells. We found that alpha-hederin (α-Hed) could block late autophagic flux in NSCLC cells by altering lysosomal pH and inhibiting lysosomal cathepsin D maturation. Combination treatment of α-Hed and Tax synergistically reduced NSCLC cell proliferation and increased NSCLC cell apoptosis compared with treatment with α-Hed or Tax alone. Furthermore, α-Hed plus Tax enhanced the accumulation of intracellular reactive oxygen species (ROS) in NSCLC cells, while the ROS inhibitor N-acetylcysteine reversed the inhibitory effect of the combination treatment. Our findings suggest that α-Hed can increase the killing effect of Tax on NSCLC cells by promoting ROS accumulation, and that combining α-Hed with classical Tax represents a novel strategy for treating NSCLC.
Collapse
|
47
|
Changes in the midgut diverticula epithelial cells of the European cave spider, Meta menardi, under controlled winter starvation. Sci Rep 2018; 8:13645. [PMID: 30206362 PMCID: PMC6133933 DOI: 10.1038/s41598-018-31907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
The European cave spider, Meta menardi, is among the most common troglophile species inhabiting the cave entrance zone in Europe, where prey is scarce in winter. Spiders feed only if prey is available; otherwise, they are subjected to long-term winter starvation. We carried out a four-month winter starvation of M. menardi under controlled conditions to analyze ultrastructural changes in the midgut diverticula epithelial cells at the beginning, in the middle and at the end of the starvation period. We used light microscopy, TEM and quantified reserve lipids and glycogen. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During starvation, gradual vacuolization of some digestive cells, and some necrotic digestive cells and adipocytes appeared. Autophagic structures, autophagosomes, autolysosomes and residual bodies were found in all three cell types. Spherites and the energy-reserve compounds were gradually exploited, until in some spherites only the membrane remained. Comparison between spring, autumn and winter starvation reveals that, during the growth period, M. menardi accumulate reserve compounds in spherites and protein granules, and energy-supplying lipids and glycogen, like many epigean, overwintering arthropods. In M. menardi, otherwise active all over the year, this is an adaptive response to the potential absence of prey in winter.
Collapse
|
48
|
Chen G, Liu H, Zhang Y, Liang J, Zhu Y, Zhang M, Yu D, Wang C, Hou J. Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma. Exp Cell Res 2018; 370:46-57. [DOI: 10.1016/j.yexcr.2018.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
|
49
|
Autophagy gene overexpression in Saccharomyces cerevisiae perturbs subcellular organellar function and accumulates ROS to accelerate cell death with relevance to sparkling wine production. Appl Microbiol Biotechnol 2018; 102:8447-8464. [PMID: 30120525 DOI: 10.1007/s00253-018-9304-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
Traditional sparkling wines are produced by the refermentation of a base wine with yeast in the bottle followed by a critical period of aging. During the often lengthy aging process, yeast undergoes cell death and autolysis to release cellular compounds that over time ultimately contribute to the flavor and appearance of the product. While accelerating yeast autolysis for sparkling wine production has been the focus of several studies, employing overexpressed native yeast alleles for this purpose remains poorly explored. Here, we show that the overexpression of native yeast genes, specifically selected autophagic genes, results in accelerated cell death in nitrogen starvation and base wine refermentation. We show ATG3 or ATG4 overexpression has pleiotropic intracellular ramifications including reduced turnover of autophagic cargo, vacuolar fragmentation, abnormal accumulation of lipids, and accelerated accumulation of reactive oxygen species (ROS), all of which precede accelerated cell death. Our findings suggest that the increased expression of autophagy-related genes, such as ATG3 and ATG4, in industrial wine yeast can serve as a suitable marker or breeding strategy to accelerate the cell death and autolysis of wine yeast during sparkling wine production.
Collapse
|
50
|
Mostofa MG, Rahman MA, Koike N, Yeasmin AM, Islam N, Waliullah TM, Hosoyamada S, Shimobayashi M, Kobayashi T, Hall MN, Ushimaru T. CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J Cell Biol 2018; 217:2675-2690. [PMID: 29959231 PMCID: PMC6080932 DOI: 10.1083/jcb.201706164] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022] Open
Abstract
Nutrient starvation or inactivation of TORC1 induces separation of rDNA and nucleolar proteins in yeast. Mostofa et al. report that the rDNA tethering CLIP–cohibin system repositions nucleolar proteins to sites proximal to the nuclear–vacuolar junction (NVJ), where micronucleophagy occurs, whereas rDNA moves to regions distal to the NVJ. Nutrient starvation or inactivation of target of rapamycin complex 1 (TORC1) in budding yeast induces nucleophagy, a selective autophagy process that preferentially degrades nucleolar components. DNA, including ribosomal DNA (rDNA), is not degraded by nucleophagy, even though rDNA is embedded in the nucleolus. Here, we show that TORC1 inactivation promotes relocalization of nucleolar proteins and rDNA to different sites. Nucleolar proteins move to sites proximal to the nuclear–vacuolar junction (NVJ), where micronucleophagy (or piecemeal microautophagy of the nucleus) occurs, whereas rDNA dissociates from nucleolar proteins and moves to sites distal to NVJs. CLIP and cohibin, which tether rDNA to the inner nuclear membrane, were required for repositioning of nucleolar proteins and rDNA, as well as effective nucleophagic degradation of the nucleolar proteins. Furthermore, micronucleophagy itself was necessary for the repositioning of rDNA and nucleolar proteins. However, rDNA escaped from nucleophagic degradation in CLIP- or cohibin-deficient cells. This study reveals that rDNA–nucleolar protein separation is important for the nucleophagic degradation of nucleolar proteins.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | - Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Akter Mst Yeasmin
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Nafisa Islam
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | - Shun Hosoyamada
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan .,Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|