1
|
Elias SC, Muthumbi E, Mwanzu A, Wanjiku P, Mutiso A, Simon R, MacLennan CA. Complementary measurement of nontyphoidal Salmonella-specific IgG and IgA antibodies in oral fluid and serum. Heliyon 2023; 9:e12071. [PMID: 36704288 PMCID: PMC9871079 DOI: 10.1016/j.heliyon.2022.e12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Immuno-epidemiological studies of orally acquired, enteric pathogens such as nontyphoidal Salmonella (NTS) often focus on serological measures of immunity, ignoring potentially relevant oral mucosal responses. In this study we sought to assess the levels and detectability of both oral fluid and serum IgG and IgA to NTS antigens, in endemic and non-endemic populations. Methods IgG and IgA antibodies specific for Salmonella Typhimurium and Salmonella Enteritidis O antigen and phase 1 flagellin were assessed using Enzyme Linked Immunosorbent Assay (ELISA). Paired oral fluid and serum samples were collected from groups of 50 UK adults, Kenyan adults and Kenyan infants. Additionally, oral fluid alone was collected from 304 Kenyan individuals across a range of ages. Results Antigen-specific IgG and IgA was detectable in the oral fluid of both adults and infants. Oral fluid antibody increased with age, peaking in adulthood for both IgG and IgA but a separate peak was also observed for IgA in infants. Oral fluid and serum responses correlated for IgG but not IgA. Despite standardised collection the relationship between oral fluid volume and antibody levels varied with age and country of origin. Conclusions Measurement of NTS-specific oral fluid antibody can be used to complement measurement of serum antibody. For IgA in particular, oral fluid may offer insights into how protective immunity to NTS changes as individuals transition with age, from maternal to acquired systemic and mucosal immunity. This may prove useful in helping to guide future vaccine design.
Collapse
Affiliation(s)
- Sean C. Elias
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
- Corresponding author.
| | - Esther Muthumbi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- London School of Hygiene & Tropical Medicine, UK
| | - Alfred Mwanzu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Agnes Mutiso
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | |
Collapse
|
2
|
Forsyth KS, DeHaven B, Mendonca M, Paul S, Sette A, Eisenlohr LC. Poor Antigen Processing of Poxvirus Particles Limits CD4 + T Cell Recognition and Impacts Immunogenicity of the Inactivated Vaccine. THE JOURNAL OF IMMUNOLOGY 2019; 202:1340-1349. [PMID: 30700590 DOI: 10.4049/jimmunol.1801099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022]
Abstract
CD4+ T cells play critical roles in defending against poxviruses, both by potentiating cellular and humoral responses and by directly killing infected cells. Despite this central role, the basis for pox-specific CD4+ T cell activation, specifically the origin of the poxvirus-derived peptides (epitopes) that activate CD4+ T cells, remains poorly understood. In addition, because the current licensed poxvirus vaccines can cause serious adverse events and even death, elucidating the requirements for MHC class II (MHC-II) processing and presentation of poxviral Ags could be of great use. To address these questions, we explored the CD4+ T cell immunogenicity of ectromelia, the causative agent of mousepox. Having identified a large panel of novel epitopes via a screen of algorithm-selected synthetic peptides, we observed that immunization of mice with inactivated poxvirus primes a virtually undetectable CD4+ T cell response, even when adjuvanted, and is unable to provide protection against disease after a secondary challenge. We postulated that an important contributor to this outcome is the poor processability of whole virions for MHC-II-restricted presentation. In line with this hypothesis, we observed that whole poxvirions are very inefficiently converted into MHC-II-binding peptides by the APC as compared with subviral material. Thus, stability of the virion structure is a critical consideration in the rational design of a safe alternative to the existing live smallpox vaccine.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian DeHaven
- Department of Biology, La Salle University, Philadelphia, PA 19141
| | - Mark Mendonca
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Medicine, University of California, San Diego, La Jolla, CA, 92093; and
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
3
|
Abstract
Immunoglobulin A (IgA) is the most abundantly produced immunoglobulin found primarily on mucosal surfaces. The generation of IgA and its involvement in mucosal immune responses have been intensely studied over the past years. IgA can be generated in T cell-dependent and T cell-independent pathways, and it has an important impact on maintaining homeostasis within the mucosal immune system. There is good evidence that B-1 cells contribute substantially to the production of mucosal IgA and thus play an important role in regulating commensal microbiota. However, whether B-1 cells produce antigen-specific or only nonspecific IgA remains to be determined. This review will discuss what is currently known about IgA production by B-1 cells and the functional relevance of B-1 cell-derived IgA both in vitro and in vivo.
Collapse
Affiliation(s)
- Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Into T, Takigawa T, Niida S, Shibata KI. MyD88 deficiency alters expression of antimicrobial factors in mouse salivary glands. PLoS One 2014; 9:e113333. [PMID: 25415419 PMCID: PMC4240645 DOI: 10.1371/journal.pone.0113333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
The surfaces of oral mucosa are protected from infections by antimicrobial proteins and natural immunoglobulins that are constantly secreted in saliva, serving as principal innate immune defense in the oral cavity. MyD88 is an important adaptor protein for signal transduction downstream of Toll-like receptors and TACI, receptors for regulation of innate immunity and B cell responses, respectively. Although MyD88-mediated signaling has a regulatory role in the intestinal mucosal immunity, its specific role in the oral cavity has remained elusive. In the present study, we assessed the influence of MyD88 deficiency on the oral innate defense, particularly the expression of antimicrobial proteins in salivary glands and production of salivary basal immunoglobulins, in mice. Microarray analysis of the whole tissues of submandibular glands revealed that the expression of several genes encoding salivary antimicrobial proteins, such as secretory leukocyte peptidase inhibitor (SLPI), S100A8, and lactotransferrin, was reduced due to MyD88 deficiency. Histologically, SLPI-expressing acinar cells were evidently decreased in the glands from MyD88 deficient mice compared to wild-type mice. Flow cytometric analysis revealed that B cell populations, including B-1 cells and IgA+ plasma cells, residing in submandibular glands were increased by MyD88 deficiency. The level of salivary anti-phosphorylcholine IgA was elevated in MyD88 deficient mice compared to wild-type mice. Thus, this study provides a detailed description of the effect of MyD88 deficiency on expression of several salivary antimicrobial factors in mice, illustrating the role for MyD88-mediated signaling in the innate immune defense in the oral cavity.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Gifu, Japan
- * E-mail:
| | - Toshiya Takigawa
- Department of Oral Anatomy, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, Gifu, Japan
| | - Shumpei Niida
- Laboratory of Genomics and Proteomics, National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Ken-ichiro Shibata
- Laboratory of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| |
Collapse
|
5
|
Feller L, Altini M, Khammissa R, Chandran R, Bouckaert M, Lemmer J. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:576-83. [DOI: 10.1016/j.oooo.2013.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022]
|
6
|
Enhancement of serum and mucosal immune responses to a Haemophilus influenzae Type B vaccine by intranasal delivery. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1690-6. [PMID: 23986319 DOI: 10.1128/cvi.00215-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intranasal (i.n.) vaccination is potentially the most direct method for conveying upper respiratory and mucosal immunity to respiratory pathogens. However, for unclear reasons, vaccines introduced into the nasal sinuses often have lower efficacy than vaccines administered by the more frequently used parenteral routes. We examined i.n. vaccination in a mouse immune-response model with a commonly used Haemophilus influenzae type B vaccine (Hibv) composed of the polyribosylribitol phosphate (PRP) capsule antigen conjugated to tetanus toxoid. Intranasal vaccination with Hibv using a Toll-like receptor 4 (TLR4) agonist as an adjuvant significantly increased the levels of IgA specific for the PRP capsule antigen in blood serum, saliva, and mucosal secretion specimens. In contrast, control mice vaccinated transdermally (t.d.) with Hibv did not produce significant levels of PRP-specific IgA in the blood serum and saliva, and anti-PRP IgG was increased only in serum. The i.n. and t.d. vaccinations resulted in equivalent bactericidal antibody responses in blood serum, suggesting that vaccine-derived IgG is protective against infection. Elevated levels of IgG specific for the tetanus toxoid carrier protein were measured in nasal sinuses and vaginal secretions in mice vaccinated by either the t.d. or i.n. route. Tissue culture studies confirmed that the nasopharynx-associated lymphoid tissue (NALT) was at least one of the sources of PRP-specific IgA and carrier-specific IgG within the nasal sinuses. We conclude that i.n. vaccination aided by a TLR4 agonist results in robust immune responses to both the carrier protein and bacterial polysaccharide components of the Hibv.
Collapse
|
7
|
Potential roles of CCR5(+) CCR6(+) dendritic cells induced by nasal ovalbumin plus Flt3 ligand expressing adenovirus for mucosal IgA responses. PLoS One 2013; 8:e60453. [PMID: 23565250 PMCID: PMC3615010 DOI: 10.1371/journal.pone.0060453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/26/2013] [Indexed: 12/30/2022] Open
Abstract
We assessed the role of CCR5+/CCR6+/CD11b+/CD11c+ dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5+/CCR6+/CD11b+/CD11c+ DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b+/CD11c+ DCs were markedly decreased in both CCR5−/− and CCR6−/− mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5−/− or CD11c-DTR and CCR6−/− mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5+CCR6+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.
Collapse
|
8
|
Sindhava VJ, Scholz JL, Cancro MP. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells. Front Immunol 2013; 4:37. [PMID: 23443938 PMCID: PMC3580333 DOI: 10.3389/fimmu.2013.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions – suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
9
|
Sealy R, Webby RJ, Crumpton JC, Hurwitz JL. Differential localization and function of antibody-forming cells responsive to inactivated or live-attenuated influenza virus vaccines. Int Immunol 2012; 25:183-95. [PMID: 23143476 DOI: 10.1093/intimm/dxs107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, there are two different types of licensed influenza virus vaccines available in the USA, the live attenuated cold-adapted vaccine and the inactivated vaccine. Children greater than 2 years of age and adults younger than 50 years (apart from those suffering from immunodeficiencies or lung disease) may choose between the two vaccines. Previous studies have shown that both vaccines elicit significant serum antibody responses. However, comprehensive analyses of antibody-forming cells (AFCs) in the upper respiratory tract (URT), the critical site of pathogen entry, have been lacking. We therefore compared influenza virus-specific antibody and AFC activities in systemic and mucosal tissues following immunizations of cotton rats with inactivated or live-attenuated vaccines, including vaccines from the 2009-10 and 2010-11 seasons. Results demonstrated that inactivated and live-attenuated vaccines induced virus-specific AFCs, but patterns of residence and function were highly disparate. The inactivated vaccine elicited AFCs predominantly in the spleen and bone marrow; IgG was the main isotype. In contrast, the live attenuated vaccine elicited acute and long-sustained AFC responses in the diffuse nasal-associated lymphoid tissue (d-NALT) and lung, with IgA being the predominant isotype. The appearance of these d-NALT URT responses was confirmed by a similar study of the 2009-10 live attenuated vaccine in ferrets. Data emphasize that the inactivated and live-attenuated vaccines that are each capable of protecting humans from influenza virus disease do so by very different modes of immune surveillance.
Collapse
Affiliation(s)
- Robert Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | | | | | | |
Collapse
|
10
|
Impact of oral administration of compost extract on gene expression in the rat gastrointestinal tract. J Biosci Bioeng 2012; 114:500-5. [DOI: 10.1016/j.jbiosc.2012.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 11/21/2022]
|
11
|
Oral clarithromycin enhances airway immunoglobulin A (IgA) immunity through induction of IgA class switching recombination and B-cell-activating factor of the tumor necrosis factor family molecule on mucosal dendritic cells in mice infected with influenza A virus. J Virol 2012; 86:10924-34. [PMID: 22896605 DOI: 10.1128/jvi.01207-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the macrolide antibiotic clarithromycin (CAM) enhanced the mucosal immune response in pediatric influenza, particularly in children treated with the antiviral neuraminidase inhibitor oseltamivir (OSV) with low production of mucosal antiviral secretory IgA (S-IgA). The aims of the present study were to confirm the effects of CAM on S-IgA immune responses, by using influenza A virus (IAV) H1N1-infected mice treated with or without OSV, and to determine the molecular mechanisms responsible for the induction of mucosal IgA class switching recombination in IAV-infected CAM-treated mice. The anti-IAV S-IgA responses and expression levels of IgA class switching recombination-associated molecules were examined in bronchus-lymphoid tissues and spleens of infected mice. We also assessed neutralization activities of S-IgA against IAV. Data show that CAM enhanced anti-IAV S-IgA induction in the airway of infected mice and restored the attenuated antiviral S-IgA levels in OSV-treated mice to the levels in the vehicle-treated mice. The expression levels of B-cell-activating factor of the tumor necrosis factor family (BAFF) molecule on mucosal dendritic cells as well as those of activation-induced cytidine deaminase and Iμ-Cα transcripts on B cells were enhanced by CAM, compared with the levels without CAM treatment, but CAM had no effect on the expression of the BAFF receptor on B cells. Enhancement by CAM of neutralization activities of airway S-IgA against IAV in vitro and reinfected mice was observed. This study identifies that CAM enhances S-IgA production and neutralizing activities through the induction of IgA class switching recombination and upregulation of BAFF molecules in mucosal dendritic cells in IAV-infected mice.
Collapse
|