1
|
Ding S, Feng S, Zhou S, Zhao Z, Liang X, Wang J, Fu R, Deng R, Zhang T, Shao S, Yu J, Foyer CH, Shi K. A novel LRR receptor-like kinase BRAK reciprocally phosphorylates PSKR1 to enhance growth and defense in tomato. EMBO J 2024; 43:6104-6123. [PMID: 39448885 PMCID: PMC11612273 DOI: 10.1038/s44318-024-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Plants face constant threats from pathogens, leading to growth retardation and crop failure. Cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) are crucial for plant growth and defense, but their specific functions, especially to necrotrophic fungal pathogens, are largely unknown. Here, we identified an LRR-RLK (Solyc06g069650) in tomato (Solanum lycopersicum) induced by the economically important necrotrophic pathogen Botrytis cinerea. Knocking out this LRR-RLK reduced plant growth and increased sensitivity to B. cinerea, while its overexpression led to enhanced growth, yield, and resistance. We named this LRR-RLK as BRAK (B. cinerea resistance-associated kinase). Yeast two-hybrid screen revealed BRAK interacted with phytosulfokine (PSK) receptor PSKR1. PSK-induced growth and defense responses were impaired in pskr1, brak single and double mutants, as well as in PSKR1-overexpressing plants with silenced BRAK. Moreover, BRAK and PSKR1 phosphorylated each other, promoting their interaction as detected by microscale thermophoresis. This reciprocal phosphorylation was crucial for growth and resistance. In summary, we identified BRAK as a novel regulator of seedling growth, fruit yield and defense, offering new possibilities for developing fungal disease-tolerant plants without compromising yield.
Collapse
Affiliation(s)
- Shuting Ding
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Shibo Zhou
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Zhengran Zhao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Ruishuang Fu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Rui Deng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Zhang Y, Yin Z, Pi L, Wang N, Wang J, Peng H, Dou D. A Nicotiana benthamiana receptor-like kinase regulates Phytophthora resistance by coupling with BAK1 to enhance elicitin-triggered immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36661038 DOI: 10.1111/jipb.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Cell-surface-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) are crucial for plant immunity. Most LRR-RLKs that act as receptors directly recognize ligands via a large extracellular domain (ECD), whereas LRR-RLK that serve as regulators are relatively small and contain fewer LRRs. Here, we identified LRR-RLK regulators using high-throughput tobacco rattle virus (TRV)-based gene silencing in the model plant Nicotiana benthamiana. We used the cell-death phenotype caused by INF1, an oomycete elicitin that induces pattern-triggered immunity, as an indicator. By screening 33 small LRR-RLKs (≤6 LRRs) of unknown function, we identified ELICITIN INSENSITIVE RLK 1 (NbEIR1) as a positive regulator of INF1-induced immunity and oomycete resistance. Nicotiana benthamiana mutants of eir1 generated by CRISPR/Cas9-editing showed significantly compromised immune responses to INF1 and were more vulnerable to the oomycete pathogen Phytophthora capsici. NbEIR1 associates with BRI1-ASSOCIATED RECEPTOR KINASE 1 (NbBAK1) and a downstream component, BRASSINOSTEROID-SIGNALING KINASE 1 (NbBSK1). NbBSK1 also contributes to INF1-induced defense and P. capsici resistance. Upon INF1 treatment, NbEIR1 was released from NbBAK1 and NbBSK1 in vivo. Moreover, the silencing of NbBSK1 compromised the association of NbEIR1 with NbBAK1. We also showed that NbEIR1 regulates flg22-induced immunity and associates with its receptor, FLAGELLIN SENSING 2 (NbFLS2). Collectively, our results suggest that NbEIR1 is a novel regulatory element for BAK1-dependent immunity. NbBSK1-NbEIR1 association is required for maintaining the NbEIR1/NbBAK1 complex in the resting state.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
4
|
Guan D, Yang F, Xia X, Shi Y, Yang S, Cheng W, He S. CaHSL1 Acts as a Positive Regulator of Pepper Thermotolerance Under High Humidity and Is Transcriptionally Modulated by CaWRKY40. FRONTIERS IN PLANT SCIENCE 2018; 9:1802. [PMID: 30581449 PMCID: PMC6292930 DOI: 10.3389/fpls.2018.01802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
Pepper (Capsicum annuum) is an economically important vegetable and heat stress can severely impair pepper growth, development, and productivity. The molecular mechanisms underlying pepper thermotolerance are therefore important to understand but remain elusive. In the present study, we characterized the function of CaHSL1, encoding a HAESA-LIKE (HSL) receptor-like protein kinase (RLK), during the response of pepper to high temperature and high humidity (HTHH). CaHSL1 exhibits the typical structural features of an arginine-aspartate RLK. Transient overexpression of CaHSL1 in the mesophyll cells of Nicotiana benthamiana showed that CaHSL1 localizes throughout the cell, including the plasma membrane, cytoplasm, and the nucleus. CaHSL1 was significantly upregulated by HTHH or the exogenous application of abscisic acid but not by R. solanacearum inoculation. However, CaHSL1 was downregulated by exogenously applied salicylic acid, methyl jasmonate, or ethephon. Silencing of CaHSL1 by virus-induced gene silencing significantly was reduced tolerance to HTHH and downregulated transcript levels of an associated gene CaHSP24. In contrast, transient overexpression of CaHSL1 enhanced the transcript abundance of CaHSP24 and increased tolerance to HTHH, as manifested by enhanced optimal/maximal photochemical efficiency of photosystem II in the dark (Fv/Fm) and actual photochemical efficiency of photosystem II in the light. In addition, CaWRKY40 targeted the promoter of CaHSL1 and induced transcription during HTHH but not in response to R. solanacearum. All of these results suggest that CaHSL1 is directly modulated at the transcriptional level by CaWRKY40 and functions as a positive regulator in the response of pepper to HTHH.
Collapse
Affiliation(s)
- Deyi Guan
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Cheng
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Germain H, Gray-Mitsumune M, Houde J, Benhamman R, Sawasaki T, Endo Y, Matton DP. The Solanum chacoense ovary receptor kinase 11 (ScORK11) undergoes tissue-dependent transcriptional, translational and post-translational regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:261-268. [PMID: 23800661 DOI: 10.1016/j.plaphy.2013.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Using a subtraction screen to isolate weakly expressed transcripts from ovule and ovary libraries, we uncovered 30 receptor-like kinases that were predominantly expressed in ovary and fruit tissues following fertilization [1]. Here we describe the analysis of Solanum chacoense ovule receptor kinase 11 (ScORK11), a member of the large LRR III receptor kinase subfamily that localizes to the plasma membrane. In situ analyses demonstrated that ScORK11 gene expression was mainly restricted to the ovule integument, the embryo sac and the pericarp of the fruit. Tight regulation of ScORK11 expression at the mRNA level was also accompanied by both translational and post-translational regulation of protein levels.
Collapse
Affiliation(s)
- Hugo Germain
- Département de chimie et physique, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. PLANT PHYSIOLOGY 2013; 161:1806-19. [PMID: 23426195 PMCID: PMC3613457 DOI: 10.1104/pp.113.214262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/16/2013] [Indexed: 05/04/2023]
Abstract
Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.
Collapse
Affiliation(s)
- Dante F. Placido
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Malachy T. Campbell
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Jing J. Folsom
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Xinping Cui
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Greg R. Kruger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | | |
Collapse
|