1
|
Fujii R, Katsukawa R, Takeda E, Itakura E, Matsuura A. Regulatory dynamics of Sch9 in response to cytosolic acidification: From spatial reconfiguration to cellular adaptation to stresses. iScience 2025; 28:111573. [PMID: 39811664 PMCID: PMC11731984 DOI: 10.1016/j.isci.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/19/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The regulation of cellular metabolism is crucial for cell survival, with Sch9 in Saccharomyces cerevisiae serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P2, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization. Under stress conditions that induce cytosolic acidification, Sch9 detached from the vacuolar membrane. In vitro experiments confirmed that Sch9's affinity for PI(3,5)P2 is pH-dependent. This pH-dependent localization switch is essential for regulating the TORC1-Sch9 pathway. Impairment of the dissociation of Sch9 from the vacuolar membrane in response to cytosolic acidification resulted in the deficient induction of stress response gene expression and delayed the adaptive response to acetic acid stress. These findings indicate the importance of proper Sch9 localization for metabolic reprogramming and stress response in yeast cells.
Collapse
Affiliation(s)
- Rui Fujii
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Rai Katsukawa
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Eigo Takeda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Kang Q, Yin X, Wu Z, Zheng A, Feng L, Ma X, Li L. Integrated Single-Cell and Spatial Transcriptome Reveal Metabolic Gene SLC16A3 as a Key Regulator of Immune Suppression in Hepatocellular Carcinoma. J Cell Mol Med 2024; 28:e70272. [PMID: 39656344 PMCID: PMC11629820 DOI: 10.1111/jcmm.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers, usually diagnosed at an advanced stage. Metabolic reprogramming plays a significant role in HCC progression, probably related to immune evasion, yet the key gene is unclear. In this study, six metabolism-related genes with prognostic implications were screened. Correlation analysis between the key genes and immune cell subtypes was conducted, and a prominent gene strongly associated with immunosuppression, SLC16A3, was identified. Overexpression of SLC16A3 is associated with the loss of T-cell function and might lead to the upregulation of several immunosuppressive proteins. Gene function enrichment analysis showed genes correlated with SLC16A3 primarily involved in cell adhesion. Single-cell analysis showed that the SLC16A3 gene was mainly expressed in macrophages, especially some tumour-promoting macrophages. Further analysis of spatial transcriptome data indicated that SLC16A3 was enriched at the tumour invasion front. The mIHC revealed that patients with high SLC16A3 expression exhibited significantly reduced infiltration of GZMB+ cells. And SLC16A3 inhibitors significantly suppressed the proliferation of HCC, while simultaneously enhancing T-cell cytotoxicity and reducing exhaustion. These results reveal the phenomenon of immune escape mediated by metabolic reprogramming and suggest that SLC16A3 may serve as a novel target for intervention.
Collapse
Affiliation(s)
- Qianlong Kang
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Aiping Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lusi Feng
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Li Li
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Vuillefroy de Silly R, Pericou L, Seijo B, Crespo I, Irving M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J 2024; 43:4922-4953. [PMID: 39284912 PMCID: PMC11535206 DOI: 10.1038/s44318-024-00235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH. Mechanistically, nuclear/cytoplasmic acidification is linked to mTORC1 suppression in a Rheb-, Akt/TSC2/PRAS40-, GATOR1- and Lkb1/AMPK-independent manner, while c-Myc levels drop due to both decreased transcription and higher levels of proteasome-mediated degradation. In addition, lower intracellular levels of glutamine, glutamate, and aspartate, as well as elevated proline levels are observed with no apparent impact on mTORC1 signaling or c-Myc levels. Overall, we suggest that, due to the broad impact of acidity on CD8 + T cells, multiple interventions will be required to restore T-cell function unless intracellular pH is effectively controlled.
Collapse
Affiliation(s)
- Romain Vuillefroy de Silly
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Laetitia Pericou
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
4
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
6
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
7
|
Degitz C, Reime S, Baumbach CM, Rauschner M, Thews O. Modulation of mitochondrial function by extracellular acidosis in tumor cells and normal fibroblasts: Role of signaling pathways. Neoplasia 2024; 52:100999. [PMID: 38631214 PMCID: PMC11036092 DOI: 10.1016/j.neo.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
In many tumors pronounced extracellular acidosis resulting from glycolytic metabolism is found. Since several environmental stress factors affect the mitochondrial activity the aim of the study was to analyze the impact of acidosis on cellular oxygen consumption and which signaling pathways may be involved in the regulation. In two tumor cell lines and normal fibroblasts cellular oxygen consumption rate (OCR) and mitochondrial function were measured after 3 h at pH 6.6. Besides the activation of ERK1/2, p38 and PI3K signaling in the cytosolic and mitochondrial compartment, the mitochondrial structure and proteins related to mitochondria fission were analyzed. The acidic extracellular environment increased OCR in tumor cells but not in fibroblasts. In parallel, the mitochondrial membrane potential increased at low pH. In both tumor lines (but not in fibroblasts), the phosphorylation of ERK1/2 and PI3K/Akt was significantly increased, and both cascades were involved in OCR modulation. The activation of signaling pathways was located predominantly in the mitochondrial compartment of the cells. At low pH, the mitochondrial structure in tumor cells showed structural changes related to elongation whereas mitochondria fragmentation was reduced indicating mitochondria fusion. However, these morphological changes were not related to ERK1/2 or PI3K signaling. Acidic stress seems to induce an increased oxygen consumption, which might further aggravate tumor hypoxia. Low pH also induces mitochondria fusion that is not mediated by ERK1/2 or PI3K signaling. The mechanism by which these signaling cascades modulate the respiratory activity of tumor cells needs further investigation.
Collapse
Affiliation(s)
- Carmen Degitz
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Sarah Reime
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Christina-Marie Baumbach
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Mandy Rauschner
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany
| | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, Magdeburger Str. 6 (Saale), Halle, 06112, Germany.
| |
Collapse
|
8
|
Deng Y, Zhu G, Mi X, Jing X. Prognostic implication of a novel lactate score correlating with immunotherapeutic responses in pan-cancer. Aging (Albany NY) 2024; 16:820-843. [PMID: 38198170 PMCID: PMC10817381 DOI: 10.18632/aging.205423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
A thorough assessment of lactate-related genes (LRGs) in different types of human cancers is currently lacking. To elucidate the molecular landscape of LRGs, we conducted a comprehensive analysis using genomic, mRNA, and microRNA expression profiles and developed a lactate score model using the least absolute shrinkage and selection operator (LASSO) algorithm. We found that our lactate score could be a prognostic marker instead of LDHA for several cancer patients who possess high-frequency variants in LRGs. The lactate score also demonstrated an association with CD8+ T cells infiltration in multiple cancer types. Furthermore, our findings indicate that the lactate score holds promise as a potential biomarker for immunotherapy in patients with bladder cancer (BLCA) and skin cutaneous melanoma (SKCM). Among the seventeen genes of the lactate score model, PDP1 showed the strongest positive correlation with lactate score and the potential as a standalone biomarker for prognosis. In general, our study has yielded crucial insights into the potential application of the lactate score as a predictive biomarker for both survival outcomes and the response to immunotherapy. By recognizing the prognostic significance of lactate metabolism, we open avenues for further investigations aimed at harnessing the therapeutic potential of lactate.
Collapse
Affiliation(s)
- Ying Deng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Guoqiang Zhu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Mi
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Xianyang, China
| | - Xiaoyu Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Riemann A, Rauschner M, Reime S, Thews O. The Role of microRNAs in Gene Expression and Signaling Response of Tumor Cells to an Acidic Environment. Int J Mol Sci 2023; 24:16919. [PMID: 38069241 PMCID: PMC10707721 DOI: 10.3390/ijms242316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Many tumors are characterized by marked extracellular acidosis due to increased glycolytic metabolism, which affects gene expression and thereby tumor biological behavior. At the same time, acidosis leads to altered expression of several microRNAs (Mir7, Mir183, Mir203, Mir215). The aim of this study was to analyze whether the acidosis-induced changes in cytokines and tumor-related genes are mediated via pH-sensitive microRNAs. Therefore, the expression of Il6, Nos2, Ccl2, Spp1, Tnf, Acat2, Aox1, Crem, Gls2, Per3, Pink1, Txnip, and Ypel3 was examined in acidosis upon simultaneous transfection with microRNA mimics or antagomirs in two tumor lines in vitro and in vivo. In addition, it was investigated whether microRNA expression in acidosis is affected via known pH-sensitive signaling pathways (MAPK, PKC, PI3K), via ROS, or via altered intracellular Ca2+ concentration. pH-dependent microRNAs were shown to play only a minor role in modulating gene expression. Individual genes (e.g., Ccl2, Txnip, Ypel3) appear to be affected by Mir183, Mir203, or Mir215 in acidosis, but these effects are cell line-specific. When examining whether acid-dependent signaling affects microRNA expression, it was found that Mir203 was modulated by MAPK and ROS, Mir7 was affected by PKC, and Mir215 was dependent on the intracellular Ca2+ concentration. Mir183 could be increased by ROS scavenging. These correlations could possibly result in new therapeutic approaches for acidotic tumors.
Collapse
Affiliation(s)
| | | | | | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, 06108 Halle, Germany
| |
Collapse
|
10
|
Kazyken D, Lentz SI, Wadley M, Fingar DC. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. J Biol Chem 2023; 299:105097. [PMID: 37507012 PMCID: PMC10477693 DOI: 10.1016/j.jbc.2023.105097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved protein kinase mTOR (mechanistic target of rapamycin) responds to diverse environmental cues to control cell metabolism and promote cell growth, proliferation, and survival as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2. Our prior work demonstrated that an alkaline intracellular pH (pHi) increases mTORC2 activity and cell survival in complete media in part by activating AMP-activated protein kinase, a kinase best known to sense energetic stress. It is important to note that an alkaline pHi represents an underappreciated hallmark of cancer cells that promotes their oncogenic behaviors. In addition, mechanisms that control mTORC1 and mTORC2 signaling and function remain incompletely defined, particularly in response to stress conditions. Here, we demonstrate that an alkaline pHi increases phosphatidylinositide 3-kinase (PI3K) activity to promote mTORC1 and mTORC2 signaling in the absence of serum growth factors. Alkaline pHi increases mTORC1 activity through PI3K-Akt signaling, which mediates inhibitory phosphorylation of the upstream proteins tuberous sclerosis complex 2 and proline-rich Akt substrate of 40 kDa and dissociates tuberous sclerosis complex from lysosomal membranes, thus enabling Rheb-mediated activation of mTORC1. Thus, alkaline pHi mimics growth factor-PI3K signaling. Functionally, we also demonstrate that an alkaline pHi increases cap-dependent protein synthesis through inhibitory phosphorylation of eIF4E binding protein 1 and suppresses apoptosis in a PI3K- and mTOR-dependent manner. We speculate that an alkaline pHi promotes a low basal level of cell metabolism (e.g., protein synthesis) that enables cancer cells within growing tumors to proliferate and survive despite limiting growth factors and nutrients, in part through elevated PI3K-mTORC1 and/or PI3K-mTORC2 signaling.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Stephen I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Michl J, Monterisi S, White B, Blaszczak W, Hulikova A, Abdullayeva G, Bridges E, Yin Z, Bodmer WF, Swietach P. Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep 2023; 42:112601. [PMID: 37270778 DOI: 10.1016/j.celrep.2023.112601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness. However, the transport mechanisms underpinning this adaptation have not been studied systematically. Here, we characterize the pHe-pHi relationship in 66 colorectal cancer cell lines and identify the acid-loading anion exchanger 2 (AE2, SLC4A2) as a regulator of resting pHi. Cells adapt to chronic extracellular acidosis by degrading AE2 protein, which raises pHi and reduces acid sensitivity of growth. Acidity inhibits mTOR signaling, which stimulates lysosomal function and AE2 degradation, a process reversed by bafilomycin A1. We identify AE2 degradation as a mechanism for maintaining a conducive pHi in tumors. As an adaptive mechanism, inhibiting lysosomal degradation of AE2 is a potential therapeutic target.
Collapse
Affiliation(s)
- Johanna Michl
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Bobby White
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Wiktoria Blaszczak
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Gulnar Abdullayeva
- MRC Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Esther Bridges
- Department of NDM Experimental Medicine, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, JR Hospital, Headington, Oxford OX3 9DS, UK
| | - Zinan Yin
- Department of NDM Experimental Medicine, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, JR Hospital, Headington, Oxford OX3 9DS, UK
| | - Walter F Bodmer
- MRC Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
12
|
Trindade LM, Torres L, Matos ID, Miranda VC, de Jesus LCL, Cavalcante G, de Souza Oliveira JJ, Cassali GD, Mancha-Agresti P, de Carvalho Azevedo VA, Maioli TU, Cardoso VN, Martins FDS, de Vasconcelos Generoso S. Paraprobiotic Lacticaseibacillus rhamnosus Protects Intestinal Damage in an Experimental Murine Model of Mucositis. Probiotics Antimicrob Proteins 2023; 15:338-350. [PMID: 34524605 DOI: 10.1007/s12602-021-09842-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.
Collapse
Affiliation(s)
- Luísa Martins Trindade
- Programa de Pós-Graduação Em Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel David Matos
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Correia Miranda
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gregório Cavalcante
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Dos Santos Martins
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone de Vasconcelos Generoso
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
13
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
14
|
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86:334-346. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e., MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumor microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumors (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumor growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.
Collapse
Affiliation(s)
- J Pouysségur
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France; Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - I Marchiq
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - S K Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - J Durivault
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - M Ždralević
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - M Vucetic
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| |
Collapse
|
15
|
Chang X, Lu T, Xu R, Wang C, Zhao J, Zhang L. Identification of lactate metabolism-related subtypes and development of a lactate-related prognostic indicator of lung adenocarcinoma. Front Genet 2022; 13:949310. [PMID: 36092870 PMCID: PMC9449370 DOI: 10.3389/fgene.2022.949310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Increasing evidence supports that lactate plays an important role in tumor proliferation, invasion and within the tumor microenvironment (TME). This is particularly relevant in lung adenocarcinoma (LUAD). Therefore, there is a current need to investigate lactate metabolism in LUAD patients and how lactate metabolism is affected by different therapies. Methods: Data from LUAD patients were collected from The Cancer Genome Atlas (TCGA) and patients were divided into two subtypes according to 12 lactate metabolism-related genes to explore the effect of lactate metabolism in LUAD. We established a lactate-related prognostic indicator (LRPI) based on different gene expression profiles. Subsequently, we investigated associations between this LRPI and patient survival, molecular characteristics and response to therapy. Some analyses were conducted using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results: The two LUAD subtypes exhibited different levels of lactate metabolism, in which patients that displayed high lactate metabolism also had a worse prognosis and a poorer immune environment. Indeed, LRPI was shown to accurately predict the prognosis of LUAD patients. Patients with a high LRPI showed a poor prognosis coupled with high sensitivity to chemotherapy using GDSC data. Meanwhile, these patients exhibited a high responsiveness to immunotherapy in TMB (Tumor mutation burden) and TIDE (Tumor Immune Dysfunction and Exclusion) analyses. Conclusion: We validated the effect of lactate metabolism on the prognosis of LUAD patients and established a promising biomarker. LRPI can predict LUAD patient survival, molecular characteristics and response to therapy, which can aid the individualized treatment of LUAD patients.
Collapse
|
16
|
The Differential Metabolic Signature of Breast Cancer Cellular Response to Olaparib Treatment. Cancers (Basel) 2022; 14:cancers14153661. [PMID: 35954325 PMCID: PMC9367310 DOI: 10.3390/cancers14153661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Breast cancer remains a leading cause of female cancer related mortality worldwide. Loss of genomic stability and dysregulation of cellular metabolism are well-recognized features of breast cancer, presenting an opportunity to study the drivers of breast cancer progression and resistance to chemotherapy. The overarching goal of this work is to perform combined analysis of DNA damage repair and cellular metabolism in response to olaparib treatment in a panel of breast cancer cell lines. By applying a combined untargeted metabolomics and molecular biology approach, our findings show dysregulation of amino acid metabolism and metabolic reprogramming from glycolysis to amino acid utilization to be a common feature in all breast cancer cell lines examined, some of which are consistent with findings from the analysis of clinical breast cancer tumours. Functional assessment of genetic alterations offers the scope to design new prognostic tools and inform the design of new chemotherapies or drug combinations. Abstract Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined analysis of which has gained recent popularity. Given the emerging evidence indicating the role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following identification of altered features, we performed pathway enrichment analysis to measure key metabolic changes occurring in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-derived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology and metabolomics studies for the comprehensive characterisation of cell lines with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can be used to identify key oncometabolites and inform the rationale for the design of novel drugs or chemotherapy combinations.
Collapse
|
17
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
18
|
Coe D, Poobalasingam T, Fu H, Bonacina F, Wang G, Morales V, Moregola A, Mitro N, Cheung KC, Ward EJ, Nadkarni S, Aksentijevic D, Bianchi K, Norata GD, Capasso M, Marelli-Berg FM. Loss of hydrogen voltage-gated channel-1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T-cells. JCI Insight 2022; 7:147814. [PMID: 35472029 PMCID: PMC9220931 DOI: 10.1172/jci.insight.147814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hvcn1 is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of reactive oxygen species (ROS). The increased expression of this channel in some cancers, has led to proposing Hvcn1 antagonists as potential therapeutics.While its role in most leukocytes has been studied in-depth, the function of Hvcn1 in T-cells remains poorly defined. We show that HVCN1 plays a non-redundant role in protecting naïve T-cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T-cells display profound differences during the transition from naïve to primed T-cells, including in the preservation of TCR signaling, cellular division and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naïve CD4+ T-cells reprogram to rescue the glycolytic pathway, naïve CD8+ T-cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation.These observations imply heterogeneity between adaptation of naïve CD4+ and CD8+ T-cells to intracellular acidification during activation.
Collapse
Affiliation(s)
- David Coe
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | | - Hongmei Fu
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Guosu Wang
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Valle Morales
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Eleanor J Ward
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dunja Aksentijevic
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
19
|
Lactic Acid Metabolism and Transporter Related Three Genes Predict the Prognosis of Patients with Clear Cell Renal Cell Carcinoma. Genes (Basel) 2022; 13:genes13040620. [PMID: 35456426 PMCID: PMC9032142 DOI: 10.3390/genes13040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Lactic acid was previously considered a waste product of glycolysis, and has now become a key metabolite for cancer development, maintenance and metastasis. So far, numerous studies have confirmed that tumor lactic acid levels are associated with increased metastasis, tumor recurrence and poor prognosis. However, the prognostic value of lactic acid metabolism and transporter related genes in patients with clear cell renal cell carcinoma has not been explored. We selected lactic acid metabolism and transporter related twenty-one genes for LASSO cox regression analysis in the E-MTAB-1980 cohort, and finally screened three genes (PNKD, SLC16A8, SLC5A8) to construct a clinical prognostic model for patients with clear cell renal cell carcinoma. Based on the prognostic model we constructed, the over survival (hazard ratio = 4.117, 95% CI: 1.810−9.362, p < 0.0001) of patients in the high-risk group and the low-risk group in the training set E-MTAB-1980 cohort had significant differences, and similar results (hazard ratio = 1.909, 95% CI: 1.414−2.579 p < 0.0001) were also observed in the validation set TGCA cohort. Using the CIBERSORT algorithm to analyze the differences in immune cell infiltration in different risk groups, we found that dendritic cells, M1 macrophages, and CD4+ memory cells in the high-risk group were significantly lower than those in the low-risk group, while Treg cells were higher than in the low-risk group. Finally, through gene enrichment analysis, we found that the signal pathway that is strongly related to the prognostic model is the cell cycle.
Collapse
|
20
|
Maxson ME, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar H+ATPase using the Legionella effector protein SidK. J Biophys Biochem Cytol 2022; 221:212963. [PMID: 35024770 PMCID: PMC8763849 DOI: 10.1083/jcb.202107174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Boussadia Z, Gambardella AR, Mattei F, Parolini I. Acidic and Hypoxic Microenvironment in Melanoma: Impact of Tumour Exosomes on Disease Progression. Cells 2021; 10:3311. [PMID: 34943819 PMCID: PMC8699343 DOI: 10.3390/cells10123311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
22
|
AbdelRahman MA, Arram EO, Elhadidy T, Hassan MA, Habashy HO, Khairy El Badrawy M. Electron microscopic and pathological changes of lung cancer after intratumoral injection of sodium bicarbonate. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666211119102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer can be treated with surgery, chemotherapy, radiation therapy, targeted therapy and palliative care. Palliative therapy is applied for inoperable lung cancer as it induces tumour necrosis. PH of tumour tissue is acidic; application of sodium bicarbonate (SB) into lung cancer locally via bronchoscopy can change its core pH, which may lead to tumour destruction. We aimed to study the ultrastructural characteristics of lung cancer and to assess the destructive effects of sodium bicarbonate 8.4% local injection on tumour tissue integrity by light and electron microscopies.
Methods:
This study was conducted on 21 patients with central bronchial carcinoma diagnosed according to WHO classification 2015. Three bronchoscopic biopsies were taken; two biopsies before and one after injection of sodium bicarbonate 8.4% solution of 20 ml via transbronchial needle. All biopsies were examined by both light and electron microscopes. The first biopsy was examined to diagnose the tumour morphologically with and without immunostaining. Second and third biopsies were taken before and after SB 8.4% injection to compare pathological changes in tumour tissue integrity as well as cellular ultra-structures. Different lung cancer pathological types were included in the study.
Results:
Tumour tissue integrity and pathological changes were examined in biopsies before and after injection of sodium bicarbonate 8.4%. Extensive necrosis in all cell types of lung cancer was seen after injection of SB; this important finding was delineated by both light and electron microscopies.
Conclusion:
Preliminary ultrastructural study of small biopsy of lung tumor has a complementary role to both morphological and immunohistochemical studies. Local injection of sodium bicarbonate into lung cancer induces extensive necrosis that may reflect its important therapeutic role in lung cancer.
Collapse
Affiliation(s)
| | - Eman O. Arram
- Chest Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tamer Elhadidy
- Chest Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Hany Onsy Habashy
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
23
|
Giannaki M, Ludwig C, Heermann S, Roussa E. Regulation of electrogenic Na + /HCO 3 - cotransporter 1 (NBCe1) function and its dependence on m-TOR mediated phosphorylation of Ser 245. J Cell Physiol 2021; 237:1372-1388. [PMID: 34642952 DOI: 10.1002/jcp.30601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Erra Díaz F, Ochoa V, Merlotti A, Dantas E, Mazzitelli I, Gonzalez Polo V, Sabatté J, Amigorena S, Segura E, Geffner J. Extracellular Acidosis and mTOR Inhibition Drive the Differentiation of Human Monocyte-Derived Dendritic Cells. Cell Rep 2021; 31:107613. [PMID: 32375041 DOI: 10.1016/j.celrep.2020.107613] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
During inflammation, recruited monocytes can differentiate either into macrophages or dendritic cells (DCs); however, little is known about the environmental factors that determine this cell fate decision. Low extracellular pH is a hallmark of a variety of inflammatory processes and solid tumors. Here, we report that low pH dramatically promotes the differentiation of monocytes into DCs (monocyte-derived DCs [mo-DCs]). This process is associated with a reduction in glucose consumption and lactate production, the upregulation of mitochondrial respiratory chain genes, and the inhibition of mTORC1 activity. Interestingly, we also find that both serum starvation and pharmacological inhibition of mTORC1 markedly promote the differentiation of mo-DCs. Our study contributes to better understanding the mechanisms that govern the differentiation of monocytes into DCs and reveals the role of both extracellular pH and mTORC1 as master regulators of monocyte cell fate.
Collapse
Affiliation(s)
- Fernando Erra Díaz
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Valeria Ochoa
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | | | - Ezequiel Dantas
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Ignacio Mazzitelli
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | | | - Juan Sabatté
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | | | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932 Paris, France
| | - Jorge Geffner
- INBIRS, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Genders AJ, Marin EC, Bass JJ, Kuang J, Saner NJ, Smith K, Atherton PJ, Bishop DJ. Ammonium chloride administration prior to exercise has muscle-specific effects on mitochondrial and myofibrillar protein synthesis in rats. Physiol Rep 2021; 9:e14797. [PMID: 33769716 PMCID: PMC7995552 DOI: 10.14814/phy2.14797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/04/2022] Open
Abstract
AIM Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events. METHODS Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise. RESULTS Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression. CONCLUSION This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.
Collapse
Affiliation(s)
- Amanda J. Genders
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Evelyn C. Marin
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
- Department of Medicine (Austin Health)The University of MelbourneMelbourneVictoriaAustralia
| | - Joseph J. Bass
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Nicholas J. Saner
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Philip J. Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - David J. Bishop
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
26
|
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21:151-161. [PMID: 32839570 DOI: 10.1038/s41577-020-0406-2] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
The microenvironment in cancerous tissues is immunosuppressive and pro-tumorigenic, whereas the microenvironment of tissues affected by chronic inflammatory disease is pro-inflammatory and anti-resolution. Despite these opposing immunological states, the metabolic states in the tissue microenvironments of cancer and inflammatory diseases are similar: both are hypoxic, show elevated levels of lactate and other metabolic by-products and have low levels of nutrients. In this Review, we describe how the bioavailability of lactate differs in the microenvironments of tumours and inflammatory diseases compared with normal tissues, thus contributing to the establishment of specific immunological states in disease. A clear understanding of the metabolic signature of tumours and inflammatory diseases will enable therapeutic intervention aimed at resetting the bioavailability of metabolites and correcting the dysregulated immunological state, triggering beneficial cytotoxic, inflammatory responses in tumours and immunosuppressive responses in chronic inflammation.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chin-Hsien Tsai
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Balukoff NC, Ho JJD, Theodoridis PR, Wang M, Bokros M, Llanio LM, Krieger JR, Schatz JH, Lee S. A translational program that suppresses metabolism to shield the genome. Nat Commun 2020; 11:5755. [PMID: 33188200 PMCID: PMC7666154 DOI: 10.1038/s41467-020-19602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.
Collapse
Affiliation(s)
- Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lis M Llanio
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
- Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
28
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
29
|
Birkeland ES, Koch LM, Dechant R. Another Consequence of the Warburg Effect? Metabolic Regulation of Na +/H + Exchangers May Link Aerobic Glycolysis to Cell Growth. Front Oncol 2020; 10:1561. [PMID: 32974190 PMCID: PMC7462004 DOI: 10.3389/fonc.2020.01561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
To adjust cell growth and proliferation to changing environmental conditions or developmental requirements, cells have evolved a remarkable network of signaling cascades that integrates cues from cellular metabolism, growth factor availability and a large variety of stresses. In these networks, cellular information flow is mostly mediated by posttranslational modifications, most notably phosphorylation, or signaling molecules such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc) as a highly conserved cellular signal driving cell growth and proliferation, suggesting that pH-dependent protonation of specific proteins also regulates cellular signaling. In mammalian cells, pHc is regulated by growth factor derived signals and responds to metabolic cues in response to glucose stimulation. Importantly, high pHc has also been identified as a hall mark of cancer, but mechanisms of pH regulation in cancer are only poorly understood. Here, we discuss potential mechanisms of pH regulation with emphasis on metabolic signals regulating pHc by Na+/H+-exchangers. We hypothesize that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to as the Warburg effect. This hypothesis not only provides an explanation for the growth advantage conferred by a switch to aerobic glycolysis beyond providing precursors for accumulation of biomass, but also suggests that treatments targeting pH regulation as a potential anti-cancer therapy may effectively target the result of altered tumor cell metabolism.
Collapse
Affiliation(s)
- Eivind Salmorin Birkeland
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Lisa Maria Koch
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
30
|
Oginuma M, Harima Y, Tarazona OA, Diaz-Cuadros M, Michaut A, Ishitani T, Xiong F, Pourquié O. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 2020; 584:98-101. [PMID: 32581357 PMCID: PMC8278564 DOI: 10.1038/s41586-020-2428-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/02/2020] [Indexed: 02/04/2023]
Abstract
Formation of the body of vertebrate embryos proceeds sequentially by posterior addition of tissues from the tail bud. Cells of the tail bud and the posterior presomitic mesoderm, which control posterior elongation1, exhibit a high level of aerobic glycolysis that is reminiscent of the metabolic status of cancer cells experiencing the Warburg effect2,3. Glycolytic activity downstream of fibroblast growth factor controls WNT signalling in the tail bud3. In the neuromesodermal precursors of the tail bud4, WNT signalling promotes the mesodermal fate that is required for sustained axial elongation, at the expense of the neural fate3,5. How glycolysis regulates WNT signalling in the tail bud is currently unknown. Here we used chicken embryos and human tail bud-like cells differentiated in vitro from induced pluripotent stem cells to show that these cells exhibit an inverted pH gradient, with the extracellular pH lower than the intracellular pH, as observed in cancer cells6. Our data suggest that glycolysis increases extrusion of lactate coupled to protons via the monocarboxylate symporters. This contributes to elevating the intracellular pH in these cells, which creates a favourable chemical environment for non-enzymatic β-catenin acetylation downstream of WNT signalling. As acetylated β-catenin promotes mesodermal rather than neural fate7, this ultimately leads to activation of mesodermal transcriptional WNT targets and specification of the paraxial mesoderm in tail bud precursors. Our work supports the notion that some tumour cells reactivate a developmental metabolic programme.
Collapse
Affiliation(s)
- Masayuki Oginuma
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- IMCR, Gunma University, Gunma, Japan
| | - Yukiko Harima
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tohru Ishitani
- IMCR, Gunma University, Gunma, Japan
- RIMD, Osaka University, Osaka, Japan
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
CAIX-Mediated Control of LIN28/ let-7 Axis Contributes to Metabolic Adaptation of Breast Cancer Cells to Hypoxia. Int J Mol Sci 2020; 21:ijms21124299. [PMID: 32560271 PMCID: PMC7352761 DOI: 10.3390/ijms21124299] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.
Collapse
|
32
|
Cassim S, Vučetić M, Ždralević M, Pouyssegur J. Warburg and Beyond: The Power of Mitochondrial Metabolism to Collaborate or Replace Fermentative Glycolysis in Cancer. Cancers (Basel) 2020; 12:1119. [PMID: 32365833 PMCID: PMC7281550 DOI: 10.3390/cancers12051119] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
Collapse
Affiliation(s)
- Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, CSM, 98000 Monaco, Monaco;
| | - Milica Vučetić
- Department of Medical Biology, Centre Scientifique de Monaco, CSM, 98000 Monaco, Monaco;
| | - Maša Ždralević
- Centre A. Lacassagne, University Côte d’Azur, IRCAN, CNRS, 06189 Nice, France;
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, CSM, 98000 Monaco, Monaco;
- Centre A. Lacassagne, University Côte d’Azur, IRCAN, CNRS, 06189 Nice, France;
| |
Collapse
|
33
|
Adhikari M, Adhikari B, Ghimire B, Baboota S, Choi EH. Cold Atmospheric Plasma and Silymarin Nanoemulsion Activate Autophagy in Human Melanoma Cells. Int J Mol Sci 2020; 21:ijms21061939. [PMID: 32178401 PMCID: PMC7139470 DOI: 10.3390/ijms21061939] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction. Methods: The temperature and pH of the media, along with the cell number, were evaluated. The intracellular glucose level and PI3K/mTOR and EGFR downstream pathways were assessed. Autophagy-related genes, related transcriptional factors, and autophagy induction were estimated using confocal microscopy, flow cytometry, and ELISA. Results: CAP treatment increased the temperature and pH of the media, while its combination with SN resulted in a decrease in intracellular ATP with the downregulation of PI3K/AKT/mTOR survival and RAS/MEK transcriptional pathways. Co-treatment blocked downstream paths of survival pathways and reduced PI3K (2 times), mTOR (10 times), EGFR (5 times), HRAS (5 times), and MEK (10 times). CAP and SN co-treated treatment modulates transcriptional factor expressions (ZKSCAN3, TFEB, FOXO1, CRTC2, and CREBBP) and specific genes (BECN-1, AMBRA-1, MAP1LC3A, and SQSTM) related to autophagy induction. Conclusion: CAP and SN together activate autophagy in G-361 cells by activating PI3K/mTOR and EGFR pathways, expressing autophagy-related transcription factors and genes.
Collapse
Affiliation(s)
- Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
- Correspondence: (M.A.); (E.H.C.)
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India;
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
- Correspondence: (M.A.); (E.H.C.)
| |
Collapse
|
34
|
Parks SK, Mueller-Klieser W, Pouysségur J. Lactate and Acidity in the Cancer Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033556] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.
Collapse
Affiliation(s)
- Scott K. Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Pouysségur
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre A. Lacassagne, University Côte d'Azur, 06189 Nice, France
| |
Collapse
|
35
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
36
|
Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtar ML, Li Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater Sci 2020; 7:3683-3692. [PMID: 31361291 DOI: 10.1039/c9bm00641a] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synergistic cancer starvation/ROS-mediated/chemo-therapy is developed through a cascade reaction with enzyme glucose oxidase (GOX) modified on the surface of an Fe-based metal organic framework (MOF(Fe)) and drug camptothecin (CPT) loaded into the cavities of MOF(Fe). Once internalized by tumor cells, GOX catalyzes endogenous glucose into hydrogen peroxide (H2O2) and gluconic acid (H+) enabling starvation therapy through choking off energy (glucose) supply. Meanwhile, the acidic micro-environment of tumor enhanced by the generated H+ degrades the MOF(Fe) simultaneously releasing CPT for chemotherapy and Fe3+, catalyzing H2O2 into one of the strongest reactive oxygen species (ROS) ˙OH enabling ROS-mediated therapy. Both in vitro and in vivo results show remarkable tri-modal synergistic anticancer effects. This work may shed some light on the development of novel multi-modal cancer therapies without any external intervention.
Collapse
Affiliation(s)
- Zongjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidification. Int J Mol Sci 2020; 21:ijms21031173. [PMID: 32050714 PMCID: PMC7037345 DOI: 10.3390/ijms21031173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.
Collapse
|
38
|
Vadla R, Chatterjee N, Haldar D. Cellular environment controls the dynamics of histone H3 lysine 56 acetylation in response to DNA damage in mammalian cells. J Biosci 2020. [DOI: 10.1007/s12038-019-9986-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Jia M, Zheng D, Wang X, Zhang Y, Chen S, Cai X, Mo L, Hu Z, Li H, Zhou Z, Li J. Cancer Cell enters reversible quiescence through Intracellular Acidification to resist Paclitaxel Cytotoxicity. Int J Med Sci 2020; 17:1652-1664. [PMID: 32669967 PMCID: PMC7359388 DOI: 10.7150/ijms.46034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cells can enter quiescent or dormant state to resist anticancer agents while maintaining the potential of reactivation. However, the molecular mechanism underlying quiescence entry and reactivation remains largely unknown. In this paper, cancer cells eventually entered a reversible quiescent state to resist long-term paclitaxel (PTX) stress. The quiescent cells were characterized with Na+/H+ exchanger 1 (NHE1) downregulation and showed acidic intracellular pH (pHi). Accordingly, decreasing pHi by NHE1 inhibitor could induce cell enter quiescence. Further, acidic pHi could activate the ubiquitin-proteasome system and inhibiting proteasome activity by MG132 prevented cells entering quiescence. In addition, we show that after partial release, the key G1-S transcription factor E2F1 protein level was not recovered, while MCM7 protein returned to normal level in the reactivated cells. More importantly, MCM7 knockdown inhibited G1/S genes transcription and inhibited the reactivated proliferation. Taken together, this study demonstrates a regulatory function of intracellular acidification and subsequent protein ubiquitination on quiescence entry, and reveals a supportive effect of MCM7 on the quiescence-reactivated proliferation.
Collapse
Affiliation(s)
- Min Jia
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuyun Wang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjun Zhang
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Sansan Chen
- Department of Urology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiangsheng Cai
- Clinical Laboratory, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Vadla R, Chatterjee N, Haldar D. Cellular environment controls the dynamics of histone H3 lysine 56 acetylation in response to DNA damage in mammalian cells. J Biosci 2020; 45:19. [PMID: 31965997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epigenetic changes play a crucial role in sensing signals and responding to fluctuations in the extracellular environment. How the cellular micro-environment affects DNA damage response signalling in chromatin context is not extensively studied. Histone acetylation is dynamic and very sensitive to changes in the extracellular environment. Existing literature on H3 lysine 56 acetylation (H3K56ac) levels upon DNA damage in mammals presents a conflicting picture. The occurrence of both increased and decreased H3K56ac upon DNA damage in our experiments led us to investigate the role of the micro-environment on H3K56ac. Here, we show that the global levels of H3K56ac increase as cells grow from low density to high density while SIRT1 and SIRT6 expression decrease. Additionally, rising lactic acid levels increase H3K56ac. Our results show that cell density and accumulation of metabolites affect dynamics of H3K56ac in response to DNA damage. Upon DNA damage, H3K56ac increases in low density cells with low initial acetylation, while acetylation decreases in high cell density cells. These results highlight that H3K56ac levels upon DNA damage are dependent on the metabolites in the extracellular milieu which impact chromatin structure by regulating chromatin modifying enzymes. Accumulation of lactic acid at high cell density reflects conditions similar to the tumour micro-environment. As H3K56ac increases in tumours, lactic acid and low pH might alter H3K56ac in tumours, leading to deregulated gene expression, contributing to tumour progression.
Collapse
Affiliation(s)
- Raghavendra Vadla
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500 039, India
| | | | | |
Collapse
|
41
|
Bando K, Zhang Z, Graham D, Faulds K, Fujita K, Kawata S. Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies. Analyst 2020; 145:5768-5775. [DOI: 10.1039/d0an00986e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalized plasmonic Ag nano-assemblies moving in a living cell were employed to visualize the spatiotemporal change of intracellular pH by surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Kazuki Bando
- Department of Applied Physics
- Osaka University
- Suita
- Japan
| | - Zhiqiang Zhang
- CAS Key Lab of Bio-Medical Diagnostics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou
- China
| | - Duncan Graham
- Centre for Molecular Nanometrology
- Department of Pure and Applied Chemistry
- WestCHEM
- University of Strathclyde
- Technology and Innovation Centre
| | - Karen Faulds
- Centre for Molecular Nanometrology
- Department of Pure and Applied Chemistry
- WestCHEM
- University of Strathclyde
- Technology and Innovation Centre
| | - Katumasa Fujita
- Department of Applied Physics
- Osaka University
- Suita
- Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory
| | - Satoshi Kawata
- Department of Applied Physics
- Osaka University
- Suita
- Japan
- Serendip Research
| |
Collapse
|
42
|
Pathria G, Lee JS, Hasnis E, Tandoc K, Scott DA, Verma S, Feng Y, Larue L, Sahu AD, Topisirovic I, Ruppin E, Ronai ZA. Translational reprogramming marks adaptation to asparagine restriction in cancer. Nat Cell Biol 2019; 21:1590-1603. [PMID: 31740775 PMCID: PMC7307327 DOI: 10.1038/s41556-019-0415-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023]
Abstract
While amino acid restriction remains an attractive strategy for cancer therapy, metabolic adaptations limit its effectiveness. Here we demonstrate a role of translational reprogramming in the survival of asparagine-restricted cancer cells. Asparagine limitation in melanoma and pancreatic cancer cells activates RTK-MAPK as part of a feedforward mechanism involving mTORC1-dependent increase in MNK1 and eIF4E, resulting in enhanced translation of ATF4 mRNA. MAPK inhibition attenuates translational induction of ATF4 and the expression of its target asparagine biosynthesis enzyme ASNS, sensitizing melanoma and pancreatic tumors to asparagine restriction, reflected in their growth inhibition. Correspondingly, low ASNS expression is among the top predictors of response to MAPK signaling inhibitors in melanoma patients and is associated with favorable prognosis, when combined with low MAPK signaling activity. While unveiling a previously unknown axis of adaptation to asparagine deprivation, these studies offer the rationale for clinical evaluation of MAPK inhibitors in combination with asparagine restriction approaches.
Collapse
Affiliation(s)
- Gaurav Pathria
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA.,Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Erez Hasnis
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kristofferson Tandoc
- Gerald Bronfman Department of Oncology, Lady Davis Institute, SMBD Jewish General Hospital, and Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada
| | - David A Scott
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sachin Verma
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, INSERM U1021, Orsay, France.,Universitê Paris-Sud and Université Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Avinash D Sahu
- Harvard School of Public Health and Massachusetts General Hospital, Boston, MA, USA
| | - Ivan Topisirovic
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
43
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
44
|
Brito AS, Soto Diaz S, Van Vooren P, Godard P, Marini AM, Boeckstaens M. Pib2-Dependent Feedback Control of the TORC1 Signaling Network by the Npr1 Kinase. iScience 2019; 20:415-433. [PMID: 31622882 PMCID: PMC6817644 DOI: 10.1016/j.isci.2019.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Silvia Soto Diaz
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Pascale Van Vooren
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Patrice Godard
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Anna Maria Marini
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Mélanie Boeckstaens
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| |
Collapse
|
45
|
Bonnet U. The sour side of vitamin C might mediate neuroprotective, anticonvulsive and antidepressant-like effects. Med Hypotheses 2019; 131:109320. [DOI: 10.1016/j.mehy.2019.109320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
|
46
|
Walton ZE, Brooks RC, Dang CV. mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB. Bioessays 2019; 41:e1800265. [PMID: 31157925 PMCID: PMC6730656 DOI: 10.1002/bies.201800265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/18/2019] [Indexed: 02/04/2023]
Abstract
Acidity, generated in hypoxia or hypermetabolic states, perturbs homeostasis and is a feature of solid tumors. That acid peripherally disperses lysosomes is a three-decade-old observation, yet one little understood or appreciated. However, recent work has recognized the inhibitory impact this spatial redistribution has on mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of metabolism. This finding argues for a paradigm shift in localization of mTORC1 activator Ras homolog enriched in brain (RHEB), a conclusion several others have now independently reached. Thus, mTORC1, known to sense amino acids, mitogens, and energy to restrict biosynthesis to times of adequate resources, also senses pH and, via dampened mTOR-governed synthesis of clock proteins, regulates the circadian clock to achieve concerted responses to metabolic stress. While this may allow cancer to endure metabolic deprivation, immune cell mTOR signaling likewise exhibits pH sensitivity, suggesting that suppression of antitumor immune function by solid tumor acidity may additionally fuel cancers, an obstacle potentially reversible through therapeutic pH manipulation.
Collapse
Affiliation(s)
| | | | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017
- The Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
47
|
mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro. Cells 2019; 8:cells8050431. [PMID: 31075885 PMCID: PMC6563036 DOI: 10.3390/cells8050431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Mechanistic or Mammalian Target of Rapamycin (mTOR) is a major signaling pathway in eukaryotic cells belonging to the P13K-related kinase family of the serine/threonine protein kinase. It has been established that mTOR plays a central role in cellular processes and implicated in various cancers, diabetes, and in the aging process with very poor prognosis. Inhibition of the mTOR pathway in the cells may improve the therapeutic index in cancer treatment. Photodynamic therapy (PDT) has been established to selectively eradicate neoplasia at clearly delineated malignant lesions. This review highlights recent advances in understanding the role or regulation of mTOR in cancer therapy. It also discusses how mTOR currently contributes to cancer as well as future perspectives on targeting mTOR therapeutically in cancer in vitro.
Collapse
|
48
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
49
|
Vander Linden C, Corbet C. Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Front Oncol 2019; 9:159. [PMID: 30941310 PMCID: PMC6433943 DOI: 10.3389/fonc.2019.00159] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSC) or tumor-initiating cells represent a small subpopulation of cells within the tumor bulk that share features with somatic stem cells, such as self-renewal and pluripotency. From a clinical point of view, CSC are thought to be the main drivers of tumor relapse in patients by supporting treatment resistance and dissemination to distant organs. Both genome instability and microenvironment-driven selection support tumor heterogeneity and enable the emergence of resistant cells with stem-like properties, when therapy is applied. Besides hypoxia and nutrient deprivation, acidosis is another selection barrier in the tumor microenvironment (TME) which provides a permissive niche to shape more aggressive and fitter cancer cell phenotypes. This review describes our current knowledge about the influence of the "acidic niche" on the stem-like phenotypic features of cancer cells. In addition, we briefly survey new therapeutic options that may help eradicate CSC by integrating and/or exploiting the acidic niche, and thereby contribute to prevent the occurrence of therapy resistance as well as metastatic dissemination.
Collapse
Affiliation(s)
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
50
|
Genders AJ, Martin SD, McGee SL, Bishop DJ. A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6 myocytes. Am J Physiol Cell Physiol 2019; 316:C404-C414. [PMID: 30649921 DOI: 10.1152/ajpcell.00214.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exercise stimulates mitochondrial biogenesis and increases mitochondrial respiratory function and content. However, during high-intensity exercise muscle pH can decrease below pH 6.8 with a concomitant increase in lactate concentration. This drop in muscle pH is associated with reduced exercise-induced mitochondrial biogenesis, while increased lactate may act as a signaling molecule to affect mitochondrial biogenesis. Therefore, in this study we wished to determine the impact of altering pH and lactate concentration in L6 myotubes on genes and proteins known to be involved in mitochondrial biogenesis. We also examined mitochondrial respiration in response to these perturbations. Differentiated L6 myotubes were exposed to normal (pH 7.5)-, low (pH 7.0)-, or high (pH 8.0)-pH media with and without 20 mM sodium l-lactate for 1 and 6 h. Low pH and 20 mM sodium l-lactate resulted in decreased Akt (Ser473) and AMPK (T172) phosphorylation at 1 h compared with controls, while at 6 h the nuclear localization of histone deacetylase 5 (HDAC5) was decreased. When the pH was increased both Akt (Ser473) and AMPK (T172) phosphorylation was increased at 1 h. Overall increased lactate decreased the nuclear content of HDAC5 at 6 h. Exposure to both high- and low-pH media decreased basal mitochondrial respiration, ATP turnover, and maximum mitochondrial respiratory capacity. These data indicate that muscle pH affects several metabolic signaling pathways, including those required for mitochondrial function.
Collapse
Affiliation(s)
- Amanda J Genders
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Sheree D Martin
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia.,Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup, Western Australia , Australia
| |
Collapse
|