1
|
Weeratunga S, Gormal RS, Liu M, Eldershaw D, Livingstone EK, Malapaka A, Wallis TP, Bademosi AT, Jiang A, Healy MD, Meunier FA, Collins BM. Interrogation and validation of the interactome of neuronal Munc18-interacting Mint proteins with AlphaFold2. J Biol Chem 2024; 300:105541. [PMID: 38072052 PMCID: PMC10820826 DOI: 10.1016/j.jbc.2023.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Munc18-1. Here, we have used AlphaFold2 to identify and then validate the mechanisms that underpin both the specific interactions of neuronal Mint proteins with Munc18-1 as well as their wider interactome. We found that a short acidic α-helical motif within Mint1 and Mint2 is necessary and sufficient for specific binding to Munc18-1 and binds a conserved surface on Munc18-1 domain3b. In Munc18-1/2 double knockout neurosecretory cells, mutation of the Mint-binding site reduces the ability of Munc18-1 to rescue exocytosis, and although Munc18-1 can interact with Mint and Sx1a (Syntaxin1a) proteins simultaneously in vitro, we find that they have mutually reduced affinities, suggesting an allosteric coupling between the proteins. Using AlphaFold2 to then examine the entire cellular network of putative Mint interactors provides a structural model for their assembly with a variety of known and novel regulatory and cargo proteins including ADP-ribosylation factor (ARF3/ARF4) small GTPases and the AP3 clathrin adaptor complex. Validation of Mint1 interaction with a new predicted binder TJAP1 (tight junction-associated protein 1) provides experimental support that AlphaFold2 can correctly predict interactions across such large-scale datasets. Overall, our data provide insights into the diversity of interactions mediated by the Mint family and show that Mints may help facilitate a key trigger point in SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) complex assembly and vesicle fusion.
Collapse
Affiliation(s)
- Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Meihan Liu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Denaye Eldershaw
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Emma K Livingstone
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Anmin Jiang
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Michael D Healy
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| |
Collapse
|
2
|
Gauthier KD, Rocheleau CE. LIN-10 can promote LET-23 EGFR signaling and trafficking independently of LIN-2 and LIN-7. Mol Biol Cell 2021; 32:788-799. [PMID: 33566630 PMCID: PMC8108513 DOI: 10.1091/mbc.e20-07-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During Caenorhabditis elegans larval development, an inductive signal mediated by the LET-23 EGFR (epidermal growth factor receptor), specifies three of six vulva precursor cells (VPCs) to adopt vulval cell fates. An evolutionarily conserved complex consisting of PDZ domain-containing scaffold proteins LIN-2 (CASK), LIN-7 (Lin7 or Veli), and LIN-10 (APBA1 or Mint1) (LIN-2/7/10) mediates basolateral LET-23 EGFR localization in the VPCs to permit signal transmission and development of the vulva. We recently found that the LIN-2/7/10 complex likely forms at Golgi ministacks; however, the mechanism through which the complex targets the receptor to the basolateral membrane remains unknown. Here we found that overexpression of LIN-10 or LIN-7 can compensate for loss of their complex components by promoting LET-23 EGFR signaling through previously unknown complex-independent and receptor-dependent pathways. In particular, LIN-10 can independently promote basolateral LET-23 EGFR localization, and its complex-independent function uniquely requires its PDZ domains that also regulate its localization to Golgi. These studies point to a novel complex-independent function for LIN-7 and LIN-10 that broadens our understanding of how this complex regulates targeted sorting of membrane proteins.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University, Montreal, QC H4A 3J1, Canada.,Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Astroski JW, Akporyoe LK, Androphy EJ, Custer SK. Mutations in the COPI coatomer subunit α-COP induce release of Aβ-42 and amyloid precursor protein intracellular domain and increase tau oligomerization and release. Neurobiol Aging 2021; 101:57-69. [PMID: 33582567 DOI: 10.1016/j.neurobiolaging.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Understanding the cellular processes that lead to Alzheimer's disease (AD) is critical, and one key lies in the genetics of families with histories of AD. Mutations a complex known as COPI were found in families with AD. The COPI complex is involved in protein processing and trafficking. Intriguingly, several recent publications have found components of the COPI complex can affect the metabolism of pathogenic AD proteins. We reduced levels of the COPI subunit α-COP, altering maturation and cleavage of amyloid precursor protein (APP), resulting in decreased release of Aβ-42 and decreased accumulation of the AICD. Depletion of α-COP reduced uptake of proteopathic Tau seeds and reduces intracellular Tau self-association. Expression of AD-associated mutant α-COP altered APP processing, resulting in increased release of Aβ-42 and increased intracellular Tau aggregation and release of Tau oligomers. These results show that COPI coatomer function modulates processing of both APP and Tau, and expression of AD-associated α-COP confers a toxic gain of function, resulting in potentially pathogenic changes in both APP and Tau.
Collapse
Affiliation(s)
- Jacob W Astroski
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Agrawal RR, Montesinos J, Larrea D, Area-Gomez E, Pera M. The silence of the fats: A MAM's story about Alzheimer. Neurobiol Dis 2020; 145:105062. [PMID: 32866617 DOI: 10.1016/j.nbd.2020.105062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of contact sites was a breakthrough in cell biology. We have learned that an organelle cannot function in isolation, and that many cellular functions depend on communication between two or more organelles. One such contact site results from the close apposition of the endoplasmic reticulum (ER) and mitochondria, known as mitochondria-associated ER membranes (MAMs). These intracellular lipid rafts serve as hubs for the regulation of cellular lipid and calcium homeostasis, and a growing body of evidence indicates that MAM domains modulate cellular function in both health and disease. Indeed, MAM dysfunction has been described as a key event in Alzheimer disease (AD) pathogenesis. Our most recent work shows that, by means of its affinity for cholesterol, APP-C99 accumulates in MAM domains of the ER and induces the uptake of extracellular cholesterol as well as its trafficking from the plasma membrane to the ER. As a result, MAM functionality becomes chronically upregulated while undergoing continual turnover. The goal of this review is to discuss the consequences of C99 elevation in AD, specifically the upregulation of cholesterol trafficking and MAM activity, which abrogate cellular lipid homeostasis and disrupt the lipid composition of cellular membranes. Overall, we present a novel framework for AD pathogenesis that can be linked to the many complex alterations that occur during disease progression, and that may open a door to new therapeutic strategies.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Marta Pera
- Departament of Basic Sciences, Facultat de Medicina I Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallés, 08195, Spain.
| |
Collapse
|
5
|
Iannuzzi F, Sirabella R, Canu N, Maier TJ, Annunziato L, Matrone C. Fyn Tyrosine Kinase Elicits Amyloid Precursor Protein Tyr682 Phosphorylation in Neurons from Alzheimer's Disease Patients. Cells 2020; 9:E1807. [PMID: 32751526 PMCID: PMC7463977 DOI: 10.3390/cells9081807] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid β peptides. Of interest, Fyn tyrosine kinase (TK) interaction with APP Tyr682 residue increases in AD neurons. Here we proved that when Fyn TK was overexpressed it elicited APP Tyr682 phosphorylation in neurons from healthy donors and promoted the amyloidogenic APP processing with Aβ peptides accumulation and neuronal death. Phosphorylation of APP at Tyr (pAPP-Tyr) increased in neurons of AD patients and AD neurons that exhibited high pAPP-Tyr also had higher Fyn TK activity. Fyn TK inhibition abolished the pAPP-Tyr and reduced Aβ42 secretion in AD neurons. In addition, the multidomain adaptor protein Fe65 controlled the Fyn-mediated pAPP-Tyr, warranting the possibility of targeting the Fe65-APP-Fyn pathway to develop innovative strategies in AD. Altogether, these results strongly emphasize the relevance of focusing on pAPP Tyr682 either for diagnostic purposes, as an early biomarker of the disease, or for pharmacological targeting, using Fyn TKI.
Collapse
Affiliation(s)
- Filomena Iannuzzi
- Department of Biomedicine, Aarhus University, Aarhus C, 8000 Aarhus, Denmark;
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Nadia Canu
- Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Institute of Biochemistry and Cell Biology, CNR, 00015 Monterotondo, Rome, Italy
| | - Thorsten J. Maier
- Paul-Ehrlich-Institut, (Federal Institute for Vaccines and Biomedicines), 63225 Langen, Germany;
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Gianturco, 80131 Naples, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
6
|
Mórotz GM, Glennon EB, Greig J, Lau DHW, Bhembre N, Mattedi F, Muschalik N, Noble W, Vagnoni A, Miller CCJ. Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathol Commun 2019; 7:200. [PMID: 31806024 PMCID: PMC6896704 DOI: 10.1186/s40478-019-0857-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Damage to axonal transport is an early pathogenic event in Alzheimer’s disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer’s disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer’s disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer’s disease.
Collapse
|
7
|
Chang X, Wang J, Jiang H, Shi L, Xie J. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:141. [PMID: 31231190 PMCID: PMC6560157 DOI: 10.3389/fnmol.2019.00141] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific pathological mechanisms underlying these disorders have remained elusive, ion channel dysfunction has become increasingly accepted as a potential mechanism for neurodegenerative diseases. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by the HCN1-4 gene family and conduct the hyperpolarization-activated current (I h). These channels play important roles in modulating cellular excitability, rhythmic activity, dendritic integration, and synaptic transmission. In the present review, we first provide a comprehensive picture of the role of HCN channels in PD by summarizing their role in the regulation of neuronal activity in PD-related brain regions. Dysfunction of I h may participate in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity and represent a pathogenic mechanism in PD. Given current reports of the critical role of HCN channels in neuroinflammation and depression, we also discussed the putative contribution of HCN channels in inflammatory processes and non-motor symptoms in PD. In the second section, we summarize how HCN channels regulate the formation of β-amyloid peptide in AD and the role of these channels in learning and memory. Finally, we briefly discuss the effects of HCN channels in ALS and SMA based on existing discoveries.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
9
|
Eggert S, Gonzalez AC, Thomas C, Schilling S, Schwarz SM, Tischer C, Adam V, Strecker P, Schmidt V, Willnow TE, Hermey G, Pietrzik CU, Koo EH, Kins S. Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell Mol Life Sci 2018; 75:301-322. [PMID: 28799085 PMCID: PMC11105302 DOI: 10.1007/s00018-017-2625-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Proteolytic cleavage of the amyloid precursor protein (APP) by α-, β- and γ-secretases is a determining factor in Alzheimer's disease (AD). Imbalances in the activity of all three enzymes can result in alterations towards pathogenic Aβ production. Proteolysis of APP is strongly linked to its subcellular localization as the secretases involved are distributed in different cellular compartments. APP has been shown to dimerize in cis-orientation, affecting Aβ production. This might be explained by different substrate properties defined by the APP oligomerization state or alternatively by altered APP monomer/dimer localization. We investigated the latter hypothesis using two different APP dimerization systems in HeLa cells. Dimerization caused a decreased localization of APP to the Golgi and at the plasma membrane, whereas the levels in the ER and in endosomes were increased. Furthermore, we observed via live cell imaging and biochemical analyses that APP dimerization affects its interaction with LRP1 and SorLA, suggesting that APP dimerization modulates its interplay with sorting molecules and in turn its localization and processing. Thus, pharmacological approaches targeting APP oligomerization properties might open novel strategies for treatment of AD.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| | - A C Gonzalez
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Biochemistry, Christian Albrechts University Kiel, 24118, Kiel, Germany
| | - C Thomas
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S M Schwarz
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Medical Virology, University of Frankfurt, 60596, Frankfurt, Germany
| | | | - V Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - P Strecker
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - V Schmidt
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - T E Willnow
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - C U Pietrzik
- Institute for Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - E H Koo
- Department of Neuroscience, University of California San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
10
|
Sobu Y, Furukori K, Chiba K, Nairn AC, Kinjo M, Hata S, Suzuki T. Phosphorylation of multiple sites within an acidic region of Alcadein α is required for kinesin-1 association and Golgi exit of Alcadein α cargo. Mol Biol Cell 2017; 28:3844-3856. [PMID: 29093024 PMCID: PMC5739299 DOI: 10.1091/mbc.e17-05-0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
Alcadein a (Alca) is reported to function as a cargo receptor when associated with kinesin-1. Phosphorylation of three serine residues in the acidic region located between the two WD motifs of Alca is required for interaction with kinesin-1 and Golgi exit of Alca cargo. Alcadein α (Alcα) is a major cargo of kinesin-1 that is subjected to anterograde transport in neuronal axons. Two tryptophan- and aspartic acid-containing (WD) motifs located in its cytoplasmic domain directly bind the tetratricopeptide repeat (TPR) motifs of the kinesin light chain (KLC), which activate kinesin-1 and recruit kinesin-1 to Alcα cargo. We found that phosphorylation of three serine residues in the acidic region located between the two WD motifs is required for interaction with KLC. Phosphorylation of these serine residues may alter the disordered structure of the acidic region to induce direct association with KLC. Replacement of these serines with Ala results in a mutant that is unable to bind kinesin-1, which impairs exit of Alcα cargo from the Golgi. Despite this deficiency, the compromised Alcα mutant was still transported, albeit improperly by vesicles following missorting of the Alcα mutant with amyloid β-protein precursor (APP) cargo. This suggests that APP partially compensates for defective Alcα in anterograde transport by providing an alternative cargo receptor for kinesin-1.
Collapse
Affiliation(s)
- Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keiko Furukori
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Kyoko Chiba
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
11
|
M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer's disease genes and improving memory. Proc Natl Acad Sci U S A 2017; 114:E9135-E9144. [PMID: 29073110 PMCID: PMC5664514 DOI: 10.1073/pnas.1707544114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hundreds of failed clinical trials with Alzheimer’s disease (AD) patients over the last fifteen years demonstrate that the one-target–one-disease approach is not effective in AD. In silico, structure-based, multitarget drug design approaches to treat multifactorial diseases have not been successful in the context of AD either. Here, we show that M344, an inhibitor of class I and IIB histone deacetylases, affects multiple AD-related genes, including those related to both early- and late-onset AD. We also show that M344 improves memory in the 3xTg AD mouse model. This work endorses a shift to a multitargeted approach to the treatment of AD, supporting the therapeutic potential of a single small molecule with an epigenetic mechanism of action. Alzheimer’s disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (Aβ), reduces tau Ser396 phosphorylation, and decreases both β-secretase (BACE) and APOEε4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, α-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPPα and CTFα APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic (APPsw/PS1M146V/TauP301L) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases.
Collapse
|
12
|
Zhao LX, Wang Y, Liu T, Wang YX, Chen HZ, Xu JR, Qiu Y. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther 2017; 23:526-534. [PMID: 28429536 DOI: 10.1111/cns.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS β-amyloid (Aβ) aggregation and deposition play a central role in the pathogenic process of Alzheimer's disease (AD). α-Mangostin (α-M), a polyphenolic xanthone, have been shown to dissociate Aβ oligomers. In this study, we further investigated the effect of α-M on Aβ production and its molecular mechanism. METHODS The Aβ and soluble amyloid precursor protein α (sAPPα) in culture medium of cortical neurons were measured by ELISA. The activities of α-, β-, and γ-secretases were assayed, and the interaction between α-M and β- or γ-secretases was simulated by molecular docking. RESULTS α-M significantly decreased Aβ40 and Aβ42 production. α-M did not affect the expression of enzymes involved in nonamyloidogenic and amyloidogenic pathways, but significantly decreased the activities of β-secretase and likely γ-secretase with IC50 13.22 nmol·L-1 and 16.98 nmol·L-1 , respectively. Molecular docking demonstrated that α-M interacted with β-site amyloid precursor protein cleaving enzyme 1 and presenilin 1 to interfere with their active sites. CONCLUSIONS Our data demonstrate that α-M decreases Aβ production through inhibiting activities of β-secretase and likely γ-secretase in the amyloidogenic pathway. The current data together with previous study indicated that α-M could be a novel neuroprotective agent through intervention of multiple pathological processes of AD.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Liu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Xia Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Rong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
14
|
Maturation and processing of the amyloid precursor protein is regulated by the potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2). Biochem Biophys Res Commun 2017; 483:352-358. [DOI: 10.1016/j.bbrc.2016.12.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
|
15
|
Motodate R, Saito Y, Hata S, Suzuki T. Expression and localization of X11 family proteins in neurons. Brain Res 2016; 1646:227-234. [DOI: 10.1016/j.brainres.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
16
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
17
|
New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies. Int J Mol Sci 2015; 16:29446-53. [PMID: 26690411 PMCID: PMC4691124 DOI: 10.3390/ijms161226181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022] Open
Abstract
The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer’s disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies.
Collapse
|
18
|
Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes 2014; 63:4291-301. [PMID: 25008180 DOI: 10.2337/db14-0375] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defects in insulin production and signaling are suspected to share a key role in diabetes and Alzheimer disease (AD), two age-related pathologies. In this study, we investigated the interrelation between AD and diabetes using a high-fat diet (HFD) in a mouse model of genetically induced AD-like neuropathology (3xTg-AD). We first observed that cerebral expression of human AD transgenes led to peripheral glucose intolerance, associated with pancreatic human Aβ accumulation. High-fat diet enhanced glucose intolerance, brain soluble Aβ, and memory impairment in 3xTg-AD mice. Strikingly, a single insulin injection reversed the deleterious effects of HFD on memory and soluble Aβ levels, partly through changes in Aβ production and/or clearance. Our results are consistent with the development of a vicious cycle between AD and diabetes, potentiating both peripheral metabolic disorders and AD neuropathology. The capacity of insulin to rapidly break the deleterious effects of this cycle on soluble Aβ concentrations and memory has important therapeutic implications.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de Pharmacie, Université Laval, Québec, Canada Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
| | - Phillip J White
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC Département de Medicine, Axe de Cardiologie, Faculté de Médicine de l'Université Laval, Québec, Canada Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | - Isabelle St-Amour
- Faculté de Pharmacie, Université Laval, Québec, Canada Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada Département de Recherche et Développement, Héma-Québec, Québec, Canada
| | - Geneviève Chevrier
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada Département de Medicine, Axe de Cardiologie, Faculté de Médicine de l'Université Laval, Québec, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | - Yves Giguere
- Faculté de Médicine, Université Laval, Québec, Canada Centre de Recherche du Centre Hospitalier de l'Université de Québec, Hôpital Saint-François d'Assise, Québec, Canada
| | - Andre Marette
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada Département de Medicine, Axe de Cardiologie, Faculté de Médicine de l'Université Laval, Québec, Canada Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Frederic Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
| |
Collapse
|
19
|
Takei N, Sobu Y, Kimura A, Urano S, Piao Y, Araki Y, Taru H, Yamamoto T, Hata S, Nakaya T, Suzuki T. Cytoplasmic fragment of Alcadein α generated by regulated intramembrane proteolysis enhances amyloid β-protein precursor (APP) transport into the late secretory pathway and facilitates APP cleavage. J Biol Chem 2014; 290:987-95. [PMID: 25406318 DOI: 10.1074/jbc.m114.599852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo.
Collapse
Affiliation(s)
- Norio Takei
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yuriko Sobu
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Ayano Kimura
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Satomi Urano
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yi Piao
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Yoichi Araki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Hidenori Taru
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Saori Hata
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Tadashi Nakaya
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| | - Toshiharu Suzuki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan and
| |
Collapse
|
20
|
Amyloid-precursor-protein-lowering small molecules for disease modifying therapy of Alzheimer's disease. PLoS One 2013; 8:e82255. [PMID: 24367508 PMCID: PMC3867334 DOI: 10.1371/journal.pone.0082255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly with progressive cognitive decline and memory loss. According to the amyloid-hypothesis, AD is caused by generation and subsequent cerebral deposition of β-amyloid (Aβ). Aβ is generated through sequential cleavage of the transmembrane Amyloid-Precursor-Protein (APP) by two endoproteinases termed beta- and gamma-secretase. Increased APP-expression caused by APP gene dosage effects is a risk factor for the development of AD. Here we carried out a large scale screen for novel compounds aimed at decreasing APP-expression. For this we developed a screening system employing a cell culture model of AD. A total of 10,000 substances selected for their ability of drug-likeness and chemical diversity were tested for their potential to decrease APP-expression resulting in reduced Aβ-levels. Positive compounds were further evaluated for their effect at lower concentrations, absence of cytotoxicity and specificity. The six most promising compounds were characterized and structure function relationships were established. The novel compounds presented here provide valuable information for the development of causal therapies for AD.
Collapse
|
21
|
Caster AH, Kahn RA. Recruitment of the Mint3 adaptor is necessary for export of the amyloid precursor protein (APP) from the Golgi complex. J Biol Chem 2013; 288:28567-80. [PMID: 23965993 DOI: 10.1074/jbc.m113.481101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) is a ubiquitously expressed single-pass transmembrane protein that undergoes proteolytic processing by secretases to generate the pathogenic amyloid-β peptide, the major component in Alzheimer plaques. The traffic of APP through the cell determines its exposure to secretases and consequently the cleavages that generate the pathogenic or nonpathogenic peptide fragments. Despite the likely importance of APP traffic to Alzheimer disease, we still lack clear models for the routing and regulation of APP in cells. Like the traffic of most transmembrane proteins, the binding of adaptors to its cytoplasmic tail, which is 47 residues long and contains at least four distinct sorting motifs, regulates that of APP. We tested each of these for effects on the traffic of APP from the Golgi by mutating key residues within them and examining adaptor recruitment at the Golgi and traffic to post-Golgi site(s). We demonstrate strict specificity for recruitment of the Mint3 adaptor by APP at the Golgi, a critical role for Tyr-682 (within the YENPTY motif) in Mint3 recruitment and export of APP from the Golgi, and we identify LAMP1(+) structures as the proximal destination of APP after leaving the Golgi. Together, these data provide a detailed view of the first sorting step in its route to the cell surface and processing by secretases and further highlight the critical role played by Mint3.
Collapse
Affiliation(s)
- Amanda H Caster
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
22
|
Wagner T, Dieckmann M, Jaeger S, Weggen S, Pietrzik CU. Stx5 is a novel interactor of VLDL-R to affect its intracellular trafficking and processing. Exp Cell Res 2013; 319:1956-1972. [DOI: 10.1016/j.yexcr.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/10/2013] [Accepted: 05/13/2013] [Indexed: 11/30/2022]
|
23
|
A new Mint1 isoform, but not the conventional Mint1, interacts with the small GTPase Rab6. PLoS One 2013; 8:e64149. [PMID: 23737971 PMCID: PMC3667844 DOI: 10.1371/journal.pone.0064149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/09/2013] [Indexed: 12/31/2022] Open
Abstract
Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer's Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to β-amyloid in brains of patients suffering from Alzheimer's Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495-505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing.
Collapse
|
24
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
25
|
Park HJ, Shabashvili D, Nekorchuk MD, Shyqyriu E, Jung JI, Ladd TB, Moore BD, Felsenstein KM, Golde TE, Kim SH. Retention in endoplasmic reticulum 1 (RER1) modulates amyloid-β (Aβ) production by altering trafficking of γ-secretase and amyloid precursor protein (APP). J Biol Chem 2012; 287:40629-40. [PMID: 23043097 PMCID: PMC3504776 DOI: 10.1074/jbc.m112.418442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aβ production is influenced by intracellular trafficking of secretases and amyloid precursor protein (APP). RESULTS Retention in endoplasmic reticulum 1 (RER1) regulates the trafficking of γ-secretase and APP, thereby influences Aβ production. CONCLUSION RER1, an ER retention/retrieval factor for γ-secretase and APP, modulates Aβ production. SIGNIFICANCE RER1 and its influence on γ-secretase and APP may be implicated for a safe strategy to target Aβ production. The presence of neuritic plaques containing aggregated amyloid-β (Aβ) peptides in the brain parenchyma is a pathological hallmark of Alzheimer disease (AD). Aβ is generated by sequential cleavage of the amyloid β precursor protein (APP) by β- and γ-secretase, respectively. As APP processing to Aβ requires transport through the secretory pathway, trafficking of the substrate and access to the secretases are key factors that can influence Aβ production (Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615-29619). Here, we report that retention in endoplasmic reticulum 1 (RER1) associates with γ-secretase in early secretory compartments and regulates the intracellular trafficking of γ-secretase. RER1 overexpression decreases both γ-secretase localization on the cell surface and Aβ secretion and conversely RER1 knockdown increases the level of cell surface γ-secretase and increases Aβ secretion. Furthermore, we find that increased RER1 levels decrease mature APP and increase immature APP, resulting in less surface accumulation of APP. These data show that RER1 influences the trafficking and localization of both γ-secretase and APP, thereby regulating the production and secretion of Aβ peptides.
Collapse
Affiliation(s)
- Hyo-Jin Park
- From the Department of Pharmacology and Therapeutics, and
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | | | | | - Eva Shyqyriu
- From the Department of Pharmacology and Therapeutics, and
| | - Joo In Jung
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Thomas B. Ladd
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Brenda D. Moore
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kevin M. Felsenstein
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Todd E. Golde
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Seong-Hun Kim
- From the Department of Pharmacology and Therapeutics, and
| |
Collapse
|
26
|
Saito Y, Inoue T, Zhu G, Kimura N, Okada M, Nishimura M, Kimura N, Murayama S, Kaneko S, Shigemoto R, Imoto K, Suzuki T. Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and Aβ generation in Alzheimer's disease. Mol Neurodegener 2012; 7:50. [PMID: 23034178 PMCID: PMC3524764 DOI: 10.1186/1750-1326-7-50] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Background One of the best-characterized causative factors of Alzheimer’s disease (AD) is the generation of amyloid-β peptide (Aβ). AD subjects are at high risk of epileptic seizures accompanied by aberrant neuronal excitability, which in itself enhances Aβ generation. However, the molecular linkage between epileptic seizures and Aβ generation in AD remains unclear. Results X11 and X11-like (X11L) gene knockout mice suffered from epileptic seizures, along with a malfunction of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Genetic ablation of HCN1 in mice and HCN1 channel blockage in cultured Neuro2a (N2a) cells enhanced Aβ generation. Interestingly, HCN1 levels dramatically decreased in the temporal lobe of cynomolgus monkeys (Macaca fascicularis) during aging and were significantly diminished in the temporal lobe of sporadic AD patients. Conclusion Because HCN1 associates with amyloid-β precursor protein (APP) and X11/X11L in the brain, genetic deficiency of X11/X11L may induce aberrant HCN1 distribution along with epilepsy. Moreover, the reduction in HCN1 levels in aged primates may contribute to augmented Aβ generation. Taken together, HCN1 is proposed to play an important role in the molecular linkage between epileptic seizures and Aβ generation, and in the aggravation of sporadic AD.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita12-Nishi6, Kita-ku, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maruta C, Saito Y, Hata S, Gotoh N, Suzuki T, Yamamoto T. Constitutive cleavage of the single-pass transmembrane protein alcadeinα prevents aberrant peripheral retention of Kinesin-1. PLoS One 2012; 7:e43058. [PMID: 22905201 PMCID: PMC3414480 DOI: 10.1371/journal.pone.0043058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Various membrane proteins are shed by proteinases, constitutively and/or when stimulated by external signals. While the physiological significance of external signal-induced cleavages has been intensely investigated, relatively little is known about the function of constitutive cleavages. Alcadeinα (Alcα; also called Calsyntenin-1) is an evolutionarily conserved type I single-pass transmembrane protein that binds to kinesin-1 light chain (KLC) to activate kinesin-1's transport of Alcα-containing vesicles. We found that Alcα was constitutively and efficiently cleaved to liberate its ectodomain into the extracellular space, and that full-length Alcα protein was rarely detected on the cell surface. The secretion efficiency of the ectodomain was unaltered by a mutation that both abolished Alcα's KLC-binding activity and attenuated its peripheral transport, suggesting that Alcα's cleavage occurred, at least partly, en route to the cell surface. We further demonstrated that uncleavable mutant Alcα proteins readily accumulated on the cell surface and induced aberrant peripheral recruitment of KLC1 and kinesin heavy chain. Our observations suggest that Alcα is efficiently processed in part to minimize the inappropriate peripheral retention of kinesin-1. This role might exemplify the functional relevance of the constitutive cleavage of single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Chiaki Maruta
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuhki Saito
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Gotoh
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (TY)
| | - Tohru Yamamoto
- Laboratory of Neuroscience, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (TY)
| |
Collapse
|