1
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
2
|
Wurz AI, Bunner WP, Szatmari EM, Hughes RM. CRY-BARs: Versatile light-gated molecular tools for the remodeling of membrane architectures. J Biol Chem 2022; 298:102388. [PMID: 35987384 PMCID: PMC9530617 DOI: 10.1016/j.jbc.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
BAR (Bin, Amphiphysin and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse-BAR) domain containing tools derived from the fusion of the A. thaliana Cryptochrome 2 photoreceptor and I-BAR protein domains ('CRY-BARs') with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamics changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and PIP2 binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.
Collapse
Affiliation(s)
- Anna I Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Wyatt Paul Bunner
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Erzsebet M Szatmari
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States.
| |
Collapse
|
3
|
Liang L, Liang X, Jiang P, Zhou L, Zhong L, Wang M, Lin S, Guo Z, Yu J, Yang C, Chen Y, Zhuo C, Chen P, Wang Y. Metastasis suppressor 1 interacts with α-actinin 4 to affect its localization and regulate formation of membrane ruffling. Cytoskeleton (Hoboken) 2021; 78:337-348. [PMID: 34435464 DOI: 10.1002/cm.21686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Membrane ruffling plays an important role in the directed cell migration and escape of tumor cells from the monolayer. Metastasis suppressor 1 (MTSS1), also known as missing in metastasis, has been implicated in cell morphology, motility, metastasis, and development. Here, the dynamic interaction proteins associated with MTSS1 and involved in membrane ruffling were determined by cross-linking and mass spectrometry analysis. We identified α-actinin 4 (ACTN4) as an interacting protein and confirmed a direct interaction between MTSS1 and ACTN4. Moreover, co-expression of MTSS1 in fibroblasts recruited cytoplasmic ACTN4 to the cell periphery, at which point ruffling became thick and rigid. In MCF-7 cells, MTSS1 knockdown did not show an obvious effect on the cell shape or the distribution of endogenous ACTN4; however, ACTN4 overexpression transformed cell morphology from an epidermal- to a fibroblast-like shape, and further MTSS1 depletion significantly increased the ratio of fibroblast cells exhibiting prominent ruffling. Furthermore, biochemical data suggested that MTSS1 cross-linking with ACTN4 induced the formation of actin fiber bundles into more organized structures in vitro. These data indicated that MTSS1 might recruit cytoplasmic ACTN4 to the cell periphery and regulate cytoskeleton dynamics to restrict its performance in membrane ruffling.
Collapse
Affiliation(s)
- Lijun Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Jiang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lu Zhou
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Luanluan Zhong
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mei Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuyun Lin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Guo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Yu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changcheng Yang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chengjie Zhuo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Sarapulov AV, Petrov P, Hernández-Pérez S, Šuštar V, Kuokkanen E, Cords L, Samuel RVM, Vainio M, Fritzsche M, Carrasco YR, Mattila PK. Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses. Front Immunol 2020; 11:599. [PMID: 32373113 PMCID: PMC7176992 DOI: 10.3389/fimmu.2020.00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Efficient generation of antibodies by B cells is one of the prerequisites of protective immunity. B cell activation by cognate antigens via B cell receptors (BCRs), or pathogen-associated molecules through pattern-recognition receptors, such as Toll-like receptors (TLRs), leads to transcriptional and metabolic changes that ultimately transform B cells into antibody-producing plasma cells or memory cells. BCR signaling and a number of steps downstream of it rely on coordinated action of cellular membranes and the actin cytoskeleton, tightly controlled by concerted action of multiple regulatory proteins, some of them exclusive to B cells. Here, we dissect the role of Missing-In-Metastasis (MIM), or Metastasis suppressor 1 (MTSS1), a cancer-associated membrane and actin cytoskeleton regulating protein, in B cell-mediated immunity by taking advantage of MIM knockout mouse strain. We show undisturbed B cell development and largely normal composition of B cell compartments in the periphery. Interestingly, we found that MIM-/- B cells are defected in BCR signaling in response to surface-bound antigens but, on the other hand, show increased metabolic activity after stimulation with LPS or CpG. In vivo, MIM knockout animals exhibit impaired IgM antibody responses to immunization with T cell-independent antigen. This study provides the first comprehensive characterization of MIM in B cells, demonstrates its regulatory role for B cell-mediated immunity, as well as proposes new functions for MIM in tuning receptor signaling and cellular metabolism, processes, which may also contribute to the poorly understood functions of MIM in cancer.
Collapse
Affiliation(s)
- Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Elina Kuokkanen
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Lena Cords
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rufus V. M. Samuel
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Marika Vainio
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Didcot, United Kingdom
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
6
|
Lin X, Wang H, Lou Z, Cao M, Zhang Z, Gu N. Roles of
PIP
2 in the membrane binding of
MIM
I‐
BAR
: insights from molecular dynamics simulations. FEBS Lett 2018; 592:2533-2542. [DOI: 10.1002/1873-3468.13186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
| | - Hongyin Wang
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston TX USA
| | - Zhichao Lou
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- College of Materials Science and Engineering Nanjing Forestry University China
| | - Meng Cao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| |
Collapse
|
7
|
Zhu X, Xu X, Du K, Lu J, Song E. I-BAR protein IRSp53 regulates clathrin-independent endocytosis in a biphasic manner. Sci Bull (Beijing) 2018; 63:149-151. [PMID: 36658998 DOI: 10.1016/j.scib.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Li L, Baxter SS, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 2017; 130:1475-1485. [PMID: 28264927 DOI: 10.1242/jcs.198937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shaneen S Baxter
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Fahrenkamp D, Herrmann O, Koschmieder S, Brümmendorf TH, Schemionek M. Mtss1 (CSC156) mutant mice fail to display efficient Mtss1 protein depletion. Leukemia 2017; 31:1017-1019. [PMID: 28167834 DOI: 10.1038/leu.2017.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- D Fahrenkamp
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - O Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - M Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Yu J, Lin S, Wang M, Liang L, Zou Z, Zhou X, Wang M, Chen P, Wang Y. Metastasis suppressor 1 regulates neurite outgrowth in primary neuron cultures. Neuroscience 2016; 333:123-31. [DOI: 10.1016/j.neuroscience.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 10/25/2022]
|
11
|
Zhan T, Cao C, Li L, Gu N, Civin CI, Zhan X. MIM regulates the trafficking of bone marrow cells via modulating surface expression of CXCR4. Leukemia 2016; 30:1327-34. [PMID: 26965284 PMCID: PMC4889520 DOI: 10.1038/leu.2016.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Missing in metastasis (MIM) is abundantly expressed in hematopoietic cells. Here we characterized the impact of MIM deficiency on murine bone marrow (BM) cells. Although MIM-/- cells proliferated similarly to wild type (WT), they exhibited stronger response to chemokine SDF-1, increase in surface expression of CXCR4, impaired CXCR4 internalization and constitutive activation of Rac, Cdc42 and p38. Transplantation of MIM-/- BM cells into lethally irradiated mice showed enhanced homing to BM, which was abolished when mice were pretreated with a p38 antagonist. Interestingly, MIM-/- BM cells, including hematopoietic stem and progenitor cells (HSPCs), showed 2 to 5-fold increase in mobilization into the peripheral blood upon treatment with AMD3100. In vitro, MIM-/- leukocytes were susceptible to AMD3100 and maintained increased response to AMD3100 for mobilization even after transfer into wild type mice. MIM-/- mice had also a higher level of SDF-1 in the circulation. Our data highlighted an unprecedented role of MIM in the homoeostasis of BM cells, including HSPCs, through modulation of the CXCR4/SDF-1 axis and interactions of BM leukocytes with their microenvironments.
Collapse
Affiliation(s)
- T Zhan
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C Cao
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Li
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,China Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - N Gu
- China Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - C I Civin
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pediatrics and Physiology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Zhan
- Department of Pathology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pediatrics and Physiology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Yu D, Makkar G, Strickland DK, Blanpied TA, Stumpo DJ, Blackshear PJ, Sarkar R, Monahan TS. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc 2015; 4:e002255. [PMID: 26450120 PMCID: PMC4845127 DOI: 10.1161/jaha.115.002255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcription of the myristoylated alanine-rich C kinase substrate (MARCKS) is upregulated in animal models of intimal hyperplasia. MARCKS knockdown inhibits vascular smooth muscle cell (VSMC) migration in vitro; however, the mechanism is as yet unknown. We sought to elucidate the mechanism of MARCKS-mediated motility and determine whether MARCKS knockdown reduces intimal hyperplasia formation in vivo. METHODS AND RESULTS MARCKS knockdown blocked platelet-derived growth factor (PDGF)-induced translocation of cortactin to the cell cortex, impaired both lamellipodia and filopodia formation, and attenuated motility of human coronary artery smooth muscle cells (CASMCs). Activation of the small GTPases, Rac1 and Cdc42, was prevented by MARCKS knockdown. Phosphorylation of MARCKS resulted in a transient shift of MARCKS from the plasma membrane to the cytosol. MARCKS knockdown significantly decreased membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Cotransfection with an intact, unphosphorylated MARCKS, which has a high binding affinity for PIP2, restored membrane-associated PIP2 levels and was indispensable for activation of Rac1 and Cdc42 and, ultimately, VSMC migration. Overexpression of MARCKS in differentiated VSMCs increased membrane PIP2 abundance, Rac1 and Cdc42 activity, and cell motility. MARCKS protein was upregulated early in the development of intimal hyperplasia in the murine carotid ligation model. Decreased MARKCS expression, but not total knockdown, attenuated intimal hyperplasia formation. CONCLUSIONS MARCKS upregulation increases VSMC motility by activation of Rac1 and Cdc42. These effects are mediated by MARCKS sequestering PIP2 at the plasma membrane. This study delineates a novel mechanism for MARCKS-mediated VSMC migration and supports the rational for MARCKS knockdown to prevent intimal hyperplasia.
Collapse
Affiliation(s)
- Dan Yu
- Department of Surgery, Veterans Affairs Medical Center, Baltimore, MD (D.Y., T.S.M.) Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - George Makkar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.)
| | - Dudley K Strickland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.)
| | - Deborah J Stumpo
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC (D.J.S., P.J.B.)
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC (D.J.S., P.J.B.)
| | - Rajabrata Sarkar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Department of Physiology, University of Maryland School of Medicine, Baltimore, MD (D.K.S., T.A.B., R.S.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| | - Thomas S Monahan
- Department of Surgery, Veterans Affairs Medical Center, Baltimore, MD (D.Y., T.S.M.) Department of Surgery, University of Maryland School of Medicine, Baltimore, MD (D.Y., G.M., D.K.S., R.S., T.S.M.) Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD (D.Y., D.K.S., R.S., T.S.M.)
| |
Collapse
|
13
|
Abstract
MIM [missing in metastasis; also called MTSS1 (metastasis suppressor 1)] is an intracellular protein that binds to actin and cortactin and has an intrinsic capacity to sense and facilitate the formation of protruded membranous curvatures implicated in cellular polarization, mobilization and endocytosis. The N-terminal 250 amino acids of MIM undergo homodimerization and form a structural module with the characteristic of an I-BAR [inverse BAR (Bin/amphiphysin/Rvs)] domain. To discern the role of the dimeric configuration in the function of MIM, we designed several peptides able to interfere with MIM dimerization in a manner dependent upon their lengths. Overexpression of one of the peptides effectively abolished MIM-mediated membrane protrusions and transferrin uptake. However, a peptide with a high potency inhibiting MIM dimerization failed to affect its binding to actin and cortactin. Thus the results of the present study indicate that the dimeric configuration is essential for MIM-mediated membrane remodelling and serves as a proper target to develop antagonists specifically against an I-BAR-domain-containing protein.
Collapse
|
14
|
Fuchs H, Gailus-Durner V, Neschen S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Bohla A, Calzada-Wack J, Cohrs C, Dewert A, Fridrich B, Garrett L, Glasl L, Götz A, Hans W, Hölter SM, Horsch M, Hurt A, Janas E, Janik D, Kahle M, Kistler M, Klein-Rodewald T, Lengger C, Ludwig T, Maier H, Marschall S, Micklich K, Möller G, Naton B, Prehn C, Puk O, Rácz I, Räss M, Rathkolb B, Rozman J, Scheerer M, Schiller E, Schrewe A, Steinkamp R, Stöger C, Sun M, Szymczak W, Treise I, Vargas Panesso IL, Vernaleken AM, Willershäuser M, Wolff-Muscate A, Zeh R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Eickelberg O, Favor J, Graw J, Höfler H, Höschen C, Katus H, Klingenspor M, Klopstock T, Neff F, Ollert M, Schulz H, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Hrabě de Angelis M. Innovations in phenotyping of mouse models in the German Mouse Clinic. Mamm Genome 2012; 23:611-22. [PMID: 22926221 PMCID: PMC3463795 DOI: 10.1007/s00335-012-9415-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/05/2012] [Indexed: 01/29/2023]
Abstract
Under the label of the German Mouse Clinic (GMC), a concept has been developed and implemented that allows the better understanding of human diseases on the pathophysiological and molecular level. This includes better understanding of the crosstalk between different organs, pleiotropy of genes, and the systemic impact of envirotypes and drugs. In the GMC, experts from various fields of mouse genetics and physiology, in close collaboration with clinicians, work side by side under one roof. The GMC is an open-access platform for the scientific community by providing phenotypic analysis in bilateral collaborations ("bottom-up projects") and as a partner and driver in international large-scale biology projects ("top-down projects"). Furthermore, technology development is a major topic in the GMC. Innovative techniques for primary and secondary screens are developed and implemented into the phenotyping pipelines (e.g., detection of volatile organic compounds, VOCs).
Collapse
Affiliation(s)
- Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These "rings" then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.
Collapse
|
16
|
Abstract
Endocytosis includes a number of processes by which cells internalize segments of their plasma membrane, enclosing a wide variety of material from outside the cell. Endocytosis can contribute to uptake of nutrients, regulation of signaling molecules, control of osmotic pressure, and function of synapses. The actin cytoskeleton plays an essential role in several of these processes. Actin assembly can create protrusions that encompass extracellular materials. Actin can also support the processes of invagination of a membrane segment into the cytoplasm, elongation of the invagination, scission of the new vesicle from the plasma membrane, and movement of the vesicle away from the membrane. We briefly discuss various types of endocytosis, including phagocytosis, macropinocytosis, and clathrin-independent endocytosis. We focus mainly on new findings on the relative importance of actin in clathrin-mediated endocytosis (CME) in yeast versus mammalian cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
17
|
Yu D, Zhan XH, Zhao XF, Williams MS, Carey GB, Smith E, Scott D, Zhu J, Guo Y, Cherukuri S, Civin CI, Zhan X. Mice deficient in MIM expression are predisposed to lymphomagenesis. Oncogene 2011; 31:3561-8. [PMID: 22081072 DOI: 10.1038/onc.2011.509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Missing in metastasis (MIM) is a member of newly emerged inverse Bin-Amphiphysin-Rvs (BAR) domain protein family and a putative metastasis suppressor. Although reduced MIM expression has been associated with bladder, breast and gastric cancers, evidence for the role of MIM in tumor progression remains scarce and controversial. Herein we characterized a MIM knockout mouse strain and observed that MIM-deficient mice often developed enlarged spleens. Autopsy and histological analysis revealed that nearly 78% of MIM(-/-) mice developed tumors with features similar to diffuse large B lymphoma during a period from 1 to 2 years. MIM(-/-) mice also exhibited abnormal distribution of B cells in lymphoid organs with decrease in the spleen but increase in the bone marrow and the peripheral blood. Furthermore, the bone marrow of MIM(-/-) mice contained a higher percentage of pre-B2 cells but fewer immature B-cells than wild-type mice. In response to CXCL13, a B-cell chemokine released from splenic stromal cells, MIM-deficient B-cells did not undergo chemotaxis or morphological changes in response to the chemokine and also did not internalize CXCR5, the receptor of CXCL13. Microarray analyses demonstrated that MIM is the only member of the I-BAR domain family that was highly expressed in human B cells. However, low or absent MIM expression was common in either primary B-cell malignancies or established B-cell acute lymphocytic leukemia or lymphomas. Thus, our data demonstrate for the first time an important role for MIM in B-cell development and suggest that predisposition of MIM-null mice to lymphomagenesis may involve aberrant interactions between B lineage cells and the lymphoid microenvironment.
Collapse
Affiliation(s)
- D Yu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|