1
|
Patel AK, Trageser K, Kim H, Lim W, Adler C, Porter B, Ni M, Wei Y, Atwal GS, Bigdelou P, Kulshreshtha V, Ajithdoss D, Zhong J, Tu N, Macdonald L, Murphy A, Frleta D. Peripheral human red blood cell development in human immune system mouse model with heme oxygenase-1 deficiency. Blood Adv 2024; 8:5975-5987. [PMID: 39348688 PMCID: PMC11629214 DOI: 10.1182/bloodadvances.2023011754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
ABSTRACT A challenge for human immune system (HIS) mouse models has been the lack of human red blood cell (hRBC) survival after engraftment of these immune-deficient mice with human CD34+ hematopoietic stem cells (HSCs). This limits the use of HIS models for preclinical testing of targets directed at hRBC-related diseases. Although human white blood cells can develop in the peripheral blood of mice engrafted with human HSCs, peripheral hRBCs are quickly phagocytosed by murine macrophages upon egress from the bone marrow. Genetic ablation of murine myeloid cells results in severe pathology in resulting mice, rendering such an approach to increase hRBC survival in HIS mice impractical. Heme oxygenase-1 (HMOX-1)-deficient mice have reduced macrophages due to toxic buildup of intracellular heme upon engulfment of RBCs, but do not have an overall loss of myeloid cells. We took advantage of this observation and generated HMOX-1-/- mice on a humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- background. These mice have reduced murine macrophages but comparable levels of murine myeloid cells to HMOX-1+/+ control mice in the same background. Injected hRBCs survive longer in HMOX-1-/- mice than in HMOX-1+/+ controls. Additionally, upon human HSC engraftment, hRBCs can be observed in the peripheral blood of HMOX-1-/- humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- mice, and hRBC levels can be increased by treatment with human erythropoietin. Given that hRBC are present in the peripheral blood of engrafted HMOX-1-/- mice, these mice have the potential to be used for hematologic disease modeling, and for testing therapeutic treatments for hRBC diseases in vivo.
Collapse
Affiliation(s)
| | | | - Hyunjin Kim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Weikeat Lim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | - Jun Zhong
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Naxin Tu
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | |
Collapse
|
2
|
Pandey H, Singh K, Ranjan R, Dass J, Tyagi S, Seth T, Saxena R, Mahapatra M. Prevalence and Impact of HMOX1 Polymorphism (rs2071746: A > T) in Indian Sickle Cell Disease Patients. J Lab Physicians 2023; 15:583-589. [PMID: 37780888 PMCID: PMC10539052 DOI: 10.1055/s-0043-1770068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Fetal hemoglobin (HbF) levels play significant role in lowering down the morbidity and mortality in sickle cell disease (SCD) patients. Coinheritance of heme oxygenase-1 (HMOX1) rs2071746:A > T polymorphism may contribute to variable HbF levels in Indian SCD patients. Objective This study was aimed to evaluate the role of HMOX1 polymorphism and its impact on HbF level in Indian SCD patients. Materials and Methods One-hundred twenty confirmed cases of SCD and 50 healthy controls were recruited. Their mean age was 11.5 ± 8.6 years (range: 3-23 years). Quantification of Hb, HbA2, HbF, and HbS was done by capillary zone electrophoresis. Allele-specific polymerase chain reaction was used to genotype HMOX1 (rs2071746:A > T) gene polymorphism. Results Out of the 120 cases of SCD, 65 were hemoglobin sickle-shaped (HbSS) and 55 were sickle-beta thalassemia (Sβ). Out of 65 HbSS patients, 29 (44.6%) were heterozygous (AT), 20 (30.76%) were homozygous (TT), and 16 (24.61%) were found wild-type (AA) genotype. Out of 55 Sβ, 22 (40%) were heterozygous, 18 (32%) were homozygous and 15 (28%) were wild-type. Patients carrying HMOX1 (rs2071746:A > T), AT, and TT genotypes had less anemia, painful crisis, splenomegaly, hepatomegaly, jaundice, and blood transfusion. HbF level was found higher in TT genotype (in HbSS the HbF levels was 25.1 ± 4.4; in sickle-beta thalassemia the HbF levels was 36.1 ± 4.7) than wild-type(AA) and was statistically significant ( p -value <0.001). Conclusion The TT genotype of the rs2071746:A > T polymorphism was associated with increased levels of Hb F ( p < 0.001). It can serve as a HbF modifier in Indian sickle cell diseases patients.
Collapse
Affiliation(s)
- Hareram Pandey
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kanwaljeet Singh
- Lab Sciences & Molecular Medicine, Army Hospital Research and Referral, Delhi Cantt, Delhi, India
| | - Ravi Ranjan
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jasmita Dass
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Seema Tyagi
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Renu Saxena
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Bahou WF, Marchenko N, Nesbitt NM. Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate. Antioxidants (Basel) 2023; 12:antiox12051058. [PMID: 37237924 DOI: 10.3390/antiox12051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natasha M Nesbitt
- Blood Cell Technologies, 25 Health Sciences Drive, Stony Brook, NY 11790, USA
| |
Collapse
|
4
|
Liu R, Zhang X, Nie L, Sun S, Liu J, Chen H. Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism. Ann Hematol 2023; 102:1323-1332. [PMID: 37046065 DOI: 10.1007/s00277-023-05193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Heme oxygenase 1 (HO-1), encoded by the HMOX-1 gene, is the main heme oxygenase that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. HMOX-1 gene expression is stimulated by oxidative stress and regulated at transcriptional and post-transcriptional levels. After translation, subcellular location and protein stability of HO-1 are also altered by different extracellular and intracellular stimuli. HO-1 plays a key role in regulating iron homeostasis and cell protection and has become a new target for disease treatment. Erythropoiesis is a tightly controlled, iron-dependent process that begins with hematopoietic stem cells and maturates to red blood cells. HO-1 is expressed in hematopoietic stem/progenitor cells, hematopoietic niche cells, erythroblasts, and especially erythroblastic island and phagocytic macrophages. HO-1 functions importantly in the entire erythroid development process by influencing hematopoietic stem cell proliferation, erythroid lineage engagement, terminal erythroid differentiation, and even senescent RBC erythrophagocytosis. HO-1 is also related to stress erythropoiesis and certain red blood cell diseases. Elucidation of HO-1 regulation and function in erythropoiesis will be of great significance for the treatment of related diseases.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Xuzhi Zhang
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, People's Republic of China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Huiyong Chen
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China.
| |
Collapse
|
5
|
Sesti-Costa R, Costa FF, Conran N. Role of Macrophages in Sickle Cell Disease Erythrophagocytosis and Erythropoiesis. Int J Mol Sci 2023; 24:ijms24076333. [PMID: 37047304 PMCID: PMC10094208 DOI: 10.3390/ijms24076333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a β-globin gene point mutation that results in the production of sickle hemoglobin that polymerizes upon deoxygenation, causing the sickling of red blood cells (RBCs). RBC deformation initiates a sequence of events leading to multiple complications, such as hemolytic anemia, vaso-occlusion, chronic inflammation, and tissue damage. Macrophages participate in extravascular hemolysis by removing damaged RBCs, hence preventing the release of free hemoglobin and heme, and triggering inflammation. Upon erythrophagocytosis, macrophages metabolize RBC-derived hemoglobin, activating mechanisms responsible for recycling iron, which is then used for the generation of new RBCs to try to compensate for anemia. In the bone marrow, macrophages can create specialized niches, known as erythroblastic islands (EBIs), which regulate erythropoiesis. Anemia and inflammation present in SCD may trigger mechanisms of stress erythropoiesis, intensifying RBC generation by expanding the number of EBIs in the bone marrow and creating new ones in extramedullary sites. In the current review, we discuss the distinct mechanisms that could induce stress erythropoiesis in SCD, potentially shifting the macrophage phenotype to an inflammatory profile, and changing their supporting role necessary for the proliferation and differentiation of erythroid cells in the disease. The knowledge of the soluble factors, cell surface and intracellular molecules expressed by EBI macrophages that contribute to begin and end the RBC’s lifespan, as well as the understanding of their signaling pathways in SCD, may reveal potential targets to control the pathophysiology of the disease.
Collapse
|
6
|
Toboz P, Amiri M, Tabatabaei N, Dufour CR, Kim SH, Fillebeen C, Ayemoba CE, Khoutorsky A, Nairz M, Shao L, Pajcini KV, Kim KW, Giguère V, Oliveira RL, Constante M, Santos MM, Morales CR, Pantopoulos K, Sonenberg N, Pinho S, Tahmasebi S. The amino acid sensor GCN2 controls red blood cell clearance and iron metabolism through regulation of liver macrophages. Proc Natl Acad Sci U S A 2022; 119:e2121251119. [PMID: 35994670 PMCID: PMC9436309 DOI: 10.1073/pnas.2121251119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.
Collapse
Affiliation(s)
- Phoenix Toboz
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Catherine R. Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Charles E. Ayemoba
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Kostandin V. Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Regiana L. Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marco Constante
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sandra Pinho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| |
Collapse
|
7
|
Macrophages: key players in erythrocyte turnover. Hematol Transfus Cell Ther 2022; 44:574-581. [PMID: 36117137 PMCID: PMC9605915 DOI: 10.1016/j.htct.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The development of red blood cells (RBCs), or erythropoiesis, occurs in specialized niches in the bone marrow, called erythroblastic islands, composed of a central macrophage surrounded by erythroblasts at different stages of differentiation. Upon anemia or hypoxemia, erythropoiesis extends to extramedullary sites, mainly spleen and liver, a process known as stress erythropoiesis, leading to the expansion of erythroid progenitors, iron recruitment and increased production of reticulocytes and mature RBCs. Macrophages are key cells in both homeostatic and stress erythropoiesis, providing conditions for erythroid cells to survive, proliferate and differentiate. During RBCs aging and injury, macrophages play a fundamental role again, performing the clearance of these cells and recycling iron for new erythroblasts in development. Thus, macrophages are crucial components of the RBCs turnover and in this review, we aimed to cover the main known mechanisms involved in the process of birth and death of RBCs, highlighting the importance of macrophage functions in the whole RBC lifecycle.
Collapse
|
8
|
Szade A, Szade K, Mahdi M, Józkowicz A. The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cell Mol Life Sci 2021; 78:4639-4651. [PMID: 33787980 PMCID: PMC8195762 DOI: 10.1007/s00018-021-03803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Mahdi Mahdi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
9
|
Nesbitt NM, Malone LE, Liu Z, Jares A, Gnatenko DV, Ma Y, Zhu W, Bahou WF. Divergent erythroid megakaryocyte fates in Blvrb-deficient mice establish non-overlapping cytoprotective functions during stress hematopoiesis. Free Radic Biol Med 2021; 164:164-174. [PMID: 33359909 PMCID: PMC8311568 DOI: 10.1016/j.freeradbiomed.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
Cytoprotective mechanisms of heme oxygenases function by derivatizing heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin using two non-overlapping biliverdin reductases that display biliverdin isomer-restricted redox activity. Although cytoprotective functions of heme oxygenases are widely recognized, concomitant effects of downstream biliverdin reductases remain incomplete. A computational model predicated on murine hematopoietic single-cell transcriptomic data identified Blvrb as a biological driver linked to the tumor necrosis factor stress pathway as a predominant source of variation defining hematopoietic cell heterogeneity. In vivo studies using Blvrb-deficient mice established the dispensable role of Blvrb in steady-state hematopoiesis, although model validation using aged Blvrb-deficient mice established an important cytoprotective function in stress hematopoiesis with dichotomous megakaryocyte-biased hematopoietic recovery. Defective stress erythropoiesis was evident in Blvrb-/- spleens and in bone marrow erythroid development, occurring in conjunction with defective lipid peroxidation as a marker of oxidant mishandling. Cell autonomous effects on megakaryocyte lineage bias were documented using multipotential progenitor assays. These data provide the first physiological function of murine Blvrb in a non-redundant pathway of stress cytoprotection. Divergent effects on erythroid/megakaryocyte lineage speciation impute a novel redox-regulated mechanism for lineage partitioning.
Collapse
Affiliation(s)
- Natasha M Nesbitt
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lisa E Malone
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Alexander Jares
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dmitri V Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yupo Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Wadie F Bahou
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
10
|
Gbotosho OT, Kapetanaki MG, Ross M, Ghosh S, Weidert F, Bullock GC, Watkins S, Ofori-Acquah SF, Kato GJ. Nrf2 deficiency in mice attenuates erythropoietic stress-related macrophage hypercellularity. Exp Hematol 2020; 84:19-28.e4. [PMID: 32151553 PMCID: PMC7237317 DOI: 10.1016/j.exphem.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
Abstract
Erythropoiesis in the bone marrow and spleen depends on intricate interactions between the resident macrophages and erythroblasts. Our study focuses on identifying the role of nuclear factor erythroid 2-related factor 2 (Nrf2) during recovery from stress erythropoiesis. To that end, we induced stress erythropoiesis in Nrf2+/+ and Nrf2-null mice and evaluated macrophage subsets known to support erythropoiesis and erythroid cell populations. Our results confirm macrophage and erythroid hypercellularity after acute blood loss. Importantly, Nrf2 depletion results in a marked numerical reduction of F4/80+/CD169+/CD11b+ macrophages, which is more prominent under the induction of stress erythropoiesis. The observed macrophage deficiency is concomitant to a significantly impaired erythroid response to acute stress erythropoiesis in both murine bone marrow and murine spleen. Additionally, peripheral blood reticulocyte count as a response to acute blood loss is delayed in Nrf2-deficient mice compared with age-matched controls (11.0 ± 0.6% vs. 14.8 ± 0.6%, p ≤ 0.001). Interestingly, we observe macrophage hypercellularity in conjunction with erythroid hyperplasia in the bone marrow during stress erythropoiesis in Nrf2+/+ controls, with both impaired in Nrf2-/- mice. We further confirm the finding of macrophage hypercellularity in another model of erythroid hyperplasia, the transgenic sickle cell mouse, characterized by hemolytic anemia and chronic stress erythropoiesis. Our results revealed the role of Nrf2 in stress erythropoiesis in the bone marrow and that macrophage hypercellularity occurs concurrently with erythroid expansion during stress erythropoiesis. Macrophage hypercellularity is a previously underappreciated feature of stress erythropoiesis in sickle cell disease and recovery from blood loss.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Maria G Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mark Ross
- Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA
| | - Samit Ghosh
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Center for Translational and International Hematology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Frances Weidert
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Grant C Bullock
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Simon Watkins
- Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA
| | - Solomon F Ofori-Acquah
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Center for Translational and International Hematology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA; School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| |
Collapse
|
11
|
Oliveira M, Laranjeira P, Fortuna M, Bártolo R, Ribeiro A, Santos M, Cortesão E, Marques G, Sarmento‐Ribeiro AB, Vitória H, Ribeiro L, Paiva A. CD43 and CD49d from the B‐Cell Chronic Lymphoproliferative Disorders Diagnostic Panel Are Useful to Detect Erythroid Dysplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:417-425. [DOI: 10.1002/cyto.b.21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/23/2019] [Accepted: 05/18/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Melissa Oliveira
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Paula Laranjeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
| | - Manuela Fortuna
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Rui Bártolo
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - André Ribeiro
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Mónica Santos
- Serviço de HematologiaCentro Hospitalar Viseu‐Tondela Portugal
| | - Emília Cortesão
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Gilberto Marques
- Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Ana Bela Sarmento‐Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Helena Vitória
- Serviço de HematologiaCentro Hospitalar Viseu‐Tondela Portugal
| | - Letícia Ribeiro
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
- Instituto Politécnico de Coimbra, ESTESC‐Coimbra Health SchoolCiências Biomédicas Laboratoriais Portugal
| |
Collapse
|
12
|
Du Y, Liu XH, Zhu HC, Wang L, Wang ZS, Ning JZ, Xiao CC. Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:99-105. [PMID: 30944715 PMCID: PMC6437467 DOI: 10.22038/ijbms.2018.29706.7170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs). MATERIALS AND METHODS Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by reperfusion for 6 hr. One group of rats underwent I/R without treatment, one group was administered 150 μmol/l sodium hydrosulfide (NaHS) prior to I/R, one group was injected with 100 mg/kg quercetin (an HSP inhibitor) intraperitoneally prior to I/R, and another group received quercetin prior to I/R and treatment with NaHS following I/R. Two other groups underwent a sham operation and one of them received 150 μmol/l NaHS following the sham operation whereas the other received no treatment. Renal function and histological changes were compared and relevant indices of oxidative stress, apoptosis, and inflammation were examined. RESULTS IRI increased serum creatinine and blood urea nitrogen concentrations, promoted lipid peroxidation by elevating malondialdehyde levels, suppressed superoxide dismutase activity, stimulated inflammation by inducing NF-kB, IL-2, and TLR-4 expression, and increased renal apoptosis. Levels of HSP 70, heme-oxygenase-1 (HO-1) and HSP 27 were increased following IRI and reversed following H2S treatment. H2S attenuated changes observed in pathology, lipid peroxidation, inflammation, and apoptosis following IRI. The administration of quercetin reversed all protective effects of H2S. CONCLUSION The present study indicated that H2S protected renal tissue against IRI induced lipid peroxidation, inflammation, and apoptosis, which may be attributed to the upregulation of HSP 70, HO-1, and HSP 27.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Xiu-heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Heng-cheng Zhu
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Lei Wang
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Zhi-shun Wang
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Jin-zhuo Ning
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Cheng-cheng Xiao
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| |
Collapse
|
13
|
Deregulated iron metabolism in bone marrow from adenine-induced mouse model of chronic kidney disease. Int J Hematol 2018; 109:59-69. [DOI: 10.1007/s12185-018-2531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
|
14
|
Jiang L, Wang X, Wang Y, Chen X. Quantitative proteomics reveals that miR-222 inhibits erythroid differentiation by targeting BLVRA and CRKL. Cell Biochem Funct 2018; 36:95-105. [PMID: 29368338 DOI: 10.1002/cbf.3321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 01/27/2023]
Abstract
miR-222 plays an important role in erythroid differentiation, but the potential targets of miR-222 in the regulation of erythroid differentiation remain to be determined. The target genes of miR-222 were identified by proteomics combined with bioinformatics analysis in this study. Thirteen proteins were upregulated, and 13 were downregulated in K562 cells following transfection with miR-222 inhibitor for 24 and 48 hours. Among these proteins, BLVRA and CRKL were upregulated after transfection of miR-222 inhibitor in K562 cells and human CD34+ HPCs. Moreover, miR-222 mimics reduced and miR-222 inhibitor enhanced the mRNA and protein levels of both BLVRA and CRKL. Luciferase assay showed that miR-222 directly targeted 3'-UTR of BLVRA and CRKL. In addition, overexpression of either BLVRA or CRKL or both increased the erythroid differentiation of K562 cells, while silencing of either BLVRA or CRKL or both by siRNA significantly attenuated hemin-induced erythroid differentiation of K562 cells. Our results indicated that BLVRA and CRKL are targets of miR-222.
Collapse
Affiliation(s)
- Li Jiang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing Wang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wang
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyan Chen
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
15
|
Association between beta globin haplotypes, HBBP1 and HMOX1 polymorphisms in relation to HbF among sickle cell anemia patients: a study in Southwest Iran. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2500-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
17
|
The macrophage contribution to stress erythropoiesis: when less is enough. Blood 2016; 128:1756-65. [PMID: 27543439 DOI: 10.1182/blood-2016-05-714527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/12/2016] [Indexed: 12/15/2022] Open
Abstract
Although the importance of native bone marrow and spleen macrophages in enhancing baseline and stress erythropoiesis has been emphasized over several decades, their kinetic and phenotypic changes during a variety of stress responses have been unclear. Furthermore, whether monocyte-derived recruited macrophages can functionally substitute for inadequate or functionally impaired native macrophages has been controversial and seem to be not only tissue- but also stress-type dependent. To provide further insight into these issues, we made detailed observations at baseline and post-erythroid stress (E-stress) in 2 mouse models with genetically depressed macrophage numbers and compared them to their controls. We documented that, irrespective of the stress-induced (hemolytic or post-erythropoietin [Epo]) treatment, only native CD11b(lo) splenic macrophages expand dramatically post-stress in normal mice without significant changes in the monocyte-derived CD11b(hi) subset. The latter remained a minority and did not change post-stress in 2 genetic models lacking either Spi-C or VCAM-1 with impaired native macrophage proliferative expansion. Although CD11b(lo) macrophages in these mice were one-fifth of normal at their peak response, surprisingly, their erythroid response was not compromised and was similar to controls. Thus, despite the prior emphasis on numerical macrophage reliance to provide functional rescue from E-stress, our data highlight the importance of previously described non-macrophage-dependent pathways activated under certain stress conditions to compensate for low macrophage numbers.
Collapse
|
18
|
Mu A, Li M, Tanaka M, Adachi Y, Tai TT, Liem PH, Izawa S, Furuyama K, Taketani S. Enhancements of the production of bilirubin and the expression of β-globin by carbon monoxide during erythroid differentiation. FEBS Lett 2016; 590:1447-1454. [PMID: 27087140 DOI: 10.1002/1873-3468.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/27/2023]
Abstract
Heme is degraded by heme oxygenase to form iron, carbon monoxide (CO), and biliverdin. However, information about the catabolism of heme in erythroid cells is limited. In this study, we showed the production and export of bilirubin in murine erythroleukemia (MEL) cells. The production of bilirubin by MEL cells was enhanced when heme synthesis was induced. When mouse bone marrow cells were induced with erythropoietin to differentiate into erythroid cells, the synthesis of bilirubin increased. The expression of β-globin was enhanced by CO at the transcriptional level. These results indicate that constant production of CO from heme regulates erythropoiesis.
Collapse
Affiliation(s)
- Anfeng Mu
- Department of Biotechnology, Kyoto Institute of Technology, Japan
| | - Ming Li
- Unit of Research Complex, Kansai Medical University, Hirakara, Osaka, Japan
| | - Masakazu Tanaka
- Unit of Research Complex, Kansai Medical University, Hirakara, Osaka, Japan
| | | | - Tran Tien Tai
- Department of Biotechnology, Kyoto Institute of Technology, Japan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Pham Hieu Liem
- Department of Biotechnology, Kyoto Institute of Technology, Japan
- Department of Plastic and Aesthetic Surgery, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Shingo Izawa
- Department of Biotechnology, Kyoto Institute of Technology, Japan
| | - Kazumichi Furuyama
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Japan
- Unit of Research Complex, Kansai Medical University, Hirakara, Osaka, Japan
| |
Collapse
|
19
|
Noguchi-Sasaki M, Sasaki Y, Matsuo-Tezuka Y, Yasuno H, Kurasawa M, Yorozu K, Shimonaka Y. Reduction of a marker of oxidative stress with enhancement of iron utilization by erythropoiesis activation following epoetin beta pegol administration in iron-loaded db/db mice. Int J Hematol 2016; 103:262-73. [PMID: 26739261 DOI: 10.1007/s12185-015-1929-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Iron, an essential element for various biological processes, can induce oxidative stress. We hypothesized that iron utilization for erythropoiesis, stimulated by epoetin beta pegol (C.E.R.A.), a long-acting erythropoiesis-stimulating agent, contributes to the reduction of iron-induced oxidative stress. We first investigated the sensitivity of several biomarkers to detect oxidative stress in mice by altering the amount of total body iron; we then investigated whether C.E.R.A. ameliorated oxidative stress through enhanced iron utilization. We treated db/db mice with intravenous iron-dextran and evaluated several biomarkers of iron-induced oxidative stress. In mice loaded with 5 mg/head iron, hepatic iron content was elevated and the oxidative stress marker d-ROMs (serum derivatives of reactive oxygen metabolites) was increased, whereas urinary 8-hydroxy-2'-deoxyguanosine and serum malondialdehyde were not, indicating that d-ROMs is a sensitive marker of iron-induced oxidative stress. To investigate whether C.E.R.A. ameliorated oxidative stress, db/db mice were intravenously administered iron-dextran or dextran only, followed by C.E.R.A. Hemoglobin level increased, while hepatic iron content decreased after C.E.R.A. TREATMENT Serum d-ROMs decreased after C.E.R.A. treatment in the iron-dextran-treated group. Our results suggest that C.E.R.A. promotes iron utilization for erythropoiesis through mobilization of hepatic iron storage, leading to a decrease in serum oxidative stress markers in iron-loaded db/db mice.
Collapse
Affiliation(s)
- Mariko Noguchi-Sasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Yusuke Sasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yukari Matsuo-Tezuka
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Hideyuki Yasuno
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Mitsue Kurasawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Keigo Yorozu
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yasushi Shimonaka
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
20
|
Fraser ST, Midwinter RG, Coupland LA, Kong S, Berger BS, Yeo JH, Andrade OC, Cromer D, Suarna C, Lam M, Maghzal GJ, Chong BH, Parish CR, Stocker R. Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 2015; 100:601-10. [PMID: 25682599 DOI: 10.3324/haematol.2014.116368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022] Open
Abstract
Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase-1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119(+)-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119(+)-erythroid cells in the spleen, although α4β1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase-1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes.
Collapse
Affiliation(s)
- Stuart T Fraser
- Laboratory for Blood Cell Development, School of Medical Sciences (Physiology, Anatomy & Histology), Sydney Medical School, The University of Sydney, Australia
| | - Robyn G Midwinter
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia
| | - Lucy A Coupland
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Stephanie Kong
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Birgit S Berger
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia
| | - Jia Hao Yeo
- Laboratory for Blood Cell Development, School of Medical Sciences (Physiology, Anatomy & Histology), Sydney Medical School, The University of Sydney, Australia
| | - Osvaldo Cooley Andrade
- Laboratory for Blood Cell Development, School of Medical Sciences (Physiology, Anatomy & Histology), Sydney Medical School, The University of Sydney, Australia
| | - Deborah Cromer
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, Australia
| | - Cacang Suarna
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Magda Lam
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Ghassan J Maghzal
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington
| | - Beng H Chong
- Department of Medicine, St George Clinical School, University of New South Wales, Kogarah, Australia
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Roland Stocker
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Australia Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington
| |
Collapse
|
21
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
22
|
Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood 2014; 123:2269-77. [PMID: 24511086 DOI: 10.1182/blood-2013-04-496760] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heme is essential for the function of all aerobic cells. However, it can be toxic when it occurs in a non-protein-bound form; cells maintain a fine balance between heme synthesis and catabolism. The only physiological mechanism of heme degradation is by heme oxygenases (HOs). The heme-inducible isoform, HO-1, has been extensively studied in numerous nonerythroid cells, but virtually nothing is known about the expression and potential significance of HO-1 in developing red blood cells. We have demonstrated that HO-1 is present in erythroid cells and that its expression is upregulated during erythroid differentiation. Overexpression of HO-1 in erythroid cells impairs hemoglobin synthesis, whereas HO-1 absence enhances hemoglobinization in cultured erythroid cells. Based on these results, we conclude that HO-1 controls the regulatory heme pool at appropriate levels for any given stage of erythroid differentiation. In summary, our study brings to light the importance of HO-1 expression for erythroid development and expands our knowledge about the fine regulation of hemoglobin synthesis in erythroid cells. Our results indicate that HO-1 plays an important role as a coregulator of the erythroid differentiation process. Moreover, HO-1 expression must be tightly regulated during red blood cell development.
Collapse
|
23
|
Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis. Exp Hematol 2014; 42:404-409.e4. [PMID: 24463276 DOI: 10.1016/j.exphem.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
When the erythroid integrins α5β1 and α4β1 were each deleted previously at the stem cell level, they yielded distinct physiologic responses to stress by affecting erythoid expansion and terminal differentiation or only the latter, respectively. To test at what stage of differentiation the integrin effects were exerted, we created mice with α4- or α5-integrin deletions only in erythroid cells and characterized them at homeostasis and after phenylhydrazine-induced hemolytic stress. Unlike our prior data, the phenotype of mice with α5-erythroid deletions was similar to controls, especially after stress. These outcomes seem to reconcile divergent prior views on the role of α5-integrin in erythropoiesis. By contrast, α4 integrins whether deleted early or late have a dominant effect on bone marrow retention of erythroblasts and on terminal erythroid maturation at homeostasis and after stress.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven M Padilla
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
|
25
|
Voorhees JL, Powell ND, Moldovan L, Mo X, Eubank TD, Marsh CB. Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS One 2013; 8:e77935. [PMID: 24205034 PMCID: PMC3799740 DOI: 10.1371/journal.pone.0077935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022] Open
Abstract
In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation.
Collapse
Affiliation(s)
- Jeffrey L. Voorhees
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Nicole D. Powell
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Leni Moldovan
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy D. Eubank
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| | - Clay B. Marsh
- The Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDE); (CBM)
| |
Collapse
|
26
|
Ulyanova T, Jiang Y, Padilla SM, Papayannopoulou T. Erythroid cells generated in the absence of specific β1-integrin heterodimers accumulate reactive oxygen species at homeostasis and are unable to mount effective antioxidant defenses. Haematologica 2013; 98:1769-77. [PMID: 23812936 DOI: 10.3324/haematol.2013.087577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have previously reported that β1(Δ/Δ) mice have a markedly impaired response to hemolytic stress, but the mechanisms of this were unclear. In the present study we explored in detail quantitative, phenotypic and functional aspects of erythropoiesis at homeostasis in a large number of animals for each of 3 murine models with specific β1 heterodimer integrin deficiencies. We found that, at homeostasis, β1-deficient mice have a modest uncompensated anemia with ineffective erythropoiesis and decreased red blood cell survival. Mice lacking only α4 integrins (α4β1/α4β7) do not share this phenotype. There is an increased tendency for reactive oxygen species accumulation in β1(Δ/Δ) erythroid cells with decreased anti-oxidant defenses at homeostasis which are exaggerated after stress. Furthermore, expansion of erythroid cells in spleen post-stress is dependent on α5β1, likely through mechanisms activating focal adhesion kinase complexes that are distinct from α4β1-mediated responses. In vivo inhibition of focal adhesion kinase activation partially recapitulates the β1(Δ/Δ) stress response. Mice lacking all α4 and β1 integrins (double knockouts) had, at homeostasis, the most severe phenotype with selective impairment of erythroid responses. The fact that integrins participate in mitigating stress in erythroid cells through redox activation of distinct signaling pathways by specific integrin heterodimers is a link that has not been appreciated until now.
Collapse
|
27
|
Gil GP, Ananina G, Oliveira MB, Costa FF, Silva MJ, Santos MNN, Bezerra MAC, Hatzlhofer BLD, Araujo AS, Melo MB. Polymorphism in the HMOX1 gene is associated with high levels of fetal hemoglobin in Brazilian patients with sickle cell anemia. Hemoglobin 2013; 37:315-24. [PMID: 23725037 DOI: 10.3109/03630269.2013.789438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the association between three polymorphisms involved in the oxidative stress pathway and fetal hemoglobin (Hb F) levels in patients with sickle cell anemia in a Brazilian population. One hundred and seven patients with sickle cell anemia were recruited for genomic DNA extraction. The levels of Hb F, sex and age were evaluated. Three polymorphisms, rs4673:T>C and rs9932581:G>A in the CYBA gene and rs2071746:A>T in the HMOX1 gene, were identified through direct sequencing. Hb F levels were not associated with sex, age, or the polymorphisms rs4673:T>C and rs9932581:G>A. However, the TT genotype of the rs2071746:A>T polymorphism was associated with increased levels of Hb F (p value = 0.0131). We observed an association between the TT genotype of the rs2071746:A>T polymorphism, present in the HMOX1 gene, and increased levels of Hb F, indicating the presence of a new marker related to Hb F levels in sickle cell anemia patients.
Collapse
Affiliation(s)
- Gislene P Gil
- Laboratory of Human Molecular Genetics, Center of Molecular Biology and Genetic Engineering CBMEG, University of Campinas UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shah DI, Takahashi-Makise N, Cooney JD, Li L, Schultz IJ, Pierce EL, Narla A, Seguin A, Hattangadi SM, Medlock AE, Langer NB, Dailey TA, Hurst SN, Faccenda D, Wiwczar JM, Heggers SK, Vogin G, Chen W, Chen C, Campagna DR, Brugnara C, Zhou Y, Ebert BL, Danial NN, Fleming MD, Ward DM, Campanella M, Dailey HA, Kaplan J, Paw BH. Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts. Nature 2012; 491:608-12. [PMID: 23135403 PMCID: PMC3504625 DOI: 10.1038/nature11536] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.
Collapse
Affiliation(s)
- Dhvanit I. Shah
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Naoko Takahashi-Makise
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84312, USA
| | - Jeffrey D. Cooney
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Liangtao Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84312, USA
| | - Iman J. Schultz
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric L. Pierce
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anupama Narla
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medicine, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandra Seguin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84312, USA
| | - Shilpa M. Hattangadi
- Department of Medicine, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Amy E. Medlock
- Biomedical and Health Sciences Institute, Departments of Microbiology, Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nathaniel B. Langer
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tamara A. Dailey
- Biomedical and Health Sciences Institute, Departments of Microbiology, Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Slater N. Hurst
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Danilo Faccenda
- Royal Veterinary College, University of London and University College London Consortium for Mitochondrial Research, London, NW1 0TU, UK
| | - Jessica M. Wiwczar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Spencer K. Heggers
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guillaume Vogin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wen Chen
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caiyong Chen
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dean R. Campagna
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yi Zhou
- Department of Medicine, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin L. Ebert
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston Massachusetts 02115, USA
| | - Diane M. Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84312, USA
| | - Michelangelo Campanella
- Royal Veterinary College, University of London and University College London Consortium for Mitochondrial Research, London, NW1 0TU, UK
| | - Harry A. Dailey
- Biomedical and Health Sciences Institute, Departments of Microbiology, Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84312, USA
| | - Barry H. Paw
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medicine, Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Jazwa A, Stepniewski J, Zamykal M, Jagodzinska J, Meloni M, Emanueli C, Jozkowicz A, Dulak J. Pre-emptive hypoxia-regulated HO-1 gene therapy improves post-ischaemic limb perfusion and tissue regeneration in mice. Cardiovasc Res 2012; 97:115-24. [PMID: 23087099 PMCID: PMC3527762 DOI: 10.1093/cvr/cvs284] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS Haem oxygenase-1 (HO-1) is a haem-degrading enzyme that generates carbon monoxide, bilirubin, and iron ions. Through these compounds, HO-1 mitigates cellular injury by exerting antioxidant, anti-apoptotic, and anti-inflammatory effects. Here, we examined the influence of HO-1 deficiency and transient hypoxia/ischaemia-induced HO-1 overexpression on post-injury hindlimb recovery. METHODS AND RESULTS Mice lacking functional HO-1 (HO-1(-/-)) showed reduced reparative neovascularization in ischaemic skeletal muscles, impaired blood flow (BF) recovery, and increased muscle cell death compared with their wild-type littermates. Human microvascular endothelial cells (HMEC-1) transfected with plasmid vector (pHRE-HO-1) carrying human HO-1 driven by three hypoxia response elements (HREs) and cultured in 0.5% oxygen demonstrated markedly increased expression of HO-1. Such upregulated HO-1 levels were effective in conferring protection against H(2)O(2)-induced cell death and in promoting the proangiogenic phenotype of HMEC-1 cells. More importantly, when delivered in vivo, pHRE-HO-1 significantly improved the post-ischaemic foot BF in mice subjected to femoral artery ligation. These effects were associated with reduced levels of pro-inflammatory cytokines (IL-6 and CXCL1) and lower numbers of transferase-mediated dUTP nick-end labelling-positive cells. Moreover, HO-1 delivered into mouse skeletal muscles seems to influence the regenerative potential of myocytes as it significantly changed the expression of transcriptional (Pax7, MyoD, myogenin) and post-transcriptional (miR-146a, miR-206) regulators of skeletal muscle regeneration. CONCLUSION Our results suggest the therapeutic potential of HO-1 for prevention of adverse effects in critical limb ischaemia.
Collapse
Affiliation(s)
- Agnieszka Jazwa
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bartnikas TB, Fleming MD, Schmidt PJ. Murine mutants in the study of systemic iron metabolism and its disorders: an update on recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1444-50. [PMID: 22306267 PMCID: PMC3360922 DOI: 10.1016/j.bbamcr.2012.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 02/08/2023]
Abstract
Many past and recent advances in the field of iron metabolism have relied upon the use of mouse models of disease. These models have arisen spontaneously in breeder colonies or have been engineered for global or conditional ablation or overexpression of select genes. Full phenotypic characterization of these models typically involves maintenance on iron-loaded or -deficient diets, treatment with oxidative or hemolytic agents, breeding to other mutant lines or other stresses. In this review, we focus on systemic iron biology and the contributions that mouse model-based studies have made to the field. We have divided the field into three broad areas of research: dietary iron absorption, regulation of hepcidin expression and cellular iron metabolism. For each area, we begin with an overview of the current understanding of key molecular and cellular determinants then discuss recent advances. Finally, we conclude with brief comments on prospects for future study. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Heme biosynthesis requires a series of enzymatic reactions that take place in the cytosol and the mitochondria as well as the proper intercellular and intracellular trafficking of iron. Heme can also be acquired by intestinal absorption and intercellular transport. The purpose of this review is to highlight recent work on heme and iron transport with an emphasis on their relevance in erythropoiesis. RECENT FINDINGS Whereas the enzymes responsible for heme biosynthesis have been identified, transport mechanisms for iron, heme, or heme synthesis intermediates are only emerging. Recent studies have shed light on how these molecules are transported among various cellular compartments, as well as tissues. Much of this progress can be attributed to the use of model organisms such as S. cerevisiae, C. elegans, D. rerio, and M. musculus. Genetic studies in these models have led to the identification of several new genes involved in heme metabolism. Although our understanding has greatly improved, it is highly likely that other regulators exist and additional work is required to characterize the pathways by which heme and iron are transported within the erythron. SUMMARY The identification of heme and iron transport mechanisms will improve our understanding of blood development and provide new insight into human blood disorders.
Collapse
|
32
|
Gálvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML, Eppert BL, Afton S, Nebert DW. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One 2012; 7:e36055. [PMID: 22563477 PMCID: PMC3341399 DOI: 10.1371/journal.pone.0036055] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 03/29/2012] [Indexed: 02/06/2023] Open
Abstract
Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+)/(HCO(3)(-))(2) symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biological Transport
- Blotting, Western
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cation Transport Proteins/physiology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Developmental
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Liver/cytology
- Liver/embryology
- Liver/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organogenesis/genetics
- Organogenesis/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Yolk Sac/embryology
- Yolk Sac/metabolism
- Zinc/metabolism
Collapse
Affiliation(s)
- Marina Gálvez-Peralta
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Lei He
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Lucia F. Jorge-Nebert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Bin Wang
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Marian L. Miller
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Bryan L. Eppert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Scott Afton
- Department of Chemistry, University Cincinnati School of Arts and Sciences, Cincinnati, Ohio, United States of America
| | - Daniel W. Nebert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kusy S, Ghosn EEB, Herzenberg LA, Contag CH. Development of B cells and erythrocytes is specifically impaired by the drug celastrol in mice. PLoS One 2012; 7:e35733. [PMID: 22545133 PMCID: PMC3335785 DOI: 10.1371/journal.pone.0035733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Background Celastrol, an active compound extracted from the root of the Chinese medicine “Thunder of God Vine” (Tripterygium wilfordii), exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic potential of celastrol is increasing. However, described side effects following treatment are significant and require investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine hematopoietic system. Methodology/Principal Findings Animals were treated daily with celastrol over a four-day period and peripheral blood, bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by decreases in populations of common lymphoid progenitors (CLP), common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP). Conclusions/Significance These results indicate that celastrol acts through regulators of adult hematopoiesis and could be used as a modulator of the hematopoietic system. These observations provide valuable information for further assessment prior to clinical trials.
Collapse
Affiliation(s)
- Sophie Kusy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | | | |
Collapse
|
34
|
Toobiak S, Shaklai M, Shaklai N. Carbon monoxide induced erythroid differentiation of K562 cells mimics the central macrophage milieu in erythroblastic islands. PLoS One 2012; 7:e33940. [PMID: 22457802 PMCID: PMC3311552 DOI: 10.1371/journal.pone.0033940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
Growing evidence supports the role of erythroblastic islands (EI) as microenvironmental niches within bone marrow (BM), where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb) is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule - CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage. Based on the above, the study hypothesized CO to have a role in erythroid maturation. Thus, the effect of CO gas as a potential erythroid differentiation inducer on the common model for erythroid progenitors, K562 cells, was explored. Cells were kept under oxygen lacking environment to mimic BM conditions. Nitrogen anaerobic atmosphere (N2A) served as control for CO atmosphere (COA). Under both atmospheres cells proliferation ceased: in N2A due to cell death, while in COA as a result of erythroid differentiation. Maturation was evaluated by increased glycophorin A expression and Hb concentration. Addition of 1%CO only to N2A, was adequate for maintaining cell viability. Yet, the average Hb concentration was low as compared to COA. This was validated to be the outcome of diversified maturation stages of the progenitor's population. In fact, the above scenario mimics the in vivo EI conditions, where at any given moment only a minute portion of the progenitors proceeds into terminal differentiation. Hence, this model might provide a basis for further molecular investigations of the EI structure/function relationship.
Collapse
Affiliation(s)
- Shlomi Toobiak
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mati Shaklai
- Department of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nurith Shaklai
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
35
|
Correa-Costa M, Amano MT, Câmara NOS. Cytoprotection behind heme oxygenase-1 in renal diseases. World J Nephrol 2012; 1:4-11. [PMID: 24175236 PMCID: PMC3782207 DOI: 10.5527/wjn.v1.i1.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 10/27/2011] [Accepted: 12/27/2011] [Indexed: 02/06/2023] Open
Abstract
Renal insults are considered a public health problem and are linked to increased rates of morbidity and mortality worldwide. The heme oxygenase (HO) system consists of evolutionary specialized machinery that degrades free heme and produces carbon monoxide, biliverdin and free iron. In this sense, the inducible isoform HO-1 seems to develop an important role and is widely studied. The reaction involved with the HO-1 molecule provides protection to injured tissue, directly by reducing the toxic heme molecule and indirectly by the release of its byproducts. The up regulation of HO-1 enzyme has largely been described as providing antioxidant, antiapoptotic, anti-inflammatory and immunomodulatory properties. Several works have explored the importance of HO-1 in renal diseases and they have provided consistent evidence that its overexpression has beneficial effects in such injuries. So, in this review we will focus on the role of HO-1 in kidney insults, exploring the protective effects of its up regulation and the enhanced deleterious effects of its inhibition or gene deletion.
Collapse
Affiliation(s)
- Matheus Correa-Costa
- Matheus Correa-Costa, Mariane Tami Amano, Niels Olsen Saraiva Câmara, Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, 05508-000, São Paulo, Brazil
| | | | | |
Collapse
|
36
|
Heme Oxygenase-1: A Critical Link between Iron Metabolism, Erythropoiesis, and Development. Adv Hematol 2011; 2011:473709. [PMID: 22162689 PMCID: PMC3226344 DOI: 10.1155/2011/473709] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022] Open
Abstract
The first mature cells to arise in the developing mammalian embryo belong to the erythroid lineage. This highlights the immediacy of the need for red blood cells during embryogenesis and for survival. Linked with this pressure is the necessity of the embryo to obtain and transport iron, synthesize hemoglobin, and then dispose of the potentially toxic heme via the stress-induced protein heme oxygenase-1 (HO-1, encoded by Hmox1 in the mouse). Null mutation of Hmox1 results in significant embryonic mortality as well as anemia and defective iron recycling. Here, we discuss the interrelated nature of this critical enzyme with iron trafficking, erythroid cell function, and embryonic survival.
Collapse
|