1
|
Sraphet S, Javadi B. Deciphering the structural complexity of esterases in Amycolatopsis eburnea: A comprehensive exploration of solvent accessibility patterns. Comput Biol Med 2025; 192:110361. [PMID: 40347802 DOI: 10.1016/j.compbiomed.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Carboxylesterases (CES) are pivotal enzymes in the hydrolysis of carboxylic esters, playing fundamental roles in both biological systems and biotechnological applications. This study investigates CES from the Amycolatopsis genus, characterized by its high GC content and structural complexity. Employing a machine learning-driven de novo modeling approach, we examined the primary sequences, physicochemical attributes, and structural characteristics of 109 CES proteins, including 23 from Amycolatopsis eburnea, which exhibit over 95 % sequence similarity to other species within the genus. Our analysis identified three distinct CES groups based on amino acid composition and molecular weight, with alanine, glycine, and valine as the most abundant residues. The isoelectric points varied from 4.9 to 10.27. Unsupervised agglomerative hierarchical clustering classified the CES into two major clusters, displaying >99.6 % structural similarity based on solvent accessibility. The average solvent-accessible surface area (SASA) was 9750 Å2, with backbone regions exhibiting greater solvent exposure than side chains (7888 Å2 vs. 3037 Å2). Key structural hot spots crucial for enzyme stability and folding were identified, offering potential targets for protein engineering. These findings provide valuable insights into the structural determinants of CES function, enabling rational design strategies to enhance enzyme performance and stability for biotechnological applications.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.
| |
Collapse
|
2
|
Foucault P, Halary S, Duval C, Goto M, Marie B, Hamlaoui S, Jardillier L, Lamy D, Lance E, Raimbault E, Allouti F, Troussellier M, Bernard C, Leloup J, Duperron S. A summer in the greater Paris: trophic status of peri-urban lakes shapes prokaryotic community structure and functional potential. ENVIRONMENTAL MICROBIOME 2025; 20:24. [PMID: 39962619 PMCID: PMC11834611 DOI: 10.1186/s40793-025-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
With more than 12 million inhabitants, the Greater Paris offers a "natural laboratory" to explore the effects of eutrophication on freshwater lake's microbiomes within a relative restricted area (~ 70 km radius). Here, a 4-months survey was carried out during summertime to monitor planktonic microbial communities of nine lakes located around Paris (Île-de-France, France) of comparable morphologies, yet distinct trophic statuses from mesotrophic to hypereutrophic. By thus minimizing the confounding factors, we investigated how trophic status could influence prokaryotic community structures (16S rRNA gene sequencing) and functions (shotgun metagenomics). These freshwater lakes harbored highly distinct and diverse prokaryotic communities, and their trophic status appears as the main driver explaining both differences in community structure and functional potential. Although their gene pool was quite stable and shared among lakes, taxonomical and functional changes were correlated. According to trophic status, differences in phosphorus metabolism-related genes were highlighted among the relevant functions involved in the biogeochemical cycles. Overall, hypereutrophic lakes microbiomes displayed the highest contrast and heterogeneity over time, suggesting a specific microbial regime shift compared to eutrophic and mesotrophic lakes.
Collapse
Affiliation(s)
- Pierre Foucault
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Charlotte Duval
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Midoli Goto
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Sahima Hamlaoui
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Ludwig Jardillier
- Université Paris-Saclay, UMR 8079 Univ. Paris-Saclay-CNRS-AgroParisTech, Unité d'Écologie Systématique et Évolution (ESE), Gif-sur-Yvette, France
| | - Dominique Lamy
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Emilie Lance
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Université de Reims, UMR-I 02, Stress environnementaux et biosurveillance des milieux aquatiques (SEBIO), Reims, France
| | - Emmanuelle Raimbault
- Institut de Physique du Globe de Paris, UMR 7154, Univ. Paris Cité-CNRS, Paris, France
| | - Fayçal Allouti
- Muséum National d'Histoire Naturelle, UAR 7200 MNHN, Acquisition et Analyses de Données pour l'Histoire naturelle (2AD), Paris, France
| | - Marc Troussellier
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Cécile Bernard
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Julie Leloup
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France.
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France.
| |
Collapse
|
3
|
Al-Awthan YS, Mir R, Alatawi FA, Alatawi AS, Almutairi FM, Khafaga T, Shohdi WM, Fakhry AM, Alharbi BM. Metagenome Analysis Identified Novel Microbial Diversity of Sandy Soils Surrounded by Natural Lakes and Artificial Water Points in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia. Life (Basel) 2024; 14:1692. [PMID: 39768398 PMCID: PMC11676345 DOI: 10.3390/life14121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data can improve agricultural restoration practices and aid in developing more effective environmental management strategies. METHODOLOGY In November 2023, sandy soil samples were collected from ten sites of different geographical areas surrounding natural lakes and artificial water points in the Tubaiq conservation area of King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR), Saudi Arabia. In addition, genomic DNA was extracted from the collected soil samples, and 16S rRNA sequencing was conducted using high-throughput Illumina technology. Several computational analysis tools were used for gene prediction and taxonomic classification of the microbial groups. RESULTS In this study, sandy soil samples from the surroundings of natural and artificial water resources of two distinct natures were used. Based on 16S rRNA sequencing, a total of 24,563 OTUs were detected. The metagenomic information was then categorized into 446 orders, 1036 families, 4102 genera, 213 classes, and 181 phyla. Moreover, the phylum Pseudomonadota was the most dominant microbial community across all samples, representing an average relative abundance of 34%. In addition, Actinomycetes was the most abundant class (26%). The analysis of clustered proteins assigned to COG categories provides a detailed understanding of the functional capabilities and adaptation of microbial communities in soil samples. Amino acid metabolism and transport were the most abundant categories in the soil environment. CONCLUSIONS Metagenome analysis of sandy soils surrounding natural lakes and artificial water points in the Tubaiq conservation area of KSRNR (Saudi Arabia) has unveils rich microbial activity, highlighting the complex interactions and ecological roles of microbial communities in these environments.
Collapse
Affiliation(s)
- Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fuad A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| | - Abdulaziz S. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| | - Fahad M. Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tamer Khafaga
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Wael M. Shohdi
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Amal M. Fakhry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (F.A.A.); (A.S.A.); (B.M.A.)
| |
Collapse
|
4
|
Donchev D, Ivanov IN, Stoikov I, Ivanova M. Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria. Microorganisms 2024; 12:1250. [PMID: 38930632 PMCID: PMC11207046 DOI: 10.3390/microorganisms12061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving 125,000 people on the Iskar River in Bulgaria, by characterizing the spatial and short-term temporal dynamics in bacterial community dynamics and resistance profiles of the surface water. Pairs of samples were collected biweekly on four dates from two different locations, one about 800 m after the WWTP effluents and the other 10 km downstream. Taxonomic classification revealed the dominance of Pseudomonodota and Bacteriodota, notably the genera Flavobacterium, Aquirufa, Acidovorax, Polynucleobacter, and Limnohabitans. The taxonomic structure corresponded with both lentic and lotic freshwater habitats, with Flavobacterium exhibiting a significant decrease over the study period. Principal Coordinate Analysis revealed statistically significant differences in bacterial community composition between samples collected on different dates. Differential abundance analysis identified notable enrichment of Polynucleobacter and Limnohabitans. There were shifts within the enriched or depleted bacterial taxa between early and late sampling dates. High relative abundance of the genes erm(B), erm(F), mph(E), msr(E) (macrolides); tet(C), tet(O), tet(W), tet(Q) and tet(X) (tetracyclines); sul1 and sul2 (sulphonamides); and cfxA3, cfxA6 (beta-lactams) were detected, with trends of increased presence in the latest sampling dates and in the location closer to the WWTP. Of note, genes conferring resistance to carbapenems blaOXA-58 and blaIMP-33-like were identified. Co-occurrence analysis of ARGs and mobile genetic elements on putative plasmids showed few instances, and the estimated human health risk score (0.19) according to MetaCompare2.0 was low. In total, 29 metagenome-assembled genomes were recovered, with only a few harbouring ARGs. This study enhances our understanding of freshwater microbial community dynamics and antibiotic resistance profiles, highlighting the need for continued ARGs monitoring.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Monika Ivanova
- Paralax Life Sciences, Sofia Center, 47 Bacho Kiro Str., 1202 Sofia, Bulgaria
| |
Collapse
|
5
|
Brar B, Kumar R, Sharma D, Sharma AK, Thakur K, Mahajan D, Kumar R. Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India. J Genet Eng Biotechnol 2023; 21:147. [PMID: 38015339 PMCID: PMC10684477 DOI: 10.1186/s43141-023-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The health index of any population is directly correlated with the water quality, which in turn depends upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water quality, knowledge of microbial diversity is a must. The present investigation attempts to evaluate the microflora of Baner. Metagenomics has been proven to be the technique for examining the genetic diversity of unculturable microbiota without using traditional culturing techniques. The microbial profile of Baner is analyzed using metagenomics for the first time to the best of our knowledge. RESULTS To explore the microbial diversity of Baner, metagenomics analysis from 3 different sites was done. Data analysis identified 29 phyla, 62 classes, 131 orders, 268 families, and 741 genera. Proteobacteria was found to be the most abundant phylum in all the sampling sites, with the highest abundance at S3 sampling site (94%). Bacteroidetes phylum was found to be second abundant in S1 and S2 site, whereas Actinobacteria was second dominant in sampling site S3. Enterobacteriaceae family was dominant in site S1, whereas Comamonadaceae and Pseudomonadaceae was abundant in sites S2 and S3 respectively. The Baner possesses an abundant bacterial profile that holds great promise for developing bioremediation tactics against a variety of harmful substances. CONCLUSION Baner river's metagenomic analysis offers the first insight into the microbial profile of this hilly stream. Proteobacteria was found to be the most abundant phylum in all the sampling sites indicating anthropogenic interference and sewage contamination. The highest abundance of proteobacteria at S3 reveals it to be the most polluted site, as it is the last sampling site downstream of the area under investigation, and falls after crossing the main city, so more human intervention and pollution were observed. Despite some pathogens, a rich profile of bacteria involved in bioremediation, xenobiotic degradation, and beneficial fish probiotics was observed, reflecting their potential applications for improving water quality and establishing a healthy aquaculture and fishery section.
Collapse
Affiliation(s)
- Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Ravi Kumar
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College & Hospital, Tanda, Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
6
|
Borton MA, McGivern BB, Willi KR, Woodcroft BJ, Mosier AC, Singleton DM, Bambakidis T, Pelly A, Liu F, Edirisinghe JN, Faria JP, Leleiwi I, Daly RA, Goldman AE, Wilkins MJ, Hall EK, Pennacchio C, Roux S, Eloe-Fadrosh EA, Good SP, Sullivan MB, Henry CS, Wood-Charlson EM, Ross MRV, Miller CS, Crump BC, Stegen JC, Wrighton KC. A functional microbiome catalog crowdsourced from North American rivers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550117. [PMID: 37502915 PMCID: PMC10370164 DOI: 10.1101/2023.07.22.550117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.
Collapse
|
7
|
Sylvain FÉ, Bouslama S, Holland A, Leroux N, Mercier PL, Val AL, Derome N. Bacterioplankton Communities in Dissolved Organic Carbon-Rich Amazonian Black Water. Microbiol Spectr 2023; 11:e0479322. [PMID: 37199657 PMCID: PMC10269884 DOI: 10.1128/spectrum.04793-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the β-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.
Collapse
Affiliation(s)
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Victoria, Australia
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
8
|
Bonal M, Goetghebuer L, Joseph C, Gonze D, Faust K, George IF. Deciphering Interactions Within a 4-Strain Riverine Bacterial Community. Curr Microbiol 2023; 80:238. [PMID: 37294449 DOI: 10.1007/s00284-023-03342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
The dynamics of a community of four planktonic bacterial strains isolated from river water was followed in R2 broth for 72 h in batch experiments. These strains were identified as Janthinobacterium sp., Brevundimonas sp., Flavobacterium sp. and Variovorax sp. 16S rRNA gene sequencing and flow cytometry analyses were combined to monitor the change in abundance of each individual strain in bi-cultures and quadri-culture. Two interaction networks were constructed that summarize the impact of the strains on each other's growth rate in exponential phase and carrying capacity in stationary phase. The networks agree on the absence of positive interactions but also show differences, implying that ecological interactions can be specific to particular growth phases. Janthinobacterium sp. was the fastest growing strain and dominated the co-cultures. However, its growth rate was negatively affected by the presence of other strains 10 to 100 times less abundant than Janthinobacterium sp. In general, we saw a positive correlation between growth rate and carrying capacity in this system. In addition, growth rate in monoculture was predictive of carrying capacity in co-culture. Taken together, our results highlight the necessity to take growth phases into account when measuring interactions within a microbial community. In addition, evidence that a minor strain can greatly influence the dynamics of a dominant one underlines the necessity to choose population models that do not assume a linear dependency of interaction strength to abundance of other species for accurate parameterization from such empirical data.
Collapse
Affiliation(s)
- Mathias Bonal
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Lise Goetghebuer
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Clémence Joseph
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Faculty of Sciences, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium.
- Laboratory of Marine Biology, Department of Biology, Université Libre de Bruxelles, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Liu C, Liu M, Wang Y, Shi B, Pan D. Insights into the Gut Microbiota of the Freshwater Crab Sinopotamon planum across Three Seasons and Its Associations with the Surrounding Aquatic Microbiota. DIVERSITY 2023. [DOI: 10.3390/d15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Gut microbiota is closely related to the health of the host and its adaptation to environmental changes. Sinopotamon planum is a species of freshwater crab that lives in the water for three seasons and plays a key role in freshwater ecosystems as a benthic macroinvertebrate, an important indicator of aquatic ecological health. In this study, we sequenced 60 gut microbial samples of S. planum and nine microbial samples from the surrounding water in spring, summer, and autumn based on the 16S rRNA gene. The results showed that gut microbiota had the highest alpha diversity in summer, which may be related to increased adaptability in summer. Firmicutes, Proteobacteria, and Bacteroidota were the most dominant phyla of gut microbiota across three seasons, with Candidatus Hepatoplasma and Candidatus Bacilloplasma being the main genera. These main phyla and genera may be key to maintaining a stable function of the intestinal environment. Firmicutes was the phylum with the highest relative abundance, which is probably related to the carnivorous behaviour of S. planum. The abundant C. Hepatoplasma may be related to the starvation of S. planum in the wild. In both gut and water microbiota, beta diversity analyses showed significant differences across seasons. Comparative analysis of gut microbes and surrounding water microbes showed significant differences in microbial diversity and composition between gut and surrounding water. In conclusion, the structure of the gut microbial community of S. planum differed significantly between the studied seasons, but the water microbial community around S. planum was less variable and significantly different from the gut microbes. The seasonal differences in gut microbes are more likely the result of self-internal adaptation to changes in water temperature and food resources between seasons.
Collapse
Affiliation(s)
- Caixin Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Meijun Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Linz DM, Sienkiewicz N, Struewing I, Stelzer EA, Graham JL, Lu J. Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States. Sci Rep 2023; 13:2806. [PMID: 36797305 PMCID: PMC9935515 DOI: 10.1038/s41598-023-29037-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cyanobacteria and cyanotoxin producing cyanobacterial blooms are a trending focus of current research. Many studies focus on bloom events in lentic environments such as lakes or ponds. Comparatively few studies have explored lotic environments and fewer still have examined the cyanobacterial communities and potential cyanotoxin producers during ambient, non-bloom conditions. Here we used a metagenomics-based approach to profile non-bloom microbial communities and cyanobacteria in 12 major U.S. rivers at multiple time points during the summer months of 2019. Our data show that U.S. rivers possess microbial communities that are taxonomically rich, yet largely consistent across geographic location and time. Within these communities, cyanobacteria often comprise significant portions and frequently include multiple species with known cyanotoxin producing strains. We further characterized these potential cyanotoxin producing taxa by deep sequencing amplicons of the microcystin E (mcyE) gene. We found that rivers containing the highest levels of potential cyanotoxin producing cyanobacteria consistently possess taxa with the genetic potential for cyanotoxin production and that, among these taxa, the predominant genus of origin for the mcyE gene is Microcystis. Combined, these data provide a unique perspective on cyanobacteria and potential cyanotoxin producing taxa that exist in large rivers across the U.S. and can be used to better understand the ambient conditions that may precede bloom events in lotic freshwater ecosystems.
Collapse
Affiliation(s)
- David M Linz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Nathan Sienkiewicz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ian Struewing
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | | | | | - Jingrang Lu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Almeida PIND, Jesus HED, Pereira PHF, Vieira CED, Bianchini A, Martins CDMG, Santos HFD. The microbial profile of rivers and lagoons three years after the impact of the world's largest mining disaster (Fundão dam, Brazil). ENVIRONMENTAL RESEARCH 2023; 216:114710. [PMID: 36334830 DOI: 10.1016/j.envres.2022.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The collapse of the Fundão tailings dam (Minas Gerais, Brazil) was the largest environmental disaster in Brazil's history and in the world mining industry. This disaster carried approximately 55 million m3 of iron ore tailings along the rivers and the lagoons of the Doce river basin. Although multiple studies assessed the impact on microbial communities in those rivers and lagoons right after the dam rupture, it is not known whether the microbiome in those environments remains impacted years after the disaster. Assessing the microbiome is very important to evaluate impacts and evaluate the health of the environment, due to the several ecological roles played by microorganisms. Here, we evaluated the impact of the dam failure on water and sediment bacteriome and archaeome by high-throughput next-generation sequencing. Samples were taken from two rivers and six lagoons during the dry and rainy seasons approximately three years post disturbance. The results showed a large number and abundance of microbial groups associated with the presence of heavy metals and mine tailings sediments. Some of these microorganisms were also reported in large abundance in the impacted rivers shortly after the Fundão dam rupture. Among the most abundant microorganisms in the Doce River, we can highlight the bacteria hgcI clade and the archaea Nitrososphera sp. in the water, and the bacteria Anaerolineaceae sp. in the sediment. These results suggest that the microbiome of the rivers and the lagoons in the Doce river basin remains severely impacted by the Fundão tailings dam failure even three years after the disaster. The presence of those microorganisms can also help to assess the occurrence of the Fundão dam sediment in other environments.
Collapse
Affiliation(s)
- Pedro Ivo Neves de Almeida
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Carlos Eduardo Delfino Vieira
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
12
|
Parida PK, Behera BK, Dehury B, Rout AK, Sarkar DJ, Rai A, Das BK, Mohapatra T. Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71311-71325. [PMID: 35596862 DOI: 10.1007/s11356-022-20766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The large population residing in the northern region of India surrounding Delhi mostly depends on water of River Yamuna, a tributary of mighty Ganga for agriculture, drinking and various religious activities. However, continuous anthropogenic activities mostly due to pollution mediated by rapid urbanization and industrialization have profoundly affected river microflora and their function thus its health. In this study, potential of whole-genome metagenomics was exploited to unravel the novel consortia of microbiome and their functional potential in the polluted sediments of the river at Delhi. Analysis of high-quality metagenome data from Illumina NextSeq500 revealed substantial differences in composition of microbiota at different sites dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Chloroflexi phyla. The presence of highly dominant anaerobic bacteria like Dechloromonas aromatica (benzene reducing and denitrifying), Rhodopseudomonas palustris (organic matter reducing), Syntrophus aciditrophicus (fatty acid reducing) and Syntrophobacter fumaroxidans (sulphate reducing) in the polluted river Yamuna signifies the impact of unchecked pollution in declining health of the river ecosystem. A decline in abundance of phages was also noticed along the downstream river Yamuna. Mining of mycobiome reads uncovered plethora of fungal communities (i.e. Nakaseomyces, Aspergillus, Schizosaccharomyces and Lodderomyces) in the polluted stretches due to the availability of higher organic carbon and total nitrogen (%) could be decoded as promising bioindicators of river trophic status. Pathway analysis through KEGG revealed higher abundance of genes involved in energy metabolism (nitrogen and sulphur), methane metabolism, degradation of xenobiotics (Nitrotoluene, Benzoate and Atrazine), two-component system (atoB, cusA and silA) and membrane transport (ABC transporters). Catalase-peroxidase and 4-hydroxybenzoate 3-monooxygenase were the most enriched pollution degrading enzymes in the polluted study sites of river Yamuna. Overall, our results provide crucial insights into microbial dynamics and their function in response to high pollution and could be insightful to the ongoing remediation strategies to clean river Yamuna.
Collapse
Affiliation(s)
- Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India.
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | | |
Collapse
|
13
|
Characterization of Bacterial Communities from the Surface and Adjacent Bottom Layers of Water in the Billings Reservoir. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081280. [PMID: 36013459 PMCID: PMC9409723 DOI: 10.3390/life12081280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Here, we describe the bacterial diversity and physicochemical properties in freshwater samples from the surface and bottom layers of the Billings Reservoir, the largest open-air storage ecosystem in the São Paulo (Brazil) metropolitan area. Forty-four samples (22 from the surface and 22 from the bottom layers) were characterized based on 16S rRNA gene analysis using Illumina MiSeq. Taxonomical composition revealed an abundance of the Cyanobacteria phylum, followed by Proteobacteria, which were grouped into 1903 and 2689 different genera in the surface and the deep-water layers, respectively. Chroobacteria, Actinobacteria, Betaproteobacteria, and Alphaproteobacteria were the most dominant classes. The Shannon diversity index was in the range of 2.3–5.39 and 4.04–6.86 in the surface and bottom layers, respectively. Flavobacterium was the most predominant pathogenic genus. Temperature and phosphorus concentrations were among the most influential factors in shaping the microbial communities of both layers. Predictive functional analysis suggests that the reservoir is enriched in motility genes involved in flagellar assembly. The overall results provide new information on the diversity composition, ecological function, and health risks of the bacterial community detected in the Billings freshwater reservoir. The broad bacterial diversity indicates that the bacterioplankton communities in the reservoir were involved in multiple essential environmental processes.
Collapse
|
14
|
Rojas MVR, Alonso DP, Dropa M, Razzolini MTP, de Carvalho DP, Ribeiro KAN, Ribolla PEM, Sallum MAM. Next-Generation High-Throughput Sequencing to Evaluate Bacterial Communities in Freshwater Ecosystem in Hydroelectric Reservoirs. Microorganisms 2022; 10:1398. [PMID: 35889116 PMCID: PMC9322053 DOI: 10.3390/microorganisms10071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
The quality of aquatic ecosystems is a major public health concern. The assessment and management of a freshwater system and the ecological monitoring of microorganisms that are present in it can provide indicators of the environment and water quality to protect human and animal health. with bacteria is. It is a major challenge to monitor the microbiological bacterial contamination status of surface water associated with anthropogenic activities within rivers and freshwater reservoirs. Understanding the composition of aquatic microbial communities can be beneficial for the early detection of pathogens, improving our knowledge of their ecological niches, and characterizing the assemblages of microbiota responsible for the degradation of contaminants and microbial substrates. The present study aimed to characterize the bacterial microbiota of water samples collected alongside the Madeira River and its small tributaries in rural areas near the Santo Antonio Energia hydroelectric power plant (SAE) reservoir in the municipality of Porto Velho, Rondonia state, Western Brazil. An Illumina 16s rRNA metagenomic approach was employed and the physicochemical characteristics of the water sample were assessed. We hypothesized that both water metagenomics and physicochemical parameters would vary across sampling sites. The most abundant genera found in the study were Acinetobacter, Deinococcus, and Pseudomonas. PERMANOVA and ANCOM analysis revealed that collection points sampled at the G4 location presented a significantly different microbiome compared to any other group, with the Chlamidomonadaceae family and Enhydrobacter genus being significantly more abundant. Our findings support the use of metagenomics to assess water quality standards for the protection of human and animal health in this microgeographic region.
Collapse
Affiliation(s)
- Martha Virginia R. Rojas
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- FUNDUNESP—Fundação para o Desenvolvimento da UNESP, São Paulo 01009-906, Brazil
| | - Diego Peres Alonso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- Instituto de Biotecnologia da UNESP (IBTEC-Campus Botucatu), São Paulo 18607-440, Brazil;
| | - Milena Dropa
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | - Maria Tereza P. Razzolini
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | | | | | | | - Maria Anice M. Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
| |
Collapse
|
15
|
Yang Z, Sun H, Zhou L, Arhin SG, Papadakis VG, Goula MA, Liu G, Zhang Y, Wang W. Bioaugmentation with well-constructed consortia can effectively alleviate ammonia inhibition of practical manure anaerobic digestion. WATER RESEARCH 2022; 215:118244. [PMID: 35259562 DOI: 10.1016/j.watres.2022.118244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation is an attractive method to improve methane production (MP) in the anaerobic digestion (AD) process. In this study, to tackle the ammonia inhibition problem, a long-term (operating over 6 months) acclimatized consortia and a well-constructed consortia were selected as the bioaugmentation consortia for sequencing batch AD reactors fed with dairy manure and pig manure under mesophilic condition. Similar responses, in terms of the reactor performance and microorganisms structure to the different consortia, were observed with both manure kinds indicating that the effectiveness of bioaugmentation was mainly decided by the composition of the added consortia, not the feedstock. 39 - 49% increment in MP was obtained in the reactors bioaugmented with well-constructed consortia, which was higher than the acclimatized consortia (about 25% increment in MP). Both acetogenesis and methanogenesis (advantageous) steps were stimulated with well-constructed consortia bioaugmentation. According to key functional enzyme analysis, the increment of glycine hydroxymethyltransferase and phosphoglycerate mutase might be the critical point in the bioaugmented AD system. Based on the higher functional contribution rate of the well-constructed consortia bioaugmentation reactors, Methanosarcina could have expressed more comprehensive functions or performed stronger activities in different functions than Methanosaeta.
Collapse
Affiliation(s)
- Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hangyu Sun
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| | - Samuel Gyebi Arhin
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, Seferi 2, Agrinio 30100, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, 50100, Greece
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Zhang M, Zeng G, Liang D, Xu Y, Li Y, Huang X, Ma Y, Wang F, Liao C, Tang C, Li H, Pan Y, Sun D. An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095525. [PMID: 35564921 PMCID: PMC9101644 DOI: 10.3390/ijerph19095525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023]
Abstract
At present, research on the influence of human activities (especially urbanization) on the microbial diversity, structural composition, and spatial distribution of rivers is limited. In this paper, to explore the prokaryotic community structure and the relationship between the community and environmental factors in the Jialing River Basin of Chongqing, so as to provide a basis for monitoring microorganisms in the watershed. The V3–V4 region of the 16 S rRNA gene was analyzed by high-throughput sequencing and the microbial community of the waters of the Jialing River was analyzed for the diversity and composition of the prokaryotic community as well as the species difference of four samples and correlations with environmental factors. The main results of this study were as follows: (1) The diversity index showed that there were significant differences in the biodiversity among the four regions. At the genus level, Limnohabitans, unclassified_f_Comamonadaceae, and Hgcl_clade were the main dominant flora with a high abundance and evenness. (2) A Kruskal–Wallis H test was used to analyze the differences of species composition among the communities and the following conclusions were drawn: each group contained a relatively high abundance of Limnohabitans; the Shapingba District had a higher abundance of Limnohabitans, the Hechuan District had a wide range of unclassified_f_Comamonadaceae, and the Beibei District had a higher Hgcl_clade. (3) Through the determination of the physical and chemical indicators of the water—namely, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll A, and an analysis by an RDA diagram, the results demonstrated that the distribution of microbial colonies was significantly affected by the environmental factors of the water. Chemical oxygen demand and ammonia nitrogen had a significant influence on the distribution of the colonies. Different biological colonies were also affected by different environmental factors.
Collapse
Affiliation(s)
- Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Dong Liang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yiran Xu
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; (Y.L.); (Y.M.)
| | - Xin Huang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; (Y.L.); (Y.M.)
| | - Fei Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Chenhui Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Cheng Tang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| | - Yunzhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| |
Collapse
|
17
|
Hydroecology of Argyroneta aquatica’s Habitat in Hantangang River Geopark, South Korea. SUSTAINABILITY 2022. [DOI: 10.3390/su14094988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The water spider (Argyroneta aquatic) is the only known spider to live a fully aquatic life. Therefore, it has been the subject of a series of studies on various aspects of its unique biology such as its reproductive behavior, sexual dimorphism, physiology, genetics, and silk. However, there have been relatively few studies on the hydroecology of where water spiders live. The water spider habitat in Eundae-ri, Yeoncheon is the only habitat for A. aquatica, a globally rare species, in South Korea. In this region, the water level of the wetland is automatically adjusted to groundwater owing to continued drying. Here, the surface water, wetland, and groundwater near the A. aquatica habitat were studied using hydrochemical, microbiological, and correlation analyses. The hydrochemical properties—water temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation reduction potential, and turbidity—of the surface water and wetland were similar. The Piper diagrams revealed that the wetlands, surface water, and most of the groundwater portrayed Ca-HCO3-type properties, whereas only areas where the water level of the wetland was controlled displayed Na-HCO3-type properties. Furthermore, the NO3 content was too low to be detected in the wetland, indicating clean and non-polluted water conditions; additionally, heavier oxygen-hydrogen isotopes were observed because these regions were climatically affected by the wetland. The dominant bacteria were Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Nitrospirae. The correlation analysis revealed that the major environmental control factors of the A. aquatica habitat were DO, temperature, and pH, and the related bacteria were Cyanobacteria, Actinobacteria, and Verrucomicrobia.
Collapse
|
18
|
Hamidian M, Maharjan RP, Farrugia DN, Delgado NN, Dinh H, Short FL, Kostoulias X, Peleg AY, Paulsen IT, Cain AK. Genomic and phenotypic analyses of diverse non-clinical Acinetobacter baumannii strains reveals strain-specific virulence and resistance capacity. Microb Genom 2022; 8:000765. [PMID: 35166651 PMCID: PMC8942024 DOI: 10.1099/mgen.0.000765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a critically important pathogen known for its widespread antibiotic resistance and ability to persist in hospital-associated environments. Whilst the majority of A. baumannii infections are hospital-acquired, infections from outside the hospital have been reported with high mortality. Despite this, little is known about the natural environmental reservoir(s) of A. baumannii and the virulence potential underlying non-clinical strains. Here, we report the complete genome sequences of six diverse strains isolated from environments such as river, soil, and industrial sites around the world. Phylogenetic analyses showed that four of these strains were unrelated to representative nosocomial strains and do not share a monophyletic origin, whereas two had sequence types belonging to the global clone lineages GC1 and GC2. Further, the majority of these strains harboured genes linked to virulence and stress protection in nosocomial strains. These genotypic properties correlated well with in vitro virulence phenotypic assays testing resistance to abiotic stresses, serum survival, and capsule formation. Virulence potential was confirmed in vivo, with most environmental strains able to effectively kill Galleria mellonella greater wax moth larvae. Using phenomic arrays and antibiotic resistance profiling, environmental and nosocomial strains were shown to have similar substrate utilisation patterns although environmental strains were distinctly more sensitive to antibiotics. Taken together, these features of environmental A. baumannii strains suggest the existence of a strain-specific distinct gene pools for niche specific adaptation. Furthermore, environmental strains appear to be equally virulent as contemporary nosocomial strains but remain largely antibiotic sensitive.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The iThree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ram P. Maharjan
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel N. Farrugia
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Natasha N. Delgado
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Francesca L. Short
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Xenia Kostoulias
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton Y. Peleg
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
19
|
Water Column Microbial Communities Vary along Salinity Gradients in the Florida Coastal Everglades Wetlands. Microorganisms 2022; 10:microorganisms10020215. [PMID: 35208670 PMCID: PMC8874701 DOI: 10.3390/microorganisms10020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/04/2023] Open
Abstract
Planktonic microbial communities mediate many vital biogeochemical processes in wetland ecosystems, yet compared to other aquatic ecosystems, like oceans, lakes, rivers or estuaries, they remain relatively underexplored. Our study site, the Florida Everglades (USA)—a vast iconic wetland consisting of a slow-moving system of shallow rivers connecting freshwater marshes with coastal mangrove forests and seagrass meadows—is a highly threatened model ecosystem for studying salinity and nutrient gradients, as well as the effects of sea level rise and saltwater intrusion. This study provides the first high-resolution phylogenetic profiles of planktonic bacterial and eukaryotic microbial communities (using 16S and 18S rRNA gene amplicons) together with nutrient concentrations and environmental parameters at 14 sites along two transects covering two distinctly different drainages: the peat-based Shark River Slough (SRS) and marl-based Taylor Slough/Panhandle (TS/Ph). Both bacterial as well as eukaryotic community structures varied significantly along the salinity gradient. Although freshwater communities were relatively similar in both transects, bacterioplankton community composition at the ecotone (where freshwater and marine water mix) differed significantly. The most abundant taxa in the freshwater marshes include heterotrophic Polynucleobacter sp. and potentially phagotrophic cryptomonads of the genus Chilomonas, both of which could be key players in the transfer of detritus-based biomass to higher trophic levels.
Collapse
|
20
|
Zhang L, Graham N, Derlon N, Tang Y, Siddique MS, Xu L, Yu W. Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Santos-Júnior CD, Logares R, Henrique-Silva F. Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Mol Ecol 2021; 31:206-219. [PMID: 34637571 DOI: 10.1111/mec.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Rivers connect the carbon cycle in land with that in aquatic ecosystems by transporting and transforming terrestrial organic matter (TeOM). The Amazon River receives huge loads of TeOM from the surrounding rainforest, promoting a substantial microbial heterotrophic activity and consequently, CO2 outgassing. In the Amazon River, microbes degrade up to 55% of the lignin present in the TeOM. Yet, the main microbial genomes involved in TeOM degradation were unknown. Here, we characterize 51 population genomes (PGs) representing some of the most abundant microbes in the Amazon River deriving from 106 metagenomes. The 51 reconstructed PGs are among the most abundant microbes in the Amazon River, and 53% of them are not able to degrade TeOM. Among the PGs capable of degrading TeOM, 20% were exclusively cellulolytic, while the others could also oxidize lignin. The transport and consumption of lignin oxidation byproducts seemed to be decoupled from the oxidation process, being apparently performed by different groups of microorganisms. By connecting the genomic features of abundant microbes in the Amazon River with the degradation machinery of TeOM, we suggest that a complex microbial consortium could explain the quick turnover of TeOM previously observed in this ecosystem.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Molecular Biology Laboratory, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Big Data Biology Research Group, Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Flávio Henrique-Silva
- Molecular Biology Laboratory, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
22
|
Mutnale MC, Reddy GS, Vasudevan K. Bacterial Community in the Skin Microbiome of Frogs in a Coldspot of Chytridiomycosis Infection. MICROBIAL ECOLOGY 2021; 82:554-558. [PMID: 33442763 PMCID: PMC8384794 DOI: 10.1007/s00248-020-01669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Chytridiomycosis is a fungal disease caused by the pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), which has caused declines in amphibian populations worldwide. Asia is considered as a coldspot of infection, since adult frogs are less susceptible to Bd-induced mortality or morbidity. Using the next-generation sequencing approach, we assessed the cutaneous bacterial community composition and presence of anti-Bd bacteria in six frog species from India using DNA isolated from skin swabs. All the six frog species sampled were tested using nested PCR and found Bd negative. We found a total of 551 OTUs on frog skin, of which the bacterial phyla such as Proteobacteria (56.15% average relative abundance) was dominated followed by Actinobacteria (21.98% average relative abundance) and Firmicutes (13.7% average relative abundance). The contribution of Proteobacteria in the anti-Bd community was highest and represented by 175 OTUs. Overall, the anti-Bd bacterial community dominated (51.7% anti-Bd OTUs) the skin microbiome of the frogs. The study highlights the putative role of frog skin microbiome in affording resistance to Bd infections in coldspots of infection.
Collapse
Affiliation(s)
- Milind C Mutnale
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Gundlapally S Reddy
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
Shao K, Yao X, Wu Z, Jiang X, Hu Y, Tang X, Xu Q, Gao G. The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC Microbiol 2021; 21:179. [PMID: 34126927 PMCID: PMC8201733 DOI: 10.1186/s12866-021-02252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Bacterial community play a key role in environmental and ecological processes in river ecosystems. Rivers are used as receiving body for treated and untreated urban wastewaters that brings high loads of sewage and excrement bacteria. However, little is known about the bacterial community structure and functional files in the rivers around the eutrophic Chaohu Lake, the fifth largest freshwater lake in China, has been subjected to severe eutrophication and cyanobacterial blooms over the past few decades. Therefore, understanding the taxonomic and functional compositions of bacterial communities in the river will contribute to understanding aquatic microbial ecology. The main aims were to (1) examine the structure of bacterial communities and functional profiles in this system; (2) find the environmental factors of bacterial community variations. Results We studied 88 sites at rivers in the Chaohu Lake basin, and determined bacterial communities using Illumina Miseq sequencing of the 16 S rRNA gene, and predicted functional profiles using PICRUSt2. A total of 3,390,497 bacterial 16 S rRNA gene sequences were obtained, representing 17 phyla, and 424 genera; The dominant phyla present in all samples were Bacteroidetes (1.4-82.50 %), followed by Proteobacteria (12.6–97.30 %), Actinobacteria (0.1–17.20 %). Flavobacterium was the most numerous genera, and accounted for 0.12–80.34 % of assigned 16 S reads, followed by Acinetobacter (0.33–49.28 %). Other dominant bacterial genera including Massilia (0.06–25.40 %), Psychrobacter (0-36.23 %), Chryseobacterium (0.01–22.86 %), Brevundimonas (0.01–12.82 %), Pseudomonas (0-59.73 %), Duganella (0.08–23.37 %), Unidentified Micrococcaceae (0-8.49 %). The functional profiles of the bacterial populations indicated an relation with many human diseases, including infectious diseases. Overall results, using the β diversity measures, coupled with heatmap and RDA showed that there were spatial variations in the bacterial community composition at river sites, and Chemical oxygen demand (CODMn) and (NH4+ )were the dominant environmental drivers affecting the bacterial community variance. Conclusions The high proportion of the opportunistic pathogens (Acinetobacter, Massilia, Brevundimonas) indicated that the discharge of sewage without adequate treatment into the rivers around Chaohu Lake. We propose that these bacteria could be more effective bioindicators for long-term sewage monitoring in eutrophic lakes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02252-9.
Collapse
Affiliation(s)
- Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Xin Yao
- School of Environment and Planning, Liaocheng University, 252000, Liaocheng, China
| | - Zhaoshi Wu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Xingyu Jiang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Qiujin Xu
- Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, Nanjing, China.
| |
Collapse
|
24
|
Wani GA, Khan MA, Dar MA, Shah MA, Reshi ZA. Next Generation High Throughput Sequencing to Assess Microbial Communities: An Application Based on Water Quality. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:727-733. [PMID: 33774727 DOI: 10.1007/s00128-021-03195-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Traditional techniques to identify different contaminants (biological or chemical) in the waters are slow, laborious, and can require specialized expertise. Hence, the rapid determination of water quality using more sensitive and reliable metagenomic based approaches attains special importance. Metagenomics deals with the study of genetic material that is recovered from microbial communities present in environmental samples. In traditional techniques cultivation-based methodologies were used to describe the diversity of microorganisms in environmental samples. It has failed to function as a robust marker because of limited taxonomic and phylogenetic implications. In this backdrop, high-throughput DNA sequencing approaches have proven very powerful in microbial source tracking because of investigating the full variety of genome-based analysis such as microbial genetic diversity and population structure played by them. Next generation sequencing technologies can reveal a greater proportion of microbial communities that have not been reported earlier by traditional techniques. The present review highlights the shift from traditional techniques for the basic study of community composition to next-generation sequencing (NGS) platforms and their potential applications to the biomonitoring of water quality in relation to human health.
Collapse
Affiliation(s)
- Gowher A Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India.
| | - Mohd Asgar Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Mudasir A Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190 006, India
| |
Collapse
|
25
|
Coutinho FH, von Meijenfeldt FAB, Walter JM, Haro-Moreno JM, Lopéz-Pérez M, van Verk MC, Thompson CC, Cosenza CAN, Appolinario L, Paranhos R, Cabral A, Dutilh BE, Thompson FL. Ecogenomics and metabolic potential of the South Atlantic Ocean microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142758. [PMID: 33183813 DOI: 10.1016/j.scitotenv.2020.142758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/18/2023]
Abstract
The unique combination of depth, salinity, and water masses make the South Atlantic Ocean an ecosystem of special relevance within the global ocean. Yet, the microbiome of this ecosystem has received less attention than other regions of the global Ocean. This has hampered our understanding of the diversity and metabolic potential of the microorganisms that dwell in this habitat. To fill this knowledge gap, we analyzed a collection of 31 metagenomes from the Atlantic Ocean that spanned the epipelagic, mesopelagic and bathypelagic zones (surface to 4000 m). Read-centric and gene-centric analysis revealed the unique taxonomic and functional composition of metagenomes from each depth zone, which was driven by differences in physical and chemical parameters. In parallel, a total of 40 metagenome-assembled genomes were obtained, which recovered one third of the total community. Phylogenomic reconstruction revealed that many of these genomes are derived from poorly characterized taxa of Bacteria and Archaea. Genomes derived from heterotrophic bacteria of the aphotic zone displayed a large apparatus of genes suited for the utilization of recalcitrant organic compounds such as cellulose, chitin and alkanes. In addition, we found genomic evidence suggesting that mixotrophic bacteria from the bathypelagic zone could perform carbon fixation through the Calvin-Benson-Bassham cycle, fueled by sulfur oxidation. Finally, we found that the viral communities shifted throughout the water column regarding their targeted hosts and virus-to-microbe ratio, in response to shifts in the composition and functioning their microbial counterparts. Our findings shed light on the microbial and viral drivers of important biogeochemical processes that take place in the South Atlantic Ocean.
Collapse
Affiliation(s)
- F H Coutinho
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre/Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands; Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - F A B von Meijenfeldt
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - J M Walter
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - J M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - M Lopéz-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - M C van Verk
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - C C Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - C A N Cosenza
- COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Appolinario
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R Paranhos
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - A Cabral
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - B E Dutilh
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre/Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - F L Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Ahmad T, Gupta G, Sharma A, Kaur B, El-Sheikh MA, Alyemeni MN. Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban fresh water lake. PLoS One 2021; 16:e0248116. [PMID: 33764980 PMCID: PMC7993826 DOI: 10.1371/journal.pone.0248116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
Freshwater lakes present an ecological border between humans and a variety of host organisms. The present study was designed to evaluate the microbiota composition and distribution in Dal Lake at Srinagar, India. The non-chimeric sequence reads were classified taxonomically into 49 phyla, 114 classes, 185 orders, 244 families and 384 genera. Proteobacteria was found to be the most abundant bacterial phylum in all the four samples. The highest number of observed species was found to be 3097 in sample taken from least populated area during summer (LPS) whereas the summer sample from highly populated area (HPS) was found most diverse among all as indicated by taxonomic diversity analysis. The QIIME output files were used for PICRUSt analysis to assign functional attributes. The samples exhibited a significant difference in their microbial community composition and structure. Comparative analysis of functional pathways indicated that the anthropogenic activities in populated areas and higher summer temperature, both decrease functional potential of the Lake microbiota. This is probably the first study to demonstrate the comparative taxonomic diversity and functional composition of an urban freshwater lake amid its highly populated and least populated areas during two extreme seasons (winter and summer).
Collapse
Affiliation(s)
- Tawseef Ahmad
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Gaganjot Gupta
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Anshula Sharma
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
- * E-mail: (BK); (MNA)
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail: (BK); (MNA)
| |
Collapse
|
27
|
Fu X, Li Y, Meng Y, Yuan Q, Zhang Z, Wen H, Deng Y, Norbäck D, Hu Q, Zhang X, Sun Y. Derived habitats of indoor microbes are associated with asthma symptoms in Chinese university dormitories. ENVIRONMENTAL RESEARCH 2021; 194:110501. [PMID: 33221308 DOI: 10.1016/j.envres.2020.110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence from the home environment indicates that indoor microbiome exposure is associated with asthma development. However, indoor microbiome composition can be highly diverse and dynamic, and thus current studies fail to produce consistent results. Chinese university dormitories are special high-density dwellings with similar building and occupants characteristics, which facilitate to disentangle the complex interactions between microbes, environmental characteristics and asthma. Settled air dust and floor dust was collected from 87 dormitory rooms in Shanxi University. Bacterial communities were characterized by 16 S rRNA amplicon sequencing. Students (n = 357) were surveyed for asthma symptoms and measured for fractional exhaled nitric oxide (FeNO). Asthma was not associated with the overall bacterial richness but associated with specific phylogenetic classes. Taxa richness and abundance in Clostridia, including Ruminococcus, Blautia, Clostridium and Subdoligranulum, were positively associated with asthma (p < 0.05), and these taxa were mainly derived from the human gut. Taxa richness in Alphaproteobacteria and Actinobacteria were marginally protectively associated with asthma, and these taxa were mainly derived from the outdoor environment. Bacterial richness and abundance were not associated with FeNO levels. Building age was associated with overall bacterial community variation in air and floor dust (p < 0.05), but not associated with the asthma-related microorganisms. Our data shows that taxa from different phylogenetic classes and derived habitats have different health effects, indicating the importance of incorporating phylogenetic and ecological concepts in revealing patterns in the microbiome asthma association analysis.
Collapse
Affiliation(s)
- Xi Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Huarong Wen
- Baling Health Center, Dangyang, Hubei, 444100, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237, Uppsala, Sweden
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
28
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
29
|
Ting ASY, Zoqratt MZHM, Tan HS, Hermawan AA, Talei A, Khu ST. Bacterial and eukaryotic microbial communities in urban water systems profiled via Illumina MiSeq platform. 3 Biotech 2021; 11:40. [PMID: 33479595 PMCID: PMC7794265 DOI: 10.1007/s13205-020-02617-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial communities from a lake and river flowing through a highly dense urbanized township in Malaysia were profiled by sequencing amplicons of the 16S V3-V4 and 18S V9 hypervariable rRNA gene regions via Illumina MiSeq. Results revealed that Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant prokaryotic phyla; whereas, eukaryotic communities were predominantly of the SAR clade and Opisthokonta. The abundance of Pseudomonas and Flavobacterium in all sites suggested the possible presence of pathogens in the urban water systems, supported by the most probable number (MPN) values of more than 1600 per 100 mL. Urbanization could have impacted the microbial communities as transient communities (clinical, water-borne and opportunistic pathogens) coexisted with common indigenous aquatic communities (Cyanobacteria). It was concluded that in urban water systems, microbial communities vary in their abundance of microbial phyla detected along the water systems. The influences of urban land use and anthropogenic activities influenced the physicochemical properties and the microbial dynamics in the water systems. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02617-3.
Collapse
Affiliation(s)
- Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Andreas Aditya Hermawan
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Amin Talei
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Soon Thiam Khu
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
30
|
Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. MICROBIOME 2020; 8:151. [PMID: 33126925 PMCID: PMC7597016 DOI: 10.1186/s40168-020-00930-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we examined the Amazon River microbiome by analysing 106 metagenomes from 30 sampling points distributed along the river. RESULTS We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~ 3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil). Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its genomic potential along the river course. CONCLUSIONS Our work contributes to expand significantly our comprehension of the world's largest river microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue (AMnrGC) represents an important resource for future research in tropical rivers. Video abstract.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Molecular Biology Laboratory, Department of Genetics and Evolution – DGE, Universidade Federal de São Carlos – UFSCar, Rod. Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
- Institute of Science and Technology for Brain-Inspired Intelligence – ISTBI, Fudan University, Handan Rd 220, Wu Jiao Chang, Yangpu, Shanghai, 200433 China
| | - Hugo Sarmento
- Laboratory of Microbial Processes & Biodiversity, Department of Hydrobiology – DHB, Universidade Federal de São Carlos – UFSCar, Via Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
| | - Fernando Pellon de Miranda
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, Petróleo Brasileiro S.A. (Petrobras), Av. Horácio Macedo 950, Rio de Janeiro, RJ 21941-915 Brazil
| | - Flávio Henrique-Silva
- Molecular Biology Laboratory, Department of Genetics and Evolution – DGE, Universidade Federal de São Carlos – UFSCar, Rod. Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, ES08003, Barcelona, Catalonia Spain
| |
Collapse
|
31
|
Cartozzo C, Simmons T, Swall J, Singh B. Postmortem submersion interval (PMSI) estimation from the microbiome of Sus scrofa bone in a freshwater river. Forensic Sci Int 2020; 318:110480. [PMID: 33214010 DOI: 10.1016/j.forsciint.2020.110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022]
Abstract
Due to inherent differences between terrestrial and aquatic systems, methods for estimating the postmortem interval (PMI) are not directly applicable to remains recovered from water. Recent studies have explored the use of microbial succession for estimating the postmortem submersion interval (PMSI); however, a non-disturbed, highly replicated and long-term aquatic decomposition study in a freshwater river has not been performed. In this study, porcine skeletal remains (N = 200) were submerged in a freshwater river from November 2017-2018 (6322 accumulated degree days (ADD)/353 days) to identify changes and successional patterns in bacterial communities. One cage (e.g., 5 ribs and 5 scapulae) was collected approximately every 250 ADD for twenty-four collections; baseline samples never exposed to water acted as controls. Variable region 4 (V4) of 16S rDNA, was amplified and sequenced via the Illumina MiSeq FGx sequencing platform. Resulting sequences were analyzed using mothur (v1.39.5) and R (v3.6.0). The abundances of bacterial communities differed significantly between sample types. These differences in relative abundance were attributed to Clostridia, Holophagae and Gammaproteobacteria. Phylogenetic diversity increased with ADD for each bone type; comparably, β-diversity bacterial community structure ordinated chronologically, which was explained with environmental parameters and inferred functional pathways. Models fit using rib samples provided a tighter prediction interval than scapulae, with a prediction of PMSI with root mean square error of within 472.31 (∼27 days) and 498.47 (∼29 days), respectively.
Collapse
Affiliation(s)
- Claire Cartozzo
- Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States; Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States.
| | - Tal Simmons
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Jenise Swall
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
32
|
Fu X, Li Y, Meng Y, Yuan Q, Zhang Z, Norbäck D, Deng Y, Zhang X, Sun Y. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. INDOOR AIR 2020; 30:816-826. [PMID: 32304333 DOI: 10.1111/ina.12677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 05/14/2023]
Abstract
Recent studies reveal that the microbial diversity and composition in the respiratory tract are related to the susceptibility, development, and progression of respiratory infections. Indoor microorganisms can transmit into the respiratory tract through breathing, but their role in infections is unclear. Here, we present the first association study between the indoor microbiome and respiratory infections. In total, 357 students living in 86 dormitory rooms in Shanxi University were randomly selected to survey symptoms of infections. Settled air dust was collected to characterize bacterial compositions by 16S rRNA sequencing. The overall microbial richness was not associated with respiratory infections, but microorganisms from specific phylogenetic classes showed various associations. Taxa richness and abundance of Actinobacteria were protectively associated with infections (P < .05). The abundance of several genera in Gammaproteobacteria, including Haemophilus, Klebsiella, Buttiauxella, and Raoultella, was positively associated with infections (P < .005). The role of these microorganisms was consistent with previous human microbiota studies. Building age was associated with the overall microbial composition variation in dormitories and negatively associated with three potential risk genera in Proteobacteria (P < .05). The weight of vacuum dust was positively associated with a protective genus, Micrococcus in Actinobacteria (P < .05).
Collapse
Affiliation(s)
- Xi Fu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, PR China
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, PR China
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, PR China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, Uppsala, Sweden
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, PR China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, PR China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
33
|
Reis MP, Suhadolnik MLS, Dias MF, Ávila MP, Motta AM, Barbosa FAR, Nascimento AMA. Characterizing a riverine microbiome impacted by extreme disturbance caused by a mining sludge tsunami. CHEMOSPHERE 2020; 253:126584. [PMID: 32278186 DOI: 10.1016/j.chemosphere.2020.126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Studies on disturbance events in riverine systems caused by environmental disasters and their effects on microbial diversity are scarce. Here, we evaluated the impact of the collapse of an iron ore dam holding approximately 50 million cubic meters of waste on both water and sediment microbiomes by deeply sequencing the 16S rRNA gene. Samples were taken from two impacted rivers and one reference river 7, 30 and 150 days postdisturbance. The impacted community structure changed greatly over spatiotemporal scales, being less diverse and more uneven, particularly on day 7 for the do Carmo River (the closest to the dam). However, the reference community structure remained similar between sampling events. Moreover, the impacted sediments were positively correlated with metals. The taxa abundance varied greatly over spatiotemporal scales, allowing for the identification of several potential bioindicators, e.g., Comamonadaceae, Novosphingobium, Sediminibacterium and Bacteriovorax. Our results showed that the impacted communities consisted mostly of Fe(II) oxidizers and Fe(III) reducers, aromatic compound degraders and predator bacteria. Network analysis showed a highly interconnected microbiome whose interactions switched from positive to negative or vice versa between the impacted and reference communities. This work revealed potential molecular signatures associated with the rivers heavily impacted by metals that might be useful sentinels for predicting riverine health.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Luíza S Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcela F Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Ávila
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda M Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco A R Barbosa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
34
|
Reddington K, Eccles D, O'Grady J, Drown DM, Hansen LH, Nielsen TK, Ducluzeau AL, Leggett RM, Heavens D, Peel N, Snutch TP, Bayega A, Oikonomopoulos S, Ragoussis I, Barry T, van der Helm E, Jolic D, Richardson H, Jansen H, Tyson JR, Jain M, Brown BL. Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. Gigascience 2020; 9:5855463. [PMID: 32520351 PMCID: PMC7285869 DOI: 10.1093/gigascience/giaa053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/23/2020] [Accepted: 04/27/2020] [Indexed: 12/02/2022] Open
Abstract
Background Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad “aquascape” scale, and few if any have applied the newest nanopore technology. Results We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5–1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. Conclusions Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.
Collapse
Affiliation(s)
- Kate Reddington
- Microbial Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland H91 TK33, Ireland
| | - David Eccles
- Malaghan Institute of Medical Research, Gate 7, Victoria University Kelburn Parade, Wellington 6140, Wellington 6242, New Zealand
| | - Justin O'Grady
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, James Watson Rd, Norwich NR4 7TJ, UK
| | - Devin M Drown
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 9975-7000, USA
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Environmental Science, Aarhus University, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anne-Lise Ducluzeau
- Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1 Building P.O. Box 757000 2140 Koyukuk Drive Fairbanks, AK 99775-7000, USA
| | | | - Darren Heavens
- Earlham Institute, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ned Peel
- Earlham Institute, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Terrance P Snutch
- Michael Smith Laboratories and Department of Zoology, University of British Columbia, #301-2185 East Mall Vancouver, BC V6T 1Z4, Canada
| | - Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Spyridon Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Ioannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland H91 TK33, Ireland
| | - Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Dino Jolic
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5 72076 Tübingen, Germany
| | - Hollian Richardson
- Norwich Medical School, University of East Anglia, James Watson Rd, Norwich NR4 7TJ, UK
| | - Hans Jansen
- Future Genomics Technologies B.V., Nucleus building, Sylviusweg 74, 2333 BE Leiden, The Netherlands
| | - John R Tyson
- Michael Smith Laboratories and Department of Zoology, University of British Columbia, #301-2185 East Mall Vancouver, BC V6T 1Z4, Canada
| | - Miten Jain
- UC Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| |
Collapse
|
35
|
Valeriani F, Gianfranceschi G, Romano Spica V. The microbiota as a candidate biomarker for SPA pools and SPA thermal spring stability after seismic events. ENVIRONMENT INTERNATIONAL 2020; 137:105595. [PMID: 32106051 DOI: 10.1016/j.envint.2020.105595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/04/2023]
Abstract
Worldwide, the location of thermal springs overlaps seismic areas, and the higher occurrence of earthquakes may impact on water stability and safety. The hydrogeological perturbations pose environmental and public health risks that can be monitored by well-established chemical, physical and biological parameters. Specific health concerns involve the exposure of the population to the medical or wellness uses of SPA thermal waters, e.g. in respiratory or hydropinic treatments as well as during rehabilitative or recreational activities in pools. Since SPA waters are characterized by their own microbiota, we analysed by 16S amplicon sequencing the dynamics of water microbial communities after the August 2017 Ischia island earthquake. For the first time, we report the impact of a seismic event on a thermal spring water, whose microbiota was deeply characterized before and immediately after the natural disaster. The biodiversity stability of the water underwent a dramatic disturbance following the earthquake, as summarized by a Shannon index moving from 1.300 during May 2016-July 2017, up to 1.600 during the first 20-70 h after the event and slightly slowing down to 1.500 after 30 days and to 1.400 after 6 months. Microbiota analysis showed a sudden reduction of the relative abundance of autochthone thermophilic species within the first 20 h and a parallel increase of other thermophilic species as well as of ectopic bacteria from soil, sediments, sea, freshwater and wastewaters. Cultivable mesophilic bacteria were observed only in the first 20 h sample (7 × 103/L), even if the presence of faecal contamination traces was detected by Real Time PCR also up to 70 h after the disaster. OTUs analysis of putative metabolic functions showed several changes between pre and post event, such as in the distribution of Sulphur metabolizing and Carbon fixation species. The restoration of the original pattern followed a slow trend, requiring over six months. The observed results confirm the impact of the earthquake on the microbiota structure of the underground thermal spring water, suggesting further perspectives for monitoring water stability and safety issues by a metagenomic approach.
Collapse
Affiliation(s)
- Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gianluca Gianfranceschi
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
36
|
Paranjape K, Bédard É, Whyte LG, Ronholm J, Prévost M, Faucher SP. Presence of Legionella spp. in cooling towers: the role of microbial diversity, Pseudomonas, and continuous chlorine application. WATER RESEARCH 2020; 169:115252. [PMID: 31726393 DOI: 10.1016/j.watres.2019.115252] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 05/25/2023]
Abstract
Legionnaires' disease (LD) is a severe pneumonia caused by several species of the genus Legionella, most frequently by Legionella pneumophila. Cooling towers are the most common source for large community-associated outbreaks. Colonization, survival, and proliferation of L. pneumophila in cooling towers are necessary for outbreaks to occur. These steps are affected by the chemical and physical parameters of the cooling tower environment. We hypothesize that the bacterial community residing in the cooling tower could also affect the presence of L. pneumophila. A 16S rRNA gene targeted amplicon sequencing approach was used to study the bacterial community of cooling towers and its relationship with the Legionella spp. and L. pneumophila communities. The results indicated that the water source shaped the bacterial community of cooling towers. Several taxa were enriched and positively correlated with Legionella spp. and L. pneumophila. In contrast, Pseudomonas showed a strong negative correlation with Legionella spp. and several other genera. Most importantly, continuous chlorine application reduced microbial diversity and promoted the presence of Pseudomonas creating a non-permissive environment for Legionella spp. This suggests that disinfection strategies as well as the resident microbial population influences the ability of Legionella spp. to colonize cooling towers.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
37
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|
38
|
Huot Y, Brown CA, Potvin G, Antoniades D, Baulch HM, Beisner BE, Bélanger S, Brazeau S, Cabana H, Cardille JA, Del Giorgio PA, Gregory-Eaves I, Fortin MJ, Lang AS, Laurion I, Maranger R, Prairie YT, Rusak JA, Segura PA, Siron R, Smol JP, Vinebrooke RD, Walsh DA. The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133668. [PMID: 31419692 DOI: 10.1016/j.scitotenv.2019.133668] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.
Collapse
Affiliation(s)
- Yannick Huot
- Département de géomatique appliquée, Université de Sherbrooke, QC J1K 2R1, Canada; Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada.
| | - Catherine A Brown
- Département de géomatique appliquée, Université de Sherbrooke, QC J1K 2R1, Canada
| | - Geneviève Potvin
- Département de géomatique appliquée, Université de Sherbrooke, QC J1K 2R1, Canada; Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada
| | - Dermot Antoniades
- Département de géographie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Helen M Baulch
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon S7N 3H5, SK, Canada
| | - Beatrix E Beisner
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada
| | - Simon Bélanger
- Département de biologie, chimie et géographie, Groupe BORÉAS, Université du Québec à Rimouski, QC G5L 3A1, Canada
| | - Stéphanie Brazeau
- National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe J2S 7C6, QC, Canada
| | - Hubert Cabana
- Département de génie civil et de génie du bâtiment, Université de Sherbrooke, QC J1K 2R1, Canada
| | - Jeffrey A Cardille
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Natural Resource Sciences and McGill School of Environment, McGill University, Montreal H9X 3V9, QC, Canada
| | - Paul A Del Giorgio
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada
| | - Irene Gregory-Eaves
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
| | - Marie-Josée Fortin
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, ON, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's A1M 2A9, NL, Canada
| | - Isabelle Laurion
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec G1K 9A9, QC, Canada
| | - Roxane Maranger
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Département des sciences biologiques, Université de Montréal, C.P. 6128 succ. Centre-ville, Montréal, QC, Canada
| | - Yves T Prairie
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada
| | - James A Rusak
- Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation and Parks, Dorset P0A 1E0, ON, Canada
| | - Pedro A Segura
- Département de chimie, Université de Sherbrooke, QC J1K 2R1, Canada
| | | | - John P Smol
- Paleoecological Assessment and Research Laboratory (PEARL), Department of Biology, Queen's University, Kingston K7L 3N6, ON, Canada
| | - Rolf D Vinebrooke
- Department of Biological Sciences, Centennial Centre of Interdisciplinary Science, University of Alberta, Edmonton T6G 2E9, AB, Canada
| | - David A Walsh
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Canada; Department of Biology, Concordia University, Montreal H4B 1R6, QC, Canada
| |
Collapse
|
39
|
Predicting Microbial Species in a River Based on Physicochemical Properties by Bio-Inspired Metaheuristic Optimized Machine Learning. SUSTAINABILITY 2019. [DOI: 10.3390/su11246889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The main goal of the analysis of microbial ecology is to understand the relationship between Earth’s microbial community and their functions in the environment. This paper presents a proof-of-concept research to develop a bioclimatic modeling approach that leverages artificial intelligence techniques to identify the microbial species in a river as a function of physicochemical parameters. Feature reduction and selection are both utilized in the data preprocessing owing to the scarce of available data points collected and missing values of physicochemical attributes from a river in Southeast China. A bio-inspired metaheuristic optimized machine learner, which supports the adjustment to the multiple-output prediction form, is used in bioclimatic modeling. The accuracy of prediction and applicability of the model can help microbiologists and ecologists in quantifying the predicted microbial species for further experimental planning with minimal expenditure, which is become one of the most serious issues when facing dramatic changes of environmental conditions caused by global warming. This work demonstrates a neoteric approach for potential use in predicting preliminary microbial structures in the environment.
Collapse
|
40
|
Souza FFC, Rissi DV, Pedrosa FO, Souza EM, Baura VA, Monteiro RA, Balsanelli E, Cruz LM, Souza RAF, Andreae MO, Reis RA, Godoi RHM, Huergo LF. Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:83-86. [PMID: 31229831 DOI: 10.1016/j.scitotenv.2019.06.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Biological aerosols (bioaerosol) are atmospheric particles that act as a dispersion unit of living organisms across the globe thereby affecting the biogeographic distribution of organisms. Despite their importance, there is virtually no knowledge about bioaerosols emitted by pristine forests. Here we provide the very first survey of the prokaryotic community of a bioaerosol collected inside pristine Amazon forest at 2 m above ground. Total atmospheric particles were collected at the Amazon Tall Tower Observatory, subjected to metagenomic DNA extraction and the prokaryotic diversity was determined by 16S rRNA gene amplicon sequencing. A total of 271,577 reads of 250 bp of the 16S rRNA gene amplicon were obtained. Only 27% of the reads could be classified using the 16S SILVA database. Most belonged to Proteobacteria, Actinobacteria and Firmicutes which is in good agreement with other bioaerosol studies. Further inspection of the reads using Blast searches and the 18S SILVA database revealed that most of the dataset was composed of Fungi sequences. The identified microbes suggest that the atmosphere may act as an important gateway to interchange bacteria between plants, soil and water ecosystems.
Collapse
Affiliation(s)
| | - Daniel V Rissi
- Department of Livestock Microbial Ecology, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Fabio O Pedrosa
- Programa de pós-graduação em Bioinformática, SEPTI, UFPR, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Programa de pós-graduação em Bioinformática, SEPTI, UFPR, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Valter A Baura
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rose A Monteiro
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Leonardo M Cruz
- Programa de pós-graduação em Bioinformática, SEPTI, UFPR, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rodrigo A F Souza
- Meteorology Department, State University of Amazonas - UEA, Manaus, AM, Brazil
| | | | | | | | - Luciano F Huergo
- Setor Litoral, UFPR, Matinhos, PR, Brazil; Programa de pós-graduação em Bioinformática, SEPTI, UFPR, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil.
| |
Collapse
|
41
|
Câmara dos Reis M, Lacativa Bagatini I, de Oliveira Vidal L, Bonnet MP, da Motta Marques D, Sarmento H. Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS One 2019; 14:e0220695. [PMID: 31398199 PMCID: PMC6688838 DOI: 10.1371/journal.pone.0220695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
Amazonian floodplains form complex hydrological networks that play relevant roles in global biogeochemical cycles, and bacterial degradation of the organic matter in these systems is key for regional carbon budget. The Amazon undergoes extreme seasonal variations in water level, which produces changes in landscape and diversifies sources of organic inputs into floodplain systems. Although these changes should affect bacterioplankton community composition (BCC), little is known about which factors drive spatial and temporal patterns of bacterioplankton in these Amazonian floodplains. We used high-throughput sequencing (Illumina MiSeq) of the V3-V4 region of the 16S rRNA gene to investigate spatial and temporal patterns of BCC of two size fractions, and their correlation with environmental variables in an Amazon floodplain lake (Lago Grande do Curuai). We found a high degree of novelty in bacterioplankton, as more than half of operational taxonomic units (OTUs) could not be classified at genus level. Spatial habitat heterogeneity and the flood pulse were the main factors shaping free-living (FL) BCC. The gradient of organic matter from transition zone-lake-Amazon River was the main driver for particle-attached (PA) BCC. The BCC reflected the complexity of the system, with more variation in space than in time, although both factors were important drivers of the BCC in this Amazon floodplain system.
Collapse
Affiliation(s)
- Mariana Câmara dos Reis
- Laboratory of Microbial Processes and Biodiversity, Departamento de Hidrobiologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- * E-mail:
| | - Inessa Lacativa Bagatini
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Luciana de Oliveira Vidal
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marie-Paule Bonnet
- UMR 228 Espace DEV, Institute of Research for Development, Montpellier, France
- International Joint Laboratory, LMI OCE, Institute of Research for Development /Universidade de Brasilia, Brasilia, Brazil
| | - David da Motta Marques
- Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Sarmento
- Laboratory of Microbial Processes and Biodiversity, Departamento de Hidrobiologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
42
|
Goetghebuer L, Bonal M, Faust K, Servais P, George IF. The Dynamic of a River Model Bacterial Community in Two Different Media Reveals a Divergent Succession and an Enhanced Growth of Most Strains Compared to Monocultures. MICROBIAL ECOLOGY 2019; 78:313-323. [PMID: 30680433 DOI: 10.1007/s00248-019-01322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The dynamic of a community of 20 bacterial strains isolated from river water was followed in R2 broth and in autoclaved river water medium for 27 days in batch experiments. At an early stage of incubation, a fast-growing specialist strain, Acinetobater sp., dominated the community in both media. Later on, the community composition in both media diverged but was highly reproducible across replicates. In R2, several strains previously reported to degrade multiple simple carbon sources prevailed. In autoclaved river water, the community was more even and became dominated by several strains growing faster or exclusively in that medium. Those strains have been reported in the literature to degrade complex compounds. Their growth rate in the community was 1.5- to 7-fold greater than that observed in monoculture. Furthermore, those strains developed simultaneously in the community. Together, our results suggest the existence of cooperative interactions within the community incubated in autoclaved river water.
Collapse
Affiliation(s)
- Lise Goetghebuer
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Mathias Bonal
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pierre Servais
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium.
| |
Collapse
|
43
|
Samson R, Shah M, Yadav R, Sarode P, Rajput V, Dastager SG, Dharne MS, Khairnar K. Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:288-299. [PMID: 31005831 DOI: 10.1016/j.scitotenv.2019.04.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
River confluences are interesting ecosystems to investigate for their microbial community structure and functional potentials. River Ganges is one of the most important and holy river of India with great mythological history and religious significance. The Yamuna River meets Ganges at the Prayagraj (formerly known as Allahabad), India to form a unique confluence. The influence of Yamuna River on taxonomic and functional aspects of microbiome at this confluence and its downstream, remains unexplored. To unveil this dearth, whole metagenome sequencing of the microbial (bacterial and archaeal) community from the sediment samples of December 2017 sampling expedition was executed using high throughput MinION technology. Results revealed differences in the relative abundance of bacterial and archaeal communities across the confluence. Grouped by the confluence, a higher abundance of Proteobacteria and lower abundance of Bacteroidetes and Firmicutes was observed for Yamuna River (G15Y) and at immediate downstream of confluence of Ganges (G15DS), as compared to the upstream, confluence, and farther downstream of confluence. A similar trend was observed for archaeal communities with a higher abundance of Euryarchaeota in G15Y and G15DS, indicating Yamuna River's influence. Functional gene(s) analysis revealed the influence of Yamuna River on xenobiotic degradation, resistance to toxic compounds, and antibiotic resistance interceded by the autochthonous microbes at the confluence and succeeding downstream locations. Overall, similar taxonomic and functional profiles of microbial communities before confluence (upstream of Ganges) and farther downstream of confluence, suggested a transient influence of Yamuna River. Our study is significant since it may be foundational basis to understand impact of Yamuna River and also rare event of mass bathing on the microbiome of River Ganges. Further investigation would be required to understand, the underlying cause behind the restoration of microbial profiles post-confluence farther zone, to unravel the rejuvenation aspects of this unique ecosystem.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Manan Shah
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Priyanka Sarode
- Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India.
| | - Krishna Khairnar
- Academy of Scientific and Industrial Research (AcSIR), New Delhi, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
44
|
Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC. Diversity and Coding Potential of the Microbiota in the Photic and Aphotic Zones of Tropical Man-Made Lake with Intensive Aquaculture Activities: a Case Study on Temengor Lake, Malaysia. MICROBIAL ECOLOGY 2019; 78:20-32. [PMID: 30397794 DOI: 10.1007/s00248-018-1283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/29/2018] [Indexed: 05/27/2023]
Abstract
Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | | | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
45
|
Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical 'helper' catalase. ISME JOURNAL 2019; 13:2252-2263. [PMID: 31073214 DOI: 10.1038/s41396-019-0432-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
The actinobacterial acI lineage is among the most successful and ubiquitous freshwater bacterioplankton found on all continents, often representing more than half of all microbial cells in the lacustrine environment and constituting multiple ecotypes. However, stably growing pure cultures of the acI lineage have not been established despite various cultivation efforts based on ecological and genomic studies on the lineage, which is in contrast to the ocean from which abundant microorganisms such as Prochlorococcus, Pelagibacter, and Nitrosopumilus have been isolated. Here, we report the first two pure cultures of the acI lineage successfully maintained by supplementing the growth media with catalase. Catalase was critical for stabilizing the growth of acI strains irrespective of the genomic presence of the catalase-peroxidase (katG) gene. The two strains, representing two novel species, displayed differential phenotypes and distinct preferences for reduced sulfurs and carbohydrates, some of which were difficult to predict based on genomic information. Our results suggest that culture of previously uncultured freshwater bacteria can be facilitated by a simple catalase-supplement method and indicate that genome-based metabolic prediction can be complemented by physiological analyses.
Collapse
|
46
|
Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Flood Season Microbiota from the Amazon Basin Lakes: Analysis with Metagenome Sequencing. Microbiol Resour Announc 2019; 8:8/17/e00229-19. [PMID: 31023794 PMCID: PMC6486251 DOI: 10.1128/mra.00229-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite an apparent geographic separation of the Amazon water bodies, they are an interconnected system. During floods, the microbiota of rivers, lakes, and soil combines. This study used metagenomics sequencing to survey the microbiota of the Amazon Basin lakes during flood season, showing important patterns in microbial communities.
Collapse
|
48
|
Hamner S, Brown BL, Hasan NA, Franklin MJ, Doyle J, Eggers MJ, Colwell RR, Ford TE. Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071097. [PMID: 30934749 PMCID: PMC6479903 DOI: 10.3390/ijerph16071097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
The Little Bighorn River is the primary source of water for water treatment plants serving the local Crow Agency population, and has special significance in the spiritual and ceremonial life of the Crow tribe. Unfortunately, the watershed suffers from impaired water quality, with high counts of fecal coliform bacteria routinely measured during run-off events. A metagenomic analysis was carried out to identify potential pathogens in the river water. The Oxford Nanopore MinION platform was used to sequence DNA in near real time to identify both uncultured and a coliform-enriched culture of microbes collected from a popular summer swimming area of the Little Bighorn River. Sequences were analyzed using CosmosID bioinformatics and, in agreement with previous studies, enterohemorrhagic and enteropathogenic Escherichia coli and other E. coli pathotypes were identified. Noteworthy was detection and identification of enteroaggregative E. coli O104:H4 and Vibrio cholerae serotype O1 El Tor, however, cholera toxin genes were not identified. Other pathogenic microbes, as well as virulence genes and antimicrobial resistance markers, were also identified and characterized by metagenomic analyses. It is concluded that metagenomics provides a useful and potentially routine tool for identifying in an in-depth manner microbial contamination of waterways and, thereby, protecting public health.
Collapse
Affiliation(s)
- Steve Hamner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA 2 Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Nur A Hasan
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Michael J Franklin
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
| | - John Doyle
- Crow Water Quality Project, Crow Agency, Little Big Horn College, MT 59022, USA.
- Crow Environmental Health Steering Committee, Crow Agency, Little Big Horn College, MT 59022, USA.
| | - Margaret J Eggers
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
- Crow Environmental Health Steering Committee, Crow Agency, Little Big Horn College, MT 59022, USA.
| | - Rita R Colwell
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Timothy E Ford
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA 2 Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
49
|
Zhang S, Tsementzi D, Hatt JK, Bivins A, Khelurkar N, Brown J, Tripathi SN, Konstantinidis KT. Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. Environ Microbiol 2018; 21:182-196. [DOI: 10.1111/1462-2920.14439] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Si‐Yu Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Janet K. Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Aaron Bivins
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Nikunj Khelurkar
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
| | - Sachchida Nand Tripathi
- Department of Civil Engineering Indian Institute of Technology Kanpur UP, 208016 India
- Center for Environmental Science and Engineering Indian Institute of Technology Kanpur UP, 208016 India
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building Atlanta GA, 30332 USA
- School of Biological Sciences, Georgia Institute of Technology, Ford Environmental Sciences & Technology Building Atlanta Georgia, 30332 USA
| |
Collapse
|
50
|
Meziti A, Tsementzi D, Rodriguez-R LM, Hatt JK, Karayanni H, Kormas KA, Konstantinidis KT. Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient. ISME JOURNAL 2018; 13:767-779. [PMID: 30397261 DOI: 10.1038/s41396-018-0307-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like, sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited ~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species concept and microbial source tracking.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia
| | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia
| | - Hera Karayanni
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446, Volos, Greece
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia. .,School of Biological Sciences, Georgia Institute of Technology, Ford Environmental Sciences & Technology Building, 311 Ferst Drive, 30332, Atlanta, GA, Georgia.
| |
Collapse
|