1
|
Tanwar SS, Dwivedi S, Khan S, Sharma S. Cardiomyopathies and a brief insight into DOX-induced cardiomyopathy. Egypt Heart J 2025; 77:29. [PMID: 40064787 PMCID: PMC11893974 DOI: 10.1186/s43044-025-00628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Cardiomyopathy is a heterogeneous group of myocardial disorders characterized by structural and functional abnormalities of the heart muscle. It is classified into primary (genetic, mixed, or acquired) and secondary categories, resulting in various phenotypes including dilated, hypertrophic, and restrictive patterns. Hypertrophic cardiomyopathy, the most common primary form, can cause exertional dyspnea, presyncope, and sudden cardiac death. Dilated cardiomyopathy typically presents with heart failure symptoms, while restrictive cardiomyopathy is rarer and often associated with systemic diseases. Diagnosis involves a comprehensive evaluation including history, physical examination, electrocardiography, and echocardiography. Treatment options range from pharmacotherapy and lifestyle modifications to implantable cardioverter-defibrillators and heart transplantation in refractory cases. MAIN BODY Anthracyclines, particularly doxorubicin, have emerged as crucial components in cancer treatment, demonstrating significant antitumor activity across various malignancies. These drugs have become standard in numerous chemotherapy regimens, improving patient outcomes. However, their use is associated with severe cardiotoxicity, including cardiomyopathy and heart failure. The mechanisms of anthracycline action and toxicity are complex, involving DNA damage, iron-mediated free radical production, and disruption of cardiovascular homeostasis. Doxorubicin-induced cardiomyopathy (DIC) is a severe complication of cancer treatment with a poor prognosis and limited effective treatments. The pathophysiology of DIC involves multiple mechanisms, including oxidative stress, inflammation, mitochondrial damage, and calcium homeostasis disorder. Despite extensive research, no effective treatment for established DIC is currently available. Dexrazoxane is the only FDA-approved protective agent, but it has limitations. Recent studies have explored various potential therapeutic approaches, including natural drugs, endogenous substances, new dosage forms, and herbal medicines. However, the lack of experimental models incorporating pre-existing cancer limits the understanding of DIC pathophysiology and treatment efficacy. CONCLUSION Cardiomyopathy, whether primary or secondary, poses a significant clinical challenge due to its varying etiologies and poor prognosis in advanced stages. Anthracycline-induced cardiomyopathy is a severe complication of chemotherapy, with doxorubicin being a notable contributor. Despite advancements in cancer therapies, the cardiotoxic effects of anthracyclines necessitate further investigation into effective preventive strategies and therapeutic interventions to improve patient outcomes.
Collapse
Affiliation(s)
| | - Sumeet Dwivedi
- Acropolis Institute of Pharmaceutical Education and Research, Indore, India
| | - Sheema Khan
- The University of Texas Rio Grande Valley, Edinburg, US
| | - Seema Sharma
- Shri Vaishnav Vidyapeeth Vishwadvidyalaya, Indore, India.
| |
Collapse
|
2
|
Yan T, Yu H, Li T, Dong Y. Mechanisms of Cardiovascular Toxicities Induced by Cancer Therapies and Promising Biomarkers for Their Prediction: A Scoping Review. Heart Lung Circ 2024; 33:605-638. [PMID: 38242833 DOI: 10.1016/j.hlc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024]
Abstract
AIM With the advancement of anti-cancer medicine, cardiovascular toxicities due to cancer therapies are common in oncology patients, resulting in increased mortality and economic burden. Cardiovascular toxicities caused by cancer therapies include different severities of cardiomyopathy, arrhythmia, myocardial ischaemia, hypertension, and thrombosis, which may lead to left ventricular dysfunction and heart failure. This scoping review aimed to summarise the mechanisms of cardiovascular toxicities following various anti-cancer treatments and potential predictive biomarkers for early detection. METHODS PubMed, Cochrane, Embase, Web of Science, Scopus, and CINAHL databases were searched for original studies written in English related to the mechanisms of cardiovascular toxicity induced by anti-cancer therapies, including chemotherapy, targeted therapy, immunotherapy, radiation therapy, and relevant biomarkers. The search and title/abstract screening were conducted independently by two reviewers, and the final analysed full texts achieved the consensus of the two reviewers. RESULTS A total of 240 studies were identified based on their titles and abstracts. In total, 107 full-text articles were included in the analysis. Cardiomyocyte and endothelial cell apoptosis caused by oxidative stress injury, activation of cell apoptosis, blocking of normal cardiovascular protection signalling pathways, overactivation of immune cells, and myocardial remodelling were the main mechanisms. Promising biomarkers for anti-cancer therapies related to cardiovascular toxicity included placental growth factor, microRNAs, galectin-3, and myeloperoxidase for the early detection of cardiovascular toxicity. CONCLUSION Understanding the mechanisms of cardiovascular toxicity following various anti-cancer treatments could provide implications for future personalised treatment methods to protect cardiovascular function. Furthermore, specific early sensitive and stable biomarkers of cardiovascular system damage need to be identified to predict reversible damage to the cardiovascular system and improve the effects of anti-cancer agents.
Collapse
Affiliation(s)
- Tingting Yan
- Nursing Department, Liaocheng Vocational and Technical College, Liaocheng City, Shandong Province, China
| | - Hailong Yu
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Tai Li
- Nursing Department, Liaocheng Vocational and Technical College, Liaocheng City, Shandong Province, China
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Abdrabouh AES. Toxicological and histopathological alterations in the heart of young and adult albino rats exposed to mosquito coil smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93070-93087. [PMID: 37501034 PMCID: PMC10447284 DOI: 10.1007/s11356-023-28812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Mosquito coil repellents are well-known indoor air pollutant with significant health concerns. The present study investigated the toxic effects of mosquito coil smoke on the heart of young and adult male rats. The animals were subjected to the smoke for 6 h/day, 6 days/week, for 4 weeks. Within the first hour after lighting the coil, significant amounts of formaldehyde, total volatile organic compounds, and particulate matter (PM2.5 and PM10) were detected. Both exposed ages, particularly the young group, showed a significant increase in the activities of serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, and the levels of troponin I, myoglobin, Na+ levels, lipid profile, and inflammatory markers (interleukin-6 and C-reactive protein) as well as a significant decrease in K+ levels and cardiac Na-K ATPase activity, indicating development of cardiac inflammation and dysfunction. Furthermore, the toxic stress response was validated by significant downregulation at expression of the detoxifying enzyme cytochrome p450. Histopathological studies in both age groups, especially the young group, revealed cardiomyocyte degeneration and necrotic areas. Moreover, upregulation at the pro-apoptotic markers, caspase3, P53, and cytochrome C expressions, was detected by immunohistochemical approach in heart sections of the exposed groups. Finally, the myocardial dysfunctional effects of the coil active ingredient, meperfluthrin, were confirmed by the docking results which indicated a high binding affinity of meperfluthrin, with Na-K ATPase and caspase 3. In conclusion, both the young and adult exposed groups experienced significant cardiac toxicity changes evidenced by cell apoptosis and histopathological alterations as well as disruption of biochemical indicators.
Collapse
|
4
|
Mittal R, Krishnan M P S, Saxena R, Sampath A, Goyal B. Non-coding RNAs, cancer treatment and cardiotoxicity: A triad of new hope. Cancer Treat Res Commun 2023; 36:100750. [PMID: 37531735 DOI: 10.1016/j.ctarc.2023.100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.
Collapse
Affiliation(s)
- Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Sarath Krishnan M P
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Rahul Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Ananyan Sampath
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India; Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
5
|
Seara FAC, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Anthracycline-induced cardiotoxicity and cell senescence: new therapeutic option? Cell Mol Life Sci 2022; 79:568. [PMID: 36287277 PMCID: PMC11803035 DOI: 10.1007/s00018-022-04605-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
Anthracyclines are chemotherapeutic drugs widely used in the frontline of cancer treatment. The therapeutic mechanisms involve the stabilization of topoisomerase IIα, DNA, and the anthracycline molecule in a ternary complex that is recognized as DNA damage. Redox imbalance is another vital source of oxidative DNA damage. Together, these mechanisms lead to cytotoxic effects in neoplastic cells. However, anthracycline treatment can elicit cardiotoxicity and heart failure despite the therapeutic benefits. Topoisomerase IIβ and oxidative damage in cardiac cells have been the most reported pathophysiological mechanisms. Alternatively, cardiac cells can undergo stress-induced senescence when exposed to anthracyclines, a state primarily characterized by cell cycle arrest, organelle dysfunction, and a shift to senescence-associated secretory phenotype (SASP). The SASP can propagate senescence to neighboring cells in an ongoing process that leads to the accumulation of senescent cells, promoting cellular dysfunction and extracellular matrix remodeling. Therefore, the accumulation of senescent cardiac cells is an emerging pathophysiological mechanism associated with anthracycline-induced cardiotoxicity. This paradigm also raises the potential for therapeutic approaches to clear senescent cells in treating anthracycline-induced cardiotoxicity (i,e, senolytic therapies).
Collapse
Affiliation(s)
- Fernando A C Seara
- Departament of Physiological Sciences, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Multicenter Graduate Program of Physiological Sciences, Brazilian Society of Physiology, Rio de Janeiro, Brazil
| | - Tais H Kasai-Brunswick
- National Centre of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Science and Technology Institute in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Laboratory of Cellular and Molecular Cardiology, Health Sciences Building, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Room G2-053, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ, 21941-590, Brazil
- National Science and Technology Institute in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Antonio C Campos-de-Carvalho
- National Centre of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cellular and Molecular Cardiology, Health Sciences Building, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Room G2-053, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ, 21941-590, Brazil.
- National Science and Technology Institute in Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Kitakata H, Endo J, Ikura H, Moriyama H, Shirakawa K, Katsumata Y, Sano M. Therapeutic Targets for DOX-Induced Cardiomyopathy: Role of Apoptosis vs. Ferroptosis. Int J Mol Sci 2022; 23:1414. [PMID: 35163335 PMCID: PMC8835899 DOI: 10.3390/ijms23031414] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin (DOX) is the most widely used anthracycline anticancer agent; however, its cardiotoxicity limits its clinical efficacy. Numerous studies have elucidated the mechanisms underlying DOX-induced cardiotoxicity, wherein apoptosis has been reported as the most common final step leading to cardiomyocyte death. However, in the past two years, the involvement of ferroptosis, a novel programmed cell death, has been proposed. The purpose of this review is to summarize the historical background that led to each form of cell death, focusing on DOX-induced cardiotoxicity and the molecular mechanisms that trigger each form of cell death. Furthermore, based on this understanding, possible therapeutic strategies to prevent DOX cardiotoxicity are outlined. DNA damage, oxidative stress, intracellular signaling, transcription factors, epigenetic regulators, autophagy, and metabolic inflammation are important factors in the molecular mechanisms of DOX-induced cardiomyocyte apoptosis. Conversely, the accumulation of lipid peroxides, iron ion accumulation, and decreased expression of glutathione and glutathione peroxidase 4 are important in ferroptosis. In both cascades, the mitochondria are an important site of DOX cardiotoxicity. The last part of this review focuses on the significance of the disruption of mitochondrial homeostasis in DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (H.K.); (J.E.); (H.I.); (H.M.); (K.S.); (Y.K.)
| |
Collapse
|
7
|
Baguma-Nibasheka M, Feridooni T, Zhang F, Pasumarthi KB. Regulation of Transplanted Cell Homing by FGF1 and PDGFB after Doxorubicin Myocardial Injury. Cells 2021; 10:2998. [PMID: 34831221 PMCID: PMC8616453 DOI: 10.3390/cells10112998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
There is no effective treatment for the total recovery of myocardial injury caused by an anticancer drug, doxorubicin (Dox). In this study, using a Dox-induced cardiac injury model, we compared the cardioprotective effects of ventricular cells harvested from 11.5-day old embryonic mice (E11.5) with those from E14.5 embryos. Our results indicate that tail-vein-infused E11.5 ventricular cells are more efficient at homing into the injured adult myocardium, and are more angiogenic, than E14.5 ventricular cells. In addition, E11.5 cells were shown to mitigate the cardiomyopathic effects of Dox. In vitro, E11.5 ventricular cells were more migratory than E14.5 cells, and RT-qPCR analysis revealed that they express significantly higher levels of cytokine receptors Fgfr1, Fgfr2, Pdgfra, Pdgfrb and Kit. Remarkably, mRNA levels for Fgf1, Fgf2, Pdgfa and Pdgfb were also found to be elevated in the Dox-injured adult heart, as were the FGF1 and PDGFB protein levels. Addition of exogenous FGF1 or PDGFB was able to enhance E11.5 ventricular cell migration in vitro, and, whereas their neutralizing antibodies decreased cell migration. These results indicate that therapies raising the levels of FGF1 and PDGFB receptors in donor cells and or corresponding ligands in an injured heart could improve the efficacy of cell-based interventions for myocardial repair.
Collapse
Affiliation(s)
| | | | | | - Kishore B.S. Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.B.-N.); (T.F.); (F.Z.)
| |
Collapse
|
8
|
Nishi M, Wang PY, Hwang PM. Cardiotoxicity of Cancer Treatments: Focus on Anthracycline Cardiomyopathy. Arterioscler Thromb Vasc Biol 2021; 41:2648-2660. [PMID: 34587760 PMCID: PMC8551037 DOI: 10.1161/atvbaha.121.316697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in developing new treatments and refining the use of preexisting ones against cancer. Their successful use and the longer survival of cancer patients have been associated with reports of new cardiotoxicities and the better characterization of the previously known cardiac complications. Immunotherapies with monoclonal antibodies against specific cancer-promoting genes, chimeric antigen receptor T cells, and immune checkpoint inhibitors have been developed to fight cancer cells, but they can also show off-target effects on the heart. Some of these cardiotoxicities are thought to be due to nonspecific immune activation and inflammatory damage. Unlike immunotherapy-associated cardiotoxicities which are relatively new entities, there is extensive literature on anthracycline-induced cardiomyopathy. Here, we provide a brief overview of the cardiotoxicities of immunotherapies for the purpose of distinguishing them from anthracycline cardiomyopathy. This is especially relevant as the expansion of oncological treatments presents greater diagnostic challenges in determining the cause of cardiac dysfunction in cancer survivors with a history of multiple cancer treatments including anthracyclines and immunotherapies administered concurrently or serially over time. We then provide a focused review of the mechanisms proposed to underlie the development of anthracycline cardiomyopathy based on experimental data mostly in mouse models. Insights into its pathogenesis may stimulate the development of new strategies to identify patients who are susceptible to anthracycline cardiomyopathy while permitting low cardiac risk patients to receive optimal treatment for their cancer.
Collapse
Affiliation(s)
- Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Sharifiaghdam Z, Dalouchi F, Sharifiaghdam M, Shaabani E, Ramezani F, Nikbakht F, Azizi Y. Curcumin-coated gold nanoparticles attenuate doxorubicin-induced cardiotoxicity via regulating apoptosis in a mouse model. Clin Exp Pharmacol Physiol 2021; 49:70-83. [PMID: 34449914 DOI: 10.1111/1440-1681.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy agents; however, its nonselective effect causes cardiotoxicity. Curcumin (Cur), a well known dietary polyphenol, could exert a significant cardioprotective effect, but the biological application of this substance is limited by its chemical insolubility. To overcome this limitation, in this study, we synthesised gold nanoparticles based on Cur (Cur-AuNPs). Ultraviolet-visible (UV-Vis) absorbance spectroscopy and transmission electron microscopy (TEM) were performed for the characterisation of synthesised NPs, and Fourier transform infrared (FTIR) spectroscopy were applied to detect Cur on the surface of AuNPs. Its cytotoxicity effect on H9c2 cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The biological efficacy of Cur-AuNPs was assessed after acute cardiotoxicity induction in BALB/c mice with DOX injection. The serum biomarkers, myocardial histological changes, and cardiomyocyte apoptosis were then measured. The results revealed that the heart protection by Cur-AuNPs is more effective than Cur alone. Heart protective effect of Cur-AuNPs was evident both in the short-term (24 hours) and long-term (14 days) study. The results of Cur-AuNPs400 after 24 hours of toxicity induction displayed the reduction of the cardiac injury serum biomarkers (LDH, CK-MB, cTnI, ADT, and ALT) and apoptotic proteins (Bax and Caspase-3), as well as increase of Bcl-2 anti-apoptotic proteins without any sign of interfibrillar haemorrhage and intercellular spaces in the heart tissue microscopic images. Our long-term study signifies that Cur-AuNPs400 in DOX-intoxicated mice could successfully inhibit body and heart weight loss in comparison to DOX group.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos M, Calderon-Dominguez J, Campuzano O, Mangas A, Toro R. Plasma microrna expression profile for reduced ejection fraction in dilated cardiomyopathy. Sci Rep 2021; 11:7517. [PMID: 33824379 PMCID: PMC8024336 DOI: 10.1038/s41598-021-87086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/23/2021] [Indexed: 01/10/2023] Open
Abstract
The left ventricular (LV) ejection fraction (EF) is key to prognosis in dilated cardiomyopathy (DCM). Circulating microRNAs have emerged as reliable biomarkers for heart diseases, included DCM. Clinicians need improved tools for greater clarification of DCM EF categorization, to identify high-risk patients. Thus, we investigated whether microRNA profiles can categorize DCM patients based on their EF. 179-differentially expressed circulating microRNAs were screened in two groups: (1) non-idiopathic DCM; (2) idiopathic DCM. Then, 26 microRNAs were identified and validated in the plasma of ischemic-DCM (n = 60), idiopathic-DCM (n = 55) and healthy individuals (n = 44). We identified fourteen microRNAs associated with echocardiographic variables that differentiated idiopathic DCM according to the EF degree. A predictive model of a three-microRNA (miR-130b-3p, miR-150-5p and miR-210-3p) combined with clinical variables (left bundle branch block, left ventricle end-systolic dimension, lower systolic blood pressure and smoking habit) was obtained for idiopathic DCM with a severely reduced-EF. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. Bioinformatics analysis revealed that miR-150-5p and miR-210-3p target genes might interact with each other with a high connectivity degree. In conclusion, our results revealed a three-microRNA signature combined with clinical variables that highly discriminate idiopathic DCM categorization. This is a potential novel prognostic biomarker with high clinical value.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.
| | - Thalía Belmonte
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain
- Universidad Alfonso X, Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain
- Universidad Alfonso X, Madrid, Spain
| | - Juan Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, Cadiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.
- Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain.
| |
Collapse
|
11
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
12
|
Obata Y, Ishimori N, Saito A, Kinugawa S, Yokota T, Takada S, Nakano I, Kakutani N, Yamanashi K, Anzai T. Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates doxorubicin-induced cardiotoxicity in mice. Eur J Prev Cardiol 2020; 27:2358-2361. [DOI: 10.1177/2047487319901208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mancilla TR, Davis LR, Aune GJ. Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts. PLoS One 2020; 15:e0238856. [PMID: 32960902 PMCID: PMC7508395 DOI: 10.1371/journal.pone.0238856] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are the critical component in a majority of pediatric chemotherapy regimens due to their broad anticancer efficacy. Unfortunately, the vast majority of long-term childhood cancer survivors will develop a chronic health condition caused by their successful treatments and severe cardiac disease is a common life-threatening outcome that is unequivocally linked to previous anthracycline exposure. The intricacies of how anthracyclines such as doxorubicin, damage the heart and initiate a disease process that progresses over multiple decades is not fully understood. One area left largely unstudied is the role of the cardiac fibroblast, a key cell type in cardiac maturation and injury response. In this study, we demonstrate the effect of doxorubicin on cardiac fibroblast function in the presence and absence of the critical DNA damage response protein p53. In wildtype cardiac fibroblasts, doxorubicin-induced damage correlated with decreased proliferation and migration, cell cycle arrest, and a dilated cardiomyopathy gene expression profile. Interestingly, these doxorubicin-induced changes were completely or partially restored in p53-/- cardiac fibroblasts. Moreover, in wildtype cardiac fibroblasts, doxorubicin produced DNA damage and mitochondrial dysfunction, both of which are well-characterized cell stress responses induced by cytotoxic chemotherapy and varied forms of heart injury. A 3-fold increase in p53 (p = 0.004) prevented the completion of mitophagy (p = 0.032) through sequestration of Parkin. Interactions between p53 and Parkin increased in doxorubicin-treated cardiac fibroblasts (p = 0.0003). Finally, Parkin was unable to localize to the mitochondria in wildtype cardiac fibroblasts, but mitochondrial localization was restored in p53-/- cardiac fibroblasts. These findings strongly suggest that cardiac fibroblasts are an important myocardial cell type that merits further study in the context of doxorubicin treatment. A more robust knowledge of the role cardiac fibroblasts play in the development of doxorubicin-induced cardiotoxicity will lead to novel clinical strategies that will improve the quality of life of cancer survivors.
Collapse
Affiliation(s)
- T. R. Mancilla
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - L. R. Davis
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - G. J. Aune
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Department of Pediatrics, Division of Hematology-Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
14
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
15
|
Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 2019; 134:110834. [PMID: 31577924 DOI: 10.1016/j.fct.2019.110834] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy; Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Ricardo Collado
- Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
16
|
Bonda TA, Dziemidowicz M, Cieslinska M, Tarasiuk E, Wawrusiewicz-Kurylonek N, Bialuk I, Winnicka MM, Kaminski KA. Interleukin 6 Knockout Inhibits Aging-Related Accumulation of p53 in the Mouse Myocardium. J Gerontol A Biol Sci Med Sci 2019; 74:176-182. [PMID: 29718116 DOI: 10.1093/gerona/gly105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/27/2018] [Indexed: 10/08/2023] Open
Abstract
Interleukin 6 (IL6) and p53 are linked by mutual regulatory mechanisms and are both upregulated in aging. The aim of this study was to evaluate the effects of aging and IL6 on expression of p53 in the mouse heart. Male C57BL6/J wild-type and IL6 knockout mice at the age of 4-5 months (young adult) and 24-30 months (old) were used. Myocardial expression of proteins such as p53, p21, Mdm2, and phospho-Akt/Akt was estimated using Western blotting and expression of p53 and p21 mRNA using real-time polymerase chain reaction. Expression of p53 protein was lower in IL6 knockout hearts than in wild-type hearts. Aging caused significant upregulation of p53 protein level; however, it was significantly higher in old wild-type hearts than in old IL6 knockout hearts (p < .05). Similar p53 mRNA levels in all groups implied IL6 influence on age-related proteasomal degradation of p53. Localization of p53 mainly in the extranuclear compartment and lack of p21 upregulation in aged hearts may suggest quenched transcriptional activity of p53 despite increased abundance of p53. We conclude that lack of IL6 attenuates expression of p53 protein in the hearts of young mice and diminishes its accumulation with aging by post-transcriptional mechanisms; however, this is not related to altered phenotype of aging heart.
Collapse
Affiliation(s)
- Tomasz A Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Poland
| | - Magdalena Dziemidowicz
- Department of General and Experimental Pathology, Medical University of Bialystok, Poland
| | - Magdalena Cieslinska
- Department of General and Experimental Pathology, Medical University of Bialystok, Poland
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Poland
| | | | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University of Bialystok, Poland
| | - Maria M Winnicka
- Department of General and Experimental Pathology, Medical University of Bialystok, Poland
| | - Karol A Kaminski
- Department of Cardiology, Medical University of Białystok, Poland
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Białystok, Poland
| |
Collapse
|
17
|
Koleini N, Santiago JJ, Nickel BE, Sequiera GL, Wang J, Fandrich RR, Jassal DS, Dhingra S, Kirshenbaum LA, Cattini PA, Kardami E. Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2018; 316:H279-H288. [PMID: 30412444 DOI: 10.1152/ajpheart.00587.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblast growth factor 2 (FGF2) exerts multiple paracrine activities related to cardiac response to injury. Endogenous FGF2 is composed of a mixture of 70% high- and 30% low-molecular-weight isoforms (Hi-FGF2 and Lo-FGF2, respectivley); although exogenously added Lo-FGF2 is cardioprotective, the roles of endogenous Hi-FGF2 or Lo-FGF2 have not been well defined. Therefore, we investigated the effect of elimination of Hi-FGF2 expression on susceptibility to acute cardiac damage in vivo caused by an injection of the genotoxic drug doxorubicin (Dox). Mice genetically depleted of endogenous Hi-FGF2 and expressing only Lo-FGF2 [FGF2(Lo) mice] were protected from the Dox-induced decline in ejection fraction displayed by their wild-type FGF2 [FGF2(WT)] mouse counterparts, regardless of sex, as assessed by echocardiography for up to 10 days post-Dox treatment. Because cardiac FGF2 is produced mainly by nonmyocytes, we next addressed potential contribution of fibroblast-produced FGF2 on myocyte vulnerability to Dox. In cocultures of neonatal rat cardiomyocytes (r-cardiomyocytes) with mouse fibroblasts from FGF2(WT) or FGF2(Lo) mice, only the FGF2(Lo)-fibroblast cocultures protected r-cardiomyocytes from Dox-induced mitochondrial and cellular damage. When r-cardiomyocytes were cocultured with or exposed to conditioned medium from human fibroblasts, neutralizing antibodies for human Hi-FGF-2, but not total FGF2, mitigated Dox-induced injury of cardiomyocytes. We conclude that endogenous Hi-FGF2 reduces cardioprotection by endogenous Lo-FGF2. Antibody-based neutralization of endogenous Hi-FGF2 may offer a prophylactic treatment against agents causing acute cardiac damage. NEW & NOTEWORTHY Cardiomyocytes, in vivo and in vitro, were protected from the deleterious effects of the anticancer drug doxorubicin by the genetic elimination or antibody-based neutralization of endogenous paracrine high-molecular-weight fibroblast growth factor 2 isoforms. These findings have a translational potential for mitigating doxorubicin-induced cardiac damage in patients with cancer by an antibody-based treatment.
Collapse
Affiliation(s)
- Navid Koleini
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Jon-Jon Santiago
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Glen Lester Sequiera
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Davinder S Jassal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Elissavet Kardami
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
18
|
HDAC6 inhibition protects cardiomyocytes against doxorubicin-induced acute damage by improving α-tubulin acetylation. J Mol Cell Cardiol 2018; 124:58-69. [DOI: 10.1016/j.yjmcc.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 10/06/2018] [Indexed: 12/19/2022]
|
19
|
Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 2018; 8:46663-46680. [PMID: 28445146 PMCID: PMC5542301 DOI: 10.18632/oncotarget.16944] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Doxorubicin (Dox) is a cytotoxic drug widely incorporated in various chemotherapy protocols. Severe side effects such as cardiotoxicity, however, limit Dox application. Mechanisms by which Dox promotes cardiac damage and cardiomyocyte cell death have been investigated extensively, but a definitive picture has yet to emerge. Autophagy, regarded generally as a protective mechanism that maintains cell viability by recycling unwanted and damaged cellular constituents, is nevertheless subject to dysregulation having detrimental effects for the cell. Autophagic cell death has been described, and has been proposed to contribute to Dox-cardiotoxicity. Additionally, mitophagy, autophagic removal of damaged mitochondria, is affected by Dox in a manner contributing to toxicity. Here we will review Dox-induced cardiotoxicity and cell death in the broad context of the autophagy and mitophagy processes.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Chakraborti S, Pramanick A, Saha S, Roy SS, Chaudhuri AR, Das M, Ghosh S, Stewart A, Maity B. Atypical G Protein β5 Promotes Cardiac Oxidative Stress, Apoptosis, and Fibrotic Remodeling in Response to Multiple Cancer Chemotherapeutics. Cancer Res 2017; 78:528-541. [DOI: 10.1158/0008-5472.can-17-1280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
|
21
|
Feridooni T, Hotchkiss A, Baguma-Nibasheka M, Zhang F, Allen B, Chinni S, Pasumarthi KBS. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. Am J Physiol Heart Circ Physiol 2017; 312:H919-H931. [PMID: 28283550 DOI: 10.1152/ajpheart.00425.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brittney Allen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
22
|
Wang S, Qi Y, Yu L, Zhang L, Chao F, Huang W, Huang R, Li H, Luo Y, Xiu Y, Tang Y. Endogenous nitric oxide regulates blood vessel growth factors, capillaries in the cortex, and memory retention in Sprague-Dawley rats. Am J Transl Res 2016; 8:5271-5285. [PMID: 28078001 PMCID: PMC5209481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
The effects of nitric oxide (NO) on cerebral capillary angiogenesis and the regulation of pro- and anti-angiogenic factors that affect cerebral capillary angiogenesis, spatial learning, and memory ability are unclear. We assessed the effects of the NO precursor L-arginine (L-ARG) and the NO synthesis inhibitor Nω-nitro-L-arginine methylester (L-NAME) on cortical capillaries and spatial learning and memory abilities. We administered intracerebroventricular injections of L-ARG or L-NAME to rats before they were evaluated in the Morris water maze. We measured the levels of NO synthase activity, pro-angiogenic factors, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2), and the expression of the anti-angiogenic factors angiostatin and endostatin. We also quantitatively investigated parameters of the cortical capillaries using immunohistochemistry and stereological methods. The L-ARG treatment significantly improved rats' spatial learning abilities and increased NOS activity in the cortex. L-NAME disrupted spatial learning. Following the L-ARG treatment, the expression of the pro-angiogenic factors (VEGF and FGF-2) was higher and the expression of anti-angiogenic factors (endostatin) was lower than the vehicle-treated animals. In contrast, the L-NAME treatment reduced the expression of VEGF and increased the expression of endostatin. Based on these results, modulation of the NO content in the brain regulates VEGF, FGF-2, and endostatin expression, as well as capillary parameters in the cortex, which in turn influence spatial learning and memory performance.
Collapse
Affiliation(s)
- Sanrong Wang
- Department of Rehabilitation Medicine and Physical Therapy, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, P. R. China
| | - Yingqiang Qi
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Lehua Yu
- Department of Rehabilitation Medicine and Physical Therapy, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, P. R. China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Wei Huang
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Rongzhong Huang
- Department of Rehabilitation Medicine and Physical Therapy, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, P. R. China
| | - Hongxu Li
- Department of Rehabilitation Medicine and Physical Therapy, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, P. R. China
| | - Yanming Luo
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Yun Xiu
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical UniversityChongqing, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical UniversityChongqing, P. R. China
| |
Collapse
|
23
|
Rahmatollahi M, Baram SM, Rahimian R, Saeedi Saravi SS, Dehpour AR. Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice. Cardiovasc Toxicol 2016; 16:244-250. [DOI: 10.1007/s12012-015-9332-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Klem I. Expanding CT Application to Myocardial Tissue Characterization. JACC Cardiovasc Imaging 2016; 9:846-848. [PMID: 27236526 DOI: 10.1016/j.jcmg.2016.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Igor Klem
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina; Division of Cardiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
25
|
Zhan H, Aizawa K, Sun J, Tomida S, Otsu K, Conway SJ, Mckinnon PJ, Manabe I, Komuro I, Miyagawa K, Nagai R, Suzuki T. Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. Cardiovasc Res 2016; 110:85-95. [PMID: 26862121 PMCID: PMC4798048 DOI: 10.1093/cvr/cvw032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Doxorubicin (Dox) is a potent anticancer agent that is widely used in the treatment of a variety of cancers, but its usage is limited by cumulative dose-dependent cardiotoxicity mainly due to oxidative damage. Ataxia telangiectasia mutated (ATM) kinase is thought to play a role in mediating the actions of oxidative stress. Here, we show that ATM in cardiac fibroblasts is essential for Dox-induced cardiotoxicity. METHODS AND RESULTS ATM knockout mice showed attenuated Dox-induced cardiotoxic effects (e.g. cardiac dysfunction, apoptosis, and mortality). As ATM was expressed and activated predominantly in cardiac fibroblasts, fibroblast-specific Atm-deleted mice (Atm(fl/fl);Postn-Cre) were generated to address cell type-specific effects, which showed that the fibroblast is the key lineage mediating Dox-induced cardiotoxicity through ATM. Mechanistically, ATM activated the Fas ligand, which subsequently regulated apoptosis in cardiomyocytes at later stages. Therapeutically, a potent and selective inhibitor of ATM, KU55933, when administered systemically was able to prevent Dox-induced cardiotoxicity. CONCLUSION ATM-regulated effects within cardiac fibroblasts are pivotal in Dox-induced cardiotoxicity, and antagonism of ATM and its functions may have potential therapeutic implications.
Collapse
Affiliation(s)
- Hong Zhan
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Aizawa
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junqing Sun
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan The Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shota Tomida
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London, UK
| | - Simon J Conway
- Program in Developmental Biology and Neonatal Medicine, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter J Mckinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Department of Radiation Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Toru Suzuki
- Jichi Medical University, Tochigi, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Department of Cardiovascular Sciences, University of Leicester Cardiovascular Research Centre, University of Leicester, Glenfield Hospital Groby Road, Glenfield, Leicester LE3 9QP, UK National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
26
|
Tao H, Yang JJ, Shi KH, Li J. Epigenetic factors MeCP2 and HDAC6 control α-tubulin acetylation in cardiac fibroblast proliferation and fibrosis. Inflamm Res 2016; 65:415-26. [PMID: 26975406 DOI: 10.1007/s00011-016-0925-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/04/2016] [Accepted: 02/07/2016] [Indexed: 11/25/2022] Open
Abstract
AIM AND OBJECTIVE Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. Methyl-CpG-binding protein 2 (MeCP2) is a transcription inhibitor, and plays a key role in the fibrotic diseases. However, the precise role of MeCP2 in cardiac fibrosis remains unclear. α-tubulin plays an essential role in cell function, whereby the acetylation state of α-Tubulin dictates the efficiency of cell proliferation and differentiation. This study was undertaken to investigate that MeCP2 dynamics affect the acetylation state of α-tubulin in the cardiac fibrosis. METHODS Forty adult male Sprague-Dawley (SD) rats were randomly divided into two groups, cardiac fibrosis was produced by common ISO. Cardiac fibroblasts (CFs) were harvested from SD neonate rats and cultured. The expression of HDAC6, MeCP2, α-SMA, collagen I was measured by western blotting and qRT-PCR. siRNA of HDAC6 and MeCP2 effect the proliferation of cardiac fibroblasts, and affect the acetylation state of α-tubulin. RESULTS We have found the acetylation state of α-tubulin in cardiac fibroblasts as well as cardiac tissue from a ISO-induced rat cardiac fibrosis model and observed a reduction in acetylated α-tubulin and an increase in the α-tubulin-specific deacetylase, histone deacetylase 6 (HDAC6). Furthermore, we have shown that treatment of cardiac fibroblasts with HDAC6 inhibitor Tubastatin A and HDAC6-siRNA can restore α-tubulin acetylation levels. In addition, treatment of cardiac fibroblasts with MeCP2-siRNA blocked cell proliferation. Knockdown of MeCP2 suppresses HDAC6 expression in activated cardiac fibroblasts but increases the acetylation of α-tubulin. CONCLUSIONS We demonstrated that MeCP2 may negatively control the acetylation of α-tubulin through HDAC6 in cardiac fibroblast proliferation and fibrosis. This study indicated that MeCP2 could be a potentially new therapeutic option for cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
- Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
- Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
27
|
Nehra S, Bhardwaj V, Ganju L, Saraswat D. Nanocurcumin Prevents Hypoxia Induced Stress in Primary Human Ventricular Cardiomyocytes by Maintaining Mitochondrial Homeostasis. PLoS One 2015; 10:e0139121. [PMID: 26406246 PMCID: PMC4583454 DOI: 10.1371/journal.pone.0139121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023] Open
Abstract
Hypoxia induced oxidative stress incurs pathophysiological changes in hypertrophied cardiomyocytes by promoting translocation of p53 to mitochondria. Here, we investigate the cardio-protective efficacy of nanocurcumin in protecting primary human ventricular cardiomyocytes (HVCM) from hypoxia induced damages. Hypoxia induced hypertrophy was confirmed by FITC-phenylalanine uptake assay, atrial natriuretic factor (ANF) levels and cell size measurements. Hypoxia induced translocation of p53 was investigated by using mitochondrial membrane permeability transition pore blocker cyclosporin A (blocks entry of p53 to mitochondria) and confirmed by western blot and immunofluorescence. Mitochondrial damage in hypertrophied HVCM cells was evaluated by analysing bio-energetic, anti-oxidant and metabolic function and substrate switching form lipids to glucose. Nanocurcumin prevented translocation of p53 to mitochondria by stabilizing mitochondrial membrane potential and de-stressed hypertrophied HVCM cells by significant restoration in lactate, acetyl-coenzyme A, pyruvate and glucose content along with lactate dehydrogenase (LDH) and 5' adenosine monophosphate-activated protein kinase (AMPKα) activity. Significant restoration in glucose and modulation of GLUT-1 and GLUT-4 levels confirmed that nanocurcumin mediated prevention of substrate switching. Nanocurcumin prevented of mitochondrial stress as confirmed by c-fos/c-jun/p53 signalling. The data indicates decrease in p-300 histone acetyl transferase (HAT) mediated histone acetylation and GATA-4 activation as pharmacological targets of nanocurcumin in preventing hypoxia induced hypertrophy. The study provides an insight into propitious therapeutic effects of nanocurcumin in cardio-protection and usability in clinical applications.
Collapse
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Varun Bhardwaj
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Lilly Ganju
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Deepika Saraswat
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Timarpur, New Delhi, India
| |
Collapse
|
28
|
Hotchkiss A, Feridooni T, Baguma-Nibasheka M, McNeil K, Chinni S, Pasumarthi KBS. Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. Am J Physiol Cell Physiol 2015; 308:C557-69. [DOI: 10.1152/ajpcell.00323.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/24/2015] [Indexed: 11/22/2022]
Abstract
The biological effects of atrial natriuretic peptide (ANP) are mediated by natriuretic peptide receptors (NPRs), which can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. During cardiac development, ANP serves as an early maker of differentiating atrial and ventricular chamber myocardium. As development proceeds, expression of ANP persists in the atria but declines in the ventricles. Currently, it is not known whether ANP is secreted or the ANP-NPR signaling system plays any active role in the developing ventricles. Thus the primary aims of this study were to 1) examine biological activity of ANP signaling systems in embryonic ventricular myocardium, and 2) determine whether ANP signaling modulates proliferation/differentiation of undifferentiated cardiac progenitor cells (CPCs) and/or cardiomyocytes. Here, we provide evidence that ANP synthesized in embryonic day (E)11.5 ventricular myocytes is actively secreted and processed to its biologically active form. Notably, NPRA and NPRC were detected in E11.5 ventricles and exogenous ANP stimulated production of cGMP in ventricular cell cultures. Furthermore, we showed that exogenous ANP significantly decreased cell number and DNA synthesis of CPCs but not cardiomyocytes and this effect could be reversed by pretreatment with the NPRA receptor-specific inhibitor A71915. ANP treatment also led to a robust increase in nuclear p27 levels in CPCs compared with cardiomyocytes. Collectively, these data provide evidence that in the developing mammalian ventricles ANP plays a local paracrine role in regulating the balance between CPC proliferation and differentiation via NPRA/cGMP-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Kathleen McNeil
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
29
|
Cardiac transcription factor Nkx2.5 interacts with p53 and modulates its activity. Arch Biochem Biophys 2015; 569:45-53. [DOI: 10.1016/j.abb.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/01/2015] [Indexed: 01/30/2023]
|
30
|
Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehnart SE, Wenzel P, Kessel M, Zeisberg EM, Dobbelstein M, Schäfer K. Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc 2015; 4:jah3850. [PMID: 25713289 PMCID: PMC4345879 DOI: 10.1161/jaha.115.001770] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Magdalena L Bochenek
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Julia H Steinbrecher
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.) Center for Biomedical Engineering and Technology, University of Maryland Baltimore, MD (S.E.L.)
| | - Philip Wenzel
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Michael Kessel
- Department of Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany (M.K.)
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Germany (M.D.)
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| |
Collapse
|
31
|
Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol 2015; 593:1127-46. [PMID: 25641115 DOI: 10.1113/jphysiol.2014.283135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022] Open
Abstract
Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dong Q, Chen L, Lu Q, Sharma S, Li L, Morimoto S, Wang G. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. Br J Pharmacol 2014; 171:4440-54. [PMID: 24902966 PMCID: PMC4209150 DOI: 10.1111/bph.12795] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/29/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. EXPERIMENTAL APPROACH Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. KEY RESULTS In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Qinghua Dong
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Long Chen
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Sherven Sharma
- David Geffen School of Medicine at UCLA, and the Veterans AffairsLos Angeles, CA, USA
| | - Lei Li
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Sachio Morimoto
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Guanyu Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
33
|
[Towards an integrated approach to cardiovascular toxicities related to the treatments of breast cancer]. Bull Cancer 2014; 101:730-40. [PMID: 25091656 DOI: 10.1684/bdc.2014.1926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing number of therapeutic options in breast cancer management. While prognosis improves, the cardiac toxicity related to treatments remains a significant issue. This toxicity has several clinical presentations and can be explained by complex and diverse molecular mechanisms. Systemic treatments (anthracyclines, inhibitors of HER2 signaling pathway, hormone therapy, antiangiogenic agents) and radiotherapy have their own cardiac toxicity. However, the toxicities associated with these treatments may potentiate together and the existence of pre-existing cardiovascular risk factors should be taken into account. The assessment of cardiac hazard evolves toward a multifactorial approach. Several possibilities exist to minimize the incidence of cardiac complications. Those include pharmacological and technological innovations, but also a more accurate selection of patients and a growing involvement of practitioners in the field of cardiac toxicity, which is prerequisite for an early management of cardiac events.
Collapse
|
34
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
35
|
Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N, Gajdosechova L, Zorad S, Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res 2014; 57:177-84. [PMID: 24942291 DOI: 10.1111/jpi.12154] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic; 3rd Clinic of Medicine, School of Medicine, Comenius University, Bratislava, Slovak Republic; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic; Center of Excellence NOREG, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Erythropoietin Modulates Imbalance of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Doxorubicin-induced Cardiotoxicity. Heart Lung Circ 2014; 23:772-7. [DOI: 10.1016/j.hlc.2014.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/09/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
|
37
|
Ferreira de Oliveira JMP, Costa M, Pedrosa T, Pinto P, Remédios C, Oliveira H, Pimentel F, Almeida L, Santos C. Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling. PLoS One 2014; 9:e92980. [PMID: 24667842 PMCID: PMC3965485 DOI: 10.1371/journal.pone.0092980] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Sulforaphane (SFN) is a naturally-occurring isothiocyanate best known for its role as an indirect antioxidant. Notwithstanding, in different cancer cell lines, SFN may promote the accumulation of reactive oxygen species (ROS) and cause cell death e.g. by apoptosis. Osteosarcoma often becomes chemoresistant, and new molecular targets to prevent drug resistance are needed. Here, we aimed to determine the effect of SFN on ROS levels and to identify key biomarkers leading to ROS unbalance and apoptosis in the p53-null MG-63 osteosarcoma cell line. MG-63 cells were exposed to SFN for up to 48 h. At 10 μM concentration or higher, SFN decreased cell viability, increased the%early apoptotic cells and increased caspase 3 activity. At these higher doses, SFN increased ROS levels, which correlated with apoptotic endpoints and cell viability decline. In exposed cells, gene expression analysis revealed only partial induction of phase-2 detoxification genes. More importantly, SFN inhibited ROS-scavenging enzymes and impaired glutathione recycling, as evidenced by inhibition of glutathione reductase (GR) activity and combined inhibition of glutathione peroxidase (GPx) gene expression and enzyme activity. In conclusion, SFN induced oxidative stress and apoptosis via a p53-independent mechanism. GPx expression and activity were found associated with ROS accumulation in MG-63 cells and are potential biomarkers for the efficacy of ROS-inducing agents e.g. as co-adjuvant drugs in osteosarcoma.
Collapse
Affiliation(s)
- José Miguel P. Ferreira de Oliveira
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria Costa
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tiago Pedrosa
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Pedro Pinto
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Catarina Remédios
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Helena Oliveira
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Francisco Pimentel
- Lenitudes, Lisboa, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, R. Carlos da Maia 296, Porto, Portugal
- Center for Health Studies & Research, University of Coimbra, Avenida Dias da Silva, Coimbra, Portugal
- Faculdade de Ciências da Saúde - Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã, Portugal
| | - Luís Almeida
- Luzitin SA, R. Bayer 16, Coimbra, Portugal
- Blueclinical Phase I, R. Sarmento de Beires 153, Porto, Portugal
| | - Conceição Santos
- CESAM & Laboratory of Biotechnology and Cytomics, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
38
|
Hotchkiss A, Feridooni T, Zhang F, Pasumarthi KBS. The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells. Cell Calcium 2014; 55:238-51. [PMID: 24680380 DOI: 10.1016/j.ceca.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Cardiogenesis depends on a tightly regulated balance between proliferation and differentiation of cardiac progenitor cells (CPCs) and their cardiomyocyte descendants. While exposure of early mouse embryos to Ca(2+) channel antagonists has been associated with abnormal cardiac morphogenesis, less is known about the consequences of Ca(2+) channel blockade on proliferation and differentiation of CPCs at the cellular level. Here we showed that at embryonic day (E) 11.5, the murine ventricles express several L-type and T-type Ca(2+) channel isoforms, and that the dihydropyridine Ca(2+) channel antagonist, nifedipine, blunts isoproterenol induced increases in intracellular Ca(2+). Nifedipine mediated Ca(2+) channel blockade was associated with a reduction in cell cycle activity of E11.5 CPCs and impaired assembly of the cardiomyocyte contractile apparatus. Furthermore, in cell transplantation experiments, systemic administration of nifedipine to adult mice receiving transplanted E11.5 ventricular cells (containing CPCs and cardiomyocytes) was associated with smaller graft sizes compared to vehicle treated control animals. These data suggest that intracellular Ca(2+) is a critical regulator of the balance between CPC proliferation and differentiation and demonstrate that interactions between pharmacological drugs and transplanted cells could have a significant impact on the effectiveness of cell based therapies for myocardial repair.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Gaspard GJ, MacLean J, Rioux D, Pasumarthi KBS. A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. Am J Physiol Cell Physiol 2014; 306:C540-50. [PMID: 24477232 DOI: 10.1152/ajpcell.00206.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis, a known risk factor for heart disease, is typically caused by uncontrolled proliferation of fibroblasts and excessive deposition of extracellular matrix proteins in the myocardium. Cyclin-dependent kinase 1 (CDK1) is involved in the control of G2/M transit phase of the cell cycle. Here, we showed that isoproterenol (ISO)-induced cardiac fibrosis is associated with increased levels of CDK1 exclusively in fibroblasts in the adult mouse heart. Treatment of primary embryonic ventricular cell cultures with ISO (a nonselective β-adrenergic receptor agonist) increased CDK1 protein expression in fibroblasts and promoted their cell cycle activity. Quantitative PCR analysis confirmed that ISO increases CDK1 transcription in a transient manner. Further, the ISO-responsive element was mapped to the proximal -100-bp sequence of the CDK1 promoter region using various 5'-flanking sequence deletion constructs. Sequence analysis of the -100-bp CDK1 minimal promoter region revealed two putative nuclear factor-Y (NF-Y) binding elements. Overexpression of the NF-YA subunit in primary ventricular cultures significantly increased the basal activation of the -100-bp CDK1 promoter construct but not the ISO-induced transcription of the minimal promoter construct. In contrast, dominant negative NF-YA expression decreased the basal activity of the minimal promoter construct and ISO treatment fully rescued the dominant negative effects. Furthermore, site-directed mutagenesis of the distal NF-Y binding site in the -100-bp CDK1 promoter region completely abolished both basal and ISO-induced promoter activation of the CDK1 gene. Collectively, our results raise an exciting possibility that targeting CDK1 or NF-Y in the diseased heart may inhibit fibrosis and subsequently confer cardioprotection.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
40
|
Heger Z, Cernei N, Kudr J, Gumulec J, Blazkova I, Zitka O, Eckschlager T, Stiborova M, Adam V, Kizek R. A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin. Int J Mol Sci 2013; 14:21629-46. [PMID: 24185911 PMCID: PMC3856025 DOI: 10.3390/ijms141121629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/26/2013] [Accepted: 10/09/2013] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin is a commonly used antineoplastic agent in the treatment of many types of cancer. Little is known about the interactions of doxorubicin with cardiac biomolecules. Serious cardiotoxicity including dilated cardiomyopathy often resulting in a fatal congestive heart failure may occur as a consequence of chemotherapy with doxorubicin. The purpose of this study was to determine the effect of exposure to doxorubicin on the changes in major amino acids in tissue of cardiac muscle (proline, taurine, glutamic acid, arginine, aspartic acid, leucine, glycine, valine, alanine, isoleucine, threonine, lysine and serine). An in vitro interaction study was performed as a comparison of amino acid profiles in heart tissue before and after application of doxorubicin. We found that doxorubicin directly influences myocardial amino acid representation even at low concentrations. In addition, we performed an interaction study that resulted in the determination of breaking points for each of analyzed amino acids. Lysine, arginine, β-alanine, valine and serine were determined as the most sensitive amino acids. Additionally we compared amino acid profiles of myocardium before and after exposure to doxorubicin. The amount of amino acids after interaction with doxorubicin was significantly reduced (p = 0.05). This fact points at an ability of doxorubicin to induce changes in quantitative composition of amino acids in myocardium. Moreover, this confirms that the interactions between doxorubicin and amino acids may act as another factor most likely responsible for adverse effects of doxorubicin on myocardium.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Jiri Kudr
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Jaromir Gumulec
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Komenskeho namesti 2, Brno CZ-662 43, Czech Republic
| | - Iva Blazkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic; E-Mail:
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12840, Czech Republic; E-Mail:
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
41
|
Maciel D, Figueira P, Xiao S, Hu D, Shi X, Rodrigues J, Tomás H, Li Y. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules 2013; 14:3140-3146. [PMID: 23927460 DOI: 10.1021/bm400768m] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although doxorubicin (Dox) has been widely used in the treatment of different types of cancer, its insufficient cellular uptake and intracellular release is still a limitation. Herein, we report an easy process for the preparation of redox-sensitive nanogels that were shown to be highly efficient in the intracellular delivery of Dox. The nanogels (AG/Cys) were obtained through in situ cross-linking of alginate (AG) using cystamine (Cys) as a cross-linker via a miniemulsion method. Dox was loaded into the AG/Cys nanogels by simply mixing it in aqueous solution with the nanogels, that is, by the establishment of electrostatic interactions between the anionic AG and the cationic Dox. The results demonstrated that the AG/Cys nanogels are cytocompatible, have a high drug encapsulation efficiency (95.2 ± 4.7%), show an in vitro accelerated release of Dox in conditions that mimic the intracellular reductive conditions, and can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in higher Dox intracellular accumulation and a remarkable cell death extension when compared with free Dox. The developed nanogels can be used as a tool to overcome the problem of Dox resistance in anticancer treatments and possibly be used for the delivery of other cationic drugs in applications beyond cancer.
Collapse
Affiliation(s)
- Dina Maciel
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mazevet M, Moulin M, Llach-Martinez A, Chargari C, Deutsch E, Gomez AM, Morel E. Complications of chemotherapy, a basic science update. Presse Med 2013; 42:e352-61. [PMID: 23972551 DOI: 10.1016/j.lpm.2013.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022] Open
Abstract
Anthracyclines, discovered 50 years ago, are antibiotics widely used as antineoplastic agents and are among the most successful anticancer therapies ever developed to treat a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, some anthracyclines, including doxorubicin, exhibit major signs of cardiotoxicity that may ultimately lead to heart failure (HF). Despite intensive research on doxorubicine-induced cardiotoxicity, the underlying mechanisms responsible for doxorubicin-induced cardiotoxicity have not been fully elucidated yet. Published literature so far has focused mostly on mitochondria dysfunction with consequent oxidative stress, Ca(2+) overload, and cardiomyocyte death as doxorubicin side effects, leading to heart dysfunction. This review focuses on the current understanding of the molecular mechanisms underlying doxorubicin-induced cardiomyocyte death (i.e.: cardiomyocyte death, mitochondria metabolism and bioenergetic alteration), but we will also point to new directions of possible mechanisms, suggesting potent prior or concomitant alterations of specific signaling pathways with molecular actors directly targeted by the anticancer drugs itself (i.e. calcium homeostasis or cAMP signaling cascade). The mechanisms of anticancer cardiac toxicity may be more complex than just mitochondria dysfunction. Partnership of both basic and clinical research is needed to promote new strategies in diagnosis, therapies with concomitant cardioprotection in order to achieve cancer treatment with acceptable cardiotoxicity along life span.
Collapse
Affiliation(s)
- Marianne Mazevet
- Inserm UMR-S 769, LabEx Lermit-DHU Torino, université Paris-Sud, faculté de pharmacie, signalisation et physiopathologie cardiaque, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Ma S, Zhang H, Sun W, Gong H, Wang Y, Ma C, Wang J, Cao C, Yang X, Tian J, Jiang Y. Hyperhomocysteinemia induces cardiac injury by up-regulation of p53-dependent Noxa and Bax expression through the p53 DNA methylation in ApoE(-/-) mice. Acta Biochim Biophys Sin (Shanghai) 2013; 45:391-400. [PMID: 23619570 DOI: 10.1093/abbs/gmt030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for cardiovascular disease and has a strong correlation with heart failure. However, the effects of HHcy on cardiac tissue remain less well understood. To elucidate the role of p53-dependent apoptosis in HHcy-induced cardiac injury, we fed ApoE(-/-) mice with high methionine diet to establish HHcy model. Serum Hcy, cardiac enzymes, and lipids were measured. The protein levels of Noxa, DNMT1, caspases-3/9, and p53 were determined by enzyme-linked immunosorbent assay. Bcl-2 and Bax proteins were detected by immunohistochemistry staining. S-adenosyl methionine and S-adenosyl homocysteine concentrations were determined by high-performance liquid chromatography. The mRNA levels of p53 and DNMT1 were analyzed by real-time polymerase chain reaction (PCR) and the methylation levels of p53 were analyzed by nested methylation-specific-PCR. Our data showed that the concentrations of serum Hcy and lipids were increased in Meth group compared with the N-control group, which indicated that the model was established successfully. The expression levels of p53 and Noxa were increased in Meth group, while the methylation status of p53 was hypomethylation. The activities of caspase-3/9 were increased in Meth group compared with the N-control group. In addition, immunohistochemistry staining showed that the expression of Bax was significantly increased in Meth and Meth-F group compared with the N-control group. In summary, HHcy induces cardiac injury by up-regulation of p53-dependent pro-apoptotic related genes Noxa and Bax, while p53 DNA hypomethylation is a key molecular mechanism in pathological process induced by HHcy.
Collapse
Affiliation(s)
- Shengchao Ma
- Department of Laboratory Medical, Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
3,3′-Diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a BRCA1-dependent anti-oxidant pathway. Pharmacol Res 2013; 70:139-46. [DOI: 10.1016/j.phrs.2013.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/29/2012] [Accepted: 01/13/2013] [Indexed: 11/18/2022]
|
45
|
Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med Res Rev 2013; 34:106-35. [DOI: 10.1002/med.21280] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa S. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Ana Burgeiro
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rita Garcia
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - António J. Moreno
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rui A. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| |
Collapse
|
46
|
Abstract
Damage to heart cells leading to heart failure is a known complication of well-established cancer therapies including anthracycline antibiotics and radiation therapy, and the cardiovascular complications of these therapies has been controlled in large part through dose limitations and modifications of delivery methods. Recent research into the cellular and molecular mechanisms for the cardiovascular effects of these therapies may lead to other cardioprotective strategies that improve effectiveness of cancer treatments. Newer cancer therapies that have been developed based upon specifically targeting oncogene signaling also have been associated with heart failure. Rapid development of a detailed understanding of how these agents cause cardiac dysfunction promises to improve outcomes in cancer patients, as well as stimulate concepts of cardiovascular homeostasis that will likely accelerate development of cardiovascular therapies.
Collapse
|
47
|
Roca-Alonso L, Pellegrino L, Castellano L, Stebbing J. Breast cancer treatment and adverse cardiac events: what are the molecular mechanisms? Cardiology 2012; 122:253-9. [PMID: 22907032 DOI: 10.1159/000339858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/29/2012] [Indexed: 02/02/2023]
Abstract
Cardiotoxicity associated with breast cancer treatment is an important concern in the oncology clinic. Different types of anti-cancer therapies have recorded high rates of cardiac dysfunction in treated patients. Cardiac dysfunction linked to anthracyclines--one of the most common conventional chemotherapies--has extensively been described and several mechanisms have been proposed, although their mode of action is not fully understood even in cancer cells. The mediation of cardiac damage by reactive oxygen species stress is a recent hypothesis that has attracted a lot of interest, since it might explain the tissue-specific toxic effects of anthracyclines in the heart. Regarding molecular targeted tyrosine kinase inhibitors used in patients with human epidermal growth factor receptor type 2+ tumours (e.g., trastuzumab, lapatinib), it is the blockage of survival pathways required for a normal heart development and function that seems to lead to cardiac pathology. Both types of breast cancer treatment appear to trigger cardiotoxicity synergically, being patients under adjuvant therapy closely monitored. Given the complex nature of heart failure and of the pathways altered by anti-cancer drugs, global gene expression regulation is key in the heart disease process. MicroRNAs have been demonstrated to be small molecules with big roles as essential gene expression modulators. The great potential of microRNAs as biomarkers in the cardio-oncology field needs to be further explored before new microRNA-based diagnostic and therapeutic tools can be developed.
Collapse
|
48
|
Freeland MM, Angulo J, Davis AL, Flook AM, Garcia BL, King NA, Mangibin SK, Paul KM, Prosser ME, Sata N, Bentley JL, Olson LE. Sex differences in improved efficacy of doxorubicin chemotherapy in Cbr1+/− mice. Anticancer Drugs 2012; 23:584-9. [DOI: 10.1097/cad.0b013e3283512726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
|