1
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
2
|
Zingaropoli MA, Parente A, Kertusha B, Campagna R, Tieghi T, Garattini S, Marocco R, Carraro A, Tortellini E, Guardiani M, Dominelli F, Turriziani O, Ciardi MR, Mastroianni CM, Del Borgo C, Lichtner M. Longitudinal Virological and Immunological Profile in a Case of Human Monkeypox Infection. Open Forum Infect Dis 2022; 9:ofac569. [PMID: 36474633 PMCID: PMC9716865 DOI: 10.1093/ofid/ofac569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 10/03/2023] Open
Abstract
In a male with severe proctitis, monkeypox virus DNA was detected in skin lesions, blood, the nasopharynx, and the rectum, underlying generalized viral spreading. Rectal involvement was still found when skin lesions disappeared. At this early stage, an increase of cytotoxic and activated T cells was observed, while a reduction in CD56dimCD57+ NK cells compared with recovery time point was observed.
Collapse
Affiliation(s)
| | - Alberico Parente
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Blerta Kertusha
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Tieghi
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Silvia Garattini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Cosmo Del Borgo
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
- Department of Neurosciences, Mental Health, and Sense Organs, NESMOS, University of Rome, Rome, Italy
| |
Collapse
|
3
|
Selective reconstitution of IFN‑γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathog 2020; 16:e1008279. [PMID: 32023327 PMCID: PMC7028289 DOI: 10.1371/journal.ppat.1008279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/18/2020] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity. Viral infections induce interferon (IFN) responses that constitute a first line of defense. Type II IFN (IFN-γ) is required for protection against lethal vaccinia virus (VACV) infection. To address the cellular origin of protective IFN-γ responses during VACV infection, we generated IFN-γOFF mice, in which the endogenous IFN-γ gene function can be reconstituted in a Cre-dependent manner. IFN-γOFF mice were intercrossed with Ncr1-Cre mice that express Cre selectively in Ncr1+ innate cell subsests such as NK cells. Surprisingly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses. Reconstitution of innate IFN-γ was sufficient to restore cytokine responses that supported normal myeloid cell distribution and survival upon VACV infection. In conclusion, IFN-γ derived from Ncr1+ innate immune cells is sufficient to elicit fully effective immune responses upon VACV infection. Our new mouse model is suitable to further address the role of Ncr1+ cell-derived IFN-γ also in other models of infection, as well as of autoimmunity and cancer.
Collapse
|
4
|
Hobbs SJ, Harbour JC, Yates PA, Ortiz D, Landfear SM, Nolz JC. Vaccinia Virus Vectors Targeting Peptides for MHC Class II Presentation to CD4 + T Cells. Immunohorizons 2020; 4:1-13. [PMID: 31896555 PMCID: PMC7380490 DOI: 10.4049/immunohorizons.1900070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
CD4+ helper T cells play important roles in providing help to B cells, macrophages, and cytotoxic CD8+ T cells, but also exhibit direct effector functions against a variety of different pathogens. In contrast to CD8+ T cells, CD4+ T cells typically exhibit broader specificities and undergo less clonal expansion during many types of viral infections, which often makes the identification of virus-specific CD4+ T cells technically challenging. In this study, we have generated recombinant vaccinia virus (VacV) vectors that target I-Ab-restricted peptides for MHC class II (MHC-II) presentation to activate CD4+ T cells in mice. Conjugating the lymphocytic choriomeningitis virus immunodominant epitope GP61-80 to either LAMP1 to facilitate lysosomal targeting or to the MHC-II invariant chain (Ii) significantly increased the activation of Ag-specific CD4+ T cells in vivo. Immunization with VacV-Ii-GP61-80 activated endogenous Ag-specific CD4+ T cells that formed memory and rapidly re-expanded following heterologous challenge. Notably, immunization of mice with VacV expressing an MHC-II-restricted peptide from Leishmania species (PEPCK335-351) conjugated to either LAMP1 or Ii also generated Ag-specific memory CD4+ T cells that underwent robust secondary expansion following a visceral leishmaniasis infection, suggesting this approach could be used to generate Ag-specific memory CD4+ T cells against a variety of different pathogens. Overall, our data show that VacV vectors targeting peptides for MHC-II presentation is an effective strategy to activate Ag-specific CD4+ T cells in vivo and could be used to study Ag-specific effector and memory CD4+ T cell responses against a variety of viral, bacterial, or parasitic infections.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Jake C Harbour
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Phillip A Yates
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Diana Ortiz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239;
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239; and
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
5
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
6
|
Hobbs SJ, Osborn JF, Nolz JC. Activation and trafficking of CD8 + T cells during viral skin infection: immunological lessons learned from vaccinia virus. Curr Opin Virol 2018; 28:12-19. [PMID: 29080420 PMCID: PMC5835170 DOI: 10.1016/j.coviro.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jossef F Osborn
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jeffrey C Nolz
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
7
|
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines (Basel) 2018; 6:vaccines6010008. [PMID: 29382130 PMCID: PMC5874649 DOI: 10.3390/vaccines6010008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023] Open
Abstract
Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV), and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.
Collapse
Affiliation(s)
- Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
8
|
Lamin A/C augments Th1 differentiation and response against vaccinia virus and Leishmania major. Cell Death Dis 2018; 9:9. [PMID: 29311549 PMCID: PMC5849043 DOI: 10.1038/s41419-017-0007-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Differentiation of naive CD4+ T-cells into functionally distinct T helper (Th) subsets is critical to immunity against pathogen infection. Little is known about the role of signals emanating from the nuclear envelope for T-cell differentiation. The nuclear envelope protein lamin A/C is induced in naive CD4+ T-cells upon antigen recognition and acts as a link between the nucleus and the plasma membrane during T-cell activation. Here we demonstrate that the absence of lamin A/C in naive T-cell reduces Th1 differentiation without affecting Th2 differentiation in vitro and in vivo. Moreover, Rag1−/− mice reconstituted with Lmna−/−CD4+CD25− T-cells and infected with vaccinia virus show weaker Th1 responses and viral removal than mice reconstituted with wild-type T-cells. Th1 responses and pathogen clearance upon Leishmania major infection were similarly diminished in mice lacking lamin A/C in the complete immune system or selectively in T-cells. Lamin A/C mediates Th1 polarization by a mechanism involving T-bet and IFNγ production. Our results reveal a novel role for lamin A/C as key regulator of Th1 differentiation in response to viral and intracellular parasite infections.
Collapse
|
9
|
Development of an animal model of progressive vaccinia in nu/nu mice and the use of bioluminescence imaging for assessment of the efficacy of monoclonal antibodies against vaccinial B5 and L1 proteins. Antiviral Res 2017; 144:8-20. [PMID: 28495463 DOI: 10.1016/j.antiviral.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022]
Abstract
Bioluminescence imaging (BLI) was used to follow dissemination of recombinant vaccinia virus (VACV) expressing luciferase (IHD-J-Luc) in BALB/c nu/nu mice treated post-challenge with monoclonal antibodies (MAbs) against L1 and B5 VACV proteins in a model of Progressive Vaccinia (PV). Areas Under the flux Curve (AUC) were calculated for viral loads in multiple organs in individual mice. Following scarification with 105 pfu, IHD-J-Luc VACV undergoes fast replication at the injection site and disseminates rapidly to the inguinal lymph nodes followed by spleen, liver, and axillary lymph nodes within 2-3 days and before primary lesions are visible at the site of scarification. Extension of survival in nude mice treated with a combination of anti-B5 and anti-L1 MAbs 24 h post challenge correlated with a significant reduction in viral load at the site of scarification and delayed systemic dissemination. Nude mice reconstituted with 104 T cells prior to challenge with IHD-J-Luc, and treated with MAbs post-challenge, survived infection, cleared the virus from all organs and scarification site, and developed anti-VACV IgG and VACV-specific polyfunctional CD8+ T cells that co-expressed the degranulation marker CD107a, and IFNγ and TNFα cytokines. All T cell reconstituted mice survived intranasal re-challenge with IHD-J-Luc (104 pfu) two months after the primary infection. Thus, using BLI to monitor VACV replication in a PV model, we showed that anti-VACV MAbs administered post challenge extended survival of nude mice and protected T cell reconstituted nude mice from lethality by reducing replication at the site of scarification and systemic dissemination of VACV.
Collapse
|
10
|
Kilinc MO, Ehrig K, Pessian M, Minev BR, Szalay AA. Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells. J Transl Med 2016; 14:340. [PMID: 27993141 PMCID: PMC5168712 DOI: 10.1186/s12967-016-1096-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022] Open
Abstract
Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS+ myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student’s t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b+ ly6G+ myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS+ MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7–10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.
Collapse
Affiliation(s)
- Mehmet Okyay Kilinc
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,San Diego Science Center, Genelux Corporation, San Diego, CA, USA
| | - Klaas Ehrig
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maysam Pessian
- San Diego Science Center, Genelux Corporation, San Diego, CA, USA
| | - Boris R Minev
- San Diego Science Center, Genelux Corporation, San Diego, CA, USA.,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,San Diego Science Center, Genelux Corporation, San Diego, CA, USA. .,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA.
| |
Collapse
|
11
|
Kern A, Zhou CW, Jia F, Xu Q, Hu LT. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release. Vaccine 2016; 34:4507-4513. [PMID: 27502570 DOI: 10.1016/j.vaccine.2016.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/17/2022]
Abstract
The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks.
Collapse
Affiliation(s)
- Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, Boston, USA
| | - Chensheng W Zhou
- Department of Biomedical Engineering, Tufts University, Medford, USA
| | - Feng Jia
- Department of Biomedical Engineering, Tufts University, Medford, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, USA.
| |
Collapse
|
12
|
Núñez-Andrade N, Iborra S, Trullo A, Moreno-Gonzalo O, Calvo E, Catalán E, Menasche G, Sancho D, Vázquez J, Yao TP, Martín-Cófreces NB, Sánchez-Madrid F. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes. J Cell Sci 2016; 129:1305-1311. [PMID: 26869226 DOI: 10.1242/jcs.180885] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics, including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4(+)T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8(+)T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6(-/-)CD8(+)T cells to Rag1(-/-)mice demonstrated specific impairment in CD8(+)T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin-1-dynactin-mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFN)γ production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs.
Collapse
Affiliation(s)
- Norman Núñez-Andrade
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | - Salvador Iborra
- Immunobiology of inflammation, Fundación CNIC, Madrid, 28029 Spain
| | - Antonio Trullo
- Microscopy and Dynamic Imaging Unit, Fundación CNIC, Madrid, 28029 Spain.,Spettroscopia biomedica in fluorescenza dinamica, Center of Experimental Imaging, Ospedale San Raffaele, Milan, 20132, Italy
| | - Olga Moreno-Gonzalo
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | | | - Elena Catalán
- Dept. Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, 500009, Spain
| | - Gaël Menasche
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM Unité Mixte de Recherche 1163, Paris France
| | - David Sancho
- Immunobiology of inflammation, Fundación CNIC, Madrid, 28029 Spain
| | | | - Tso-Pang Yao
- Departments of Pharmacology and Cancer Biology Duke University, Medical Center, Durham, North Carolina 27710, U.S
| | - Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| |
Collapse
|
13
|
Hickman HD, Reynoso GV, Ngudiankama BF, Cush SS, Gibbs J, Bennink JR, Yewdell JW. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 2015; 42:524-37. [PMID: 25769612 DOI: 10.1016/j.immuni.2015.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin. Despite normal T cell numbers in the skin, Cxcr3(-/-) mice exhibited dramatically impaired CD8(+)-T-cell-dependent virus clearance. Intravital microscopy revealed that Cxcr3(-/-) T cells were markedly deficient in locating, engaging, and killing virus-infected cells. Further, transfer of wild-type CD8(+) T cells restored viral clearance in Cxcr3(-/-) animals. These findings demonstrate a function for CXCR3 in enhancing the ability of tissue-localized CD8(+) T cells to locate virus-infected cells and thereby exert anti-viral effector functions.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Glennys V Reynoso
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Barbara F Ngudiankama
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephanie S Cush
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Gibbs
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jack R Bennink
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Iborra S, Izquierdo HM, Martínez-López M, Blanco-Menéndez N, Reis e Sousa C, Sancho D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 2012; 122:1628-43. [PMID: 22505455 PMCID: PMC3336985 DOI: 10.1172/jci60660] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022] Open
Abstract
In order to prime T cells, DCs integrate signals emanating directly from pathogens and from their noxious action on the host. DNGR-1 (CLEC9A) is a DC-restricted receptor that detects dead cells. Therefore, we investigated the possibility that DNGR-1 affects immunity to cytopathic viruses. DNGR-1 was essential for cross-presentation of dying vaccinia virus-infected (VACV-infected) cells to CD8(+) T cells in vitro. Following injection of VACV or VACV-infected cells into mice, DNGR-1 detected the ligand in dying infected cells and mediated cross-priming of anti-VACV CD8(+) T cells. Loss of DNGR-1 impaired the CD8+ cytotoxic response to VACV, especially against those virus strains that are most dependent on cross-presentation. The decrease in total anti-VACV CTL activity was associated with a profound increase in viral load and delayed resolution of the primary lesion. In addition, lack of DNGR-1 markedly diminished protection from infection induced by vaccination with the modified vaccinia Ankara (MVA) strain. DNGR-1 thus contributes to anti-VACV immunity, following both primary infection and vaccination. The non-redundant ability of DNGR-1 to regulate cross-presentation of viral antigens suggests that this form of regulation of antiviral immunity could be exploited for vaccination.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigen Presentation
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cross-Priming
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Knockout Techniques
- Interferon-gamma/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Lysosomes/metabolism
- Lysosomes/virology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Necrosis/virology
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Syk Kinase
- Vaccinia/immunology
- Vaccinia/pathology
- Vaccinia virus/immunology
- Vaccinia virus/physiology
- Viral Load
Collapse
Affiliation(s)
- Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Helena M. Izquierdo
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - María Martínez-López
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Noelia Blanco-Menéndez
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Caetano Reis e Sousa
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - David Sancho
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| |
Collapse
|
15
|
Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. J Virol 2011; 85:12578-84. [PMID: 21917955 DOI: 10.1128/jvi.05334-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The two major antiviral effector mechanisms of CD8(+) T cells are thought to be perforin (Prf)-mediated cell lysis and gamma interferon (IFN-γ)-mediated induction of an antiviral state. By affecting the expression of proteins involved in antigen presentation, IFN-γ is also thought to shape the magnitude and specificity of the CD8(+) T cell response. Here we studied the roles of Prf and IFN-γ in shaping the effector and memory CD8(+) T cell responses to vaccinia virus (VACV). IFN-γ deficiency resulted in increased numbers of anti-VACV effector and memory CD8(+) T cells, which were partly dependent on increased virus loads. On the other hand, Prf-deficient mice showed an increase in the number of VACV-specific CD8(+) T cells only in the memory phase. Treatment of the mice with the antiviral drug cidofovir reduced the numbers of effector and memory cells closer to wild-type levels in IFN-γ-deficient mice and reduced the numbers of memory CD8(+) T cells to wild-type levels in Prf-deficient mice. These data suggest that virus loads are the main reason for the increased strength of the CD8 response in IFN-γ- and Prf-deficient mice. Neither Prf deficiency nor IFN-γ deficiency had an effect on the immunodominance hierarchy of five K(b)-restricted CD8(+) T cell determinants either during acute infection or after recovery. Thus, our work shows that CD8(+) T cell immunodominance during VACV infection is not affected by the effects of IFN-γ on the antigen presentation machinery.
Collapse
|
16
|
Kroon EG, Mota BEF, Abrahão JS, da Fonseca FG, de Souza Trindade G. Zoonotic Brazilian Vaccinia virus: from field to therapy. Antiviral Res 2011; 92:150-63. [PMID: 21896287 DOI: 10.1016/j.antiviral.2011.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/27/2022]
Abstract
Vaccinia virus (VACV), the prototype species of the Orthopoxvirus (OPV) genus, causes an occupational zoonotic disease in Brazil that is primarily associated with the handling of infected dairy cattle. Cattle and human outbreaks have been described in southeastern Brazil since 1999 and have now occurred in almost half of the territory. Phylogenetic studies have shown high levels of polymorphisms among isolated VACVs, which indicate the existence of at least two genetically divergent clades; this has also been proven in virulence assays in a mouse model system. In humans, VACV infection is characterized by skin lesions, primarily on the hands, accompanied by systemic symptoms such as fever, myalgia, headache and lymphadenopathy. In this review, we will discuss the virological, epidemiological, ecological and clinical aspects of VACV infection, its diagnosis and compounds that potentially could be used for the treatment of severe cases.
Collapse
Affiliation(s)
- Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | | | |
Collapse
|