1
|
Ward A, Mauleon R, Ooi CY, Rosic N. Impact of Gene Modifiers on Cystic Fibrosis Phenotypic Profiles: A Systematic Review. Hum Mutat 2024; 2024:6165547. [PMID: 40225935 PMCID: PMC11919198 DOI: 10.1155/2024/6165547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 04/15/2025]
Abstract
Cystic fibrosis (CF) is a complex monogenic disorder with a large variability in disease severity. Growing evidence suggests that the variation observed depends not only on variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but also on modifier genes. Utilizing five databases (including CINAHL, PubMed, Science Direct, Scopus, and Web of Science), a systematic review was conducted to examine the current literature on the known impacts of genomic variations in modifier genes on the CF disease progression, severity, and therapeutic response. A total of 70 full-text articles describing over 80 gene modifiers associated with CF were selected. The modifier genes included genes associated with the CFTR interactome, the inflammatory response, microbial profiles, and other genes affecting the critical physiological pathways of multiple organ systems, such as the respiratory and gastrointestinal systems. Limitations of the existing literature embrace the lack of clinical studies investigating pharmacogenetic impacts and the significance of gene modifiers on the CF clinical picture, including a limited number of replication and validation studies. Further investigations into other potential gene modifiers using genome-wide association studies are needed to critically explore new therapeutic targets and provide a better understanding of the CF disease phenotype under specific drug treatments.
Collapse
Affiliation(s)
- Anastasia Ward
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| | - Ramil Mauleon
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
- Rice Breeding Innovations, International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Chee Y. Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, Randwick Clinical Campus, UNSW Medicine & Health, UNSW, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Nedeljka Rosic
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins MUC5AC and MUC5B. Am J Hum Genet 2024; 111:1700-1716. [PMID: 38991590 PMCID: PMC11344006 DOI: 10.1016/j.ajhg.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins, MUC5AC and MUC5B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585560. [PMID: 38562829 PMCID: PMC10983947 DOI: 10.1101/2024.03.18.585560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Santos L, Nascimento R, Duarte A, Railean V, Amaral MD, Harrison PT, Gama-Carvalho M, Farinha CM. Mutation-class dependent signatures outweigh disease-associated processes in cystic fibrosis cells. Cell Biosci 2023; 13:26. [PMID: 36759923 PMCID: PMC9912517 DOI: 10.1186/s13578-023-00975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The phenotypic heterogeneity observed in Cystic Fibrosis (CF) patients suggests the involvement of other genes, besides CFTR. Here, we combined transcriptome and proteome analysis to understand the global gene expression patterns associated with five prototypical CFTR mutations. RESULTS Evaluation of differentially expressed genes and proteins unveiled common and mutation-specific changes revealing functional signatures that are much more associated with the specific molecular defects associated with each mutation than to the CFTR loss-of-function phenotype. The combination of both datasets revealed that mutation-specific detected translated-transcripts (Dtt) have a high level of consistency. CONCLUSIONS This is the first combined transcriptomic and proteomic study focusing on prototypical CFTR mutations. Analysis of Dtt provides novel insight into the pathophysiology of CF, and the mechanisms through which each mutation class causes disease and will likely contribute to the identification of new therapeutic targets and/or biomarkers for CF.
Collapse
Affiliation(s)
- Lúcia Santos
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal ,grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Rui Nascimento
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Aires Duarte
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Violeta Railean
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida D. Amaral
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Patrick T. Harrison
- grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Carlos M. Farinha
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Reeves AE, Huang ML. Mucopedia 101: capturing and assigning mucin-domain glycoproteins. Trends Microbiol 2022; 31:428-429. [PMID: 36153262 DOI: 10.1016/j.tim.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Glycoproteins bearing mucin domains serve important biological functions, yet they are understudied due to their dense glycosylation. Malaker et al. describe a new tool that will advance the capture, identification, and prediction of new members of the 'mucinome'.
Collapse
Affiliation(s)
- Abigail E Reeves
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Butnariu LI, Țarcă E, Cojocaru E, Rusu C, Moisă ȘM, Leon Constantin MM, Gorduza EV, Trandafir LM. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J Clin Med 2021; 10:5821. [PMID: 34945117 PMCID: PMC8707808 DOI: 10.3390/jcm10245821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disease caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. CF is characterized by a high phenotypic variability present even in patients with the same genotype. This is due to the intervention of modifier genes that interact with both the CFTR gene and environmental factors. The purpose of this review is to highlight the role of non-CFTR genetic factors (modifier genes) that contribute to phenotypic variability in CF. We analyzed literature data starting with candidate gene studies and continuing with extensive studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES). The results of both types of studies revealed that the number of modifier genes in CF patients is impressive. Their identification offers a new perspective on the pathophysiological mechanisms of the disease, paving the way for the understanding of other genetic disorders. In conclusion, in the future, genetic analysis, such as GWAS and WES, should be performed routinely. A challenge for future research is to integrate their results in the process of developing new classes of drugs, with a goal to improve the prognosis, increase life expectancy, and enhance quality of life among CF patients.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| | | | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| |
Collapse
|
7
|
Altman MC, Flynn K, Rosasco MG, Dapas M, Kattan M, Lovinsky-Desir S, O'Connor GT, Gill MA, Gruchalla RS, Liu AH, Pongracic JA, Khurana Hershey GK, Zoratti EM, Teach SJ, Rastrogi D, Wood RA, Bacharier LB, LeBeau P, Gergen PJ, Togias A, Busse WW, Presnell S, Gern JE, Ober C, Jackson DJ. Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children. J Allergy Clin Immunol 2021; 148:1505-1514. [PMID: 34019912 PMCID: PMC8599524 DOI: 10.1016/j.jaci.2021.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established. OBJECTIVES This study sought to assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma. METHODS This study used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele-specific expression analyses in 2 cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort, and an exacerbation-prone asthma cohort. Inducible MUC5AC eQTLs were further investigated during incipient asthma exacerbations. Significant eQTLs SNPs were tested for associations with lung function measurements and their functional consequences were investigated in DNA regulatory databases. RESULTS Two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression were identified. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, which is consistent with inducible expression. SNPs in 1 group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites, suggesting a mechanism of effect. CONCLUSIONS These findings demonstrate the applicability of organ-specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies.
Collapse
Affiliation(s)
- Matthew C Altman
- Department of Medicine, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| | | | | | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | | | | | - Michelle A Gill
- University of Texas Southwestern Medical Center, Dallas, Tex
| | | | - Andrew H Liu
- Children's Hospital Colorado University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Md
| | | | | | - Peter J Gergen
- National Institutes of Health/National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- National Institutes of Health/National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | |
Collapse
|
8
|
Cho HY, Park S, Miller L, Lee HC, Langenbach R, Kleeberger SR. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol 2021; 49:1077-1099. [PMID: 33938323 DOI: 10.1177/01926233211004433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucin-5AC (MUC5AC) is a major secreted mucin in pathogenic airways. To determine its role in mucus-related airway disorders, Muc5ac-deficient (Muc5ac-/-) and wild-type (Muc5ac+/+) mice were compared in bleomycin-induced pulmonary fibrosis, respiratory syncytial virus (RSV) disease, and ozone toxicity. Significantly greater inflammation and fibrosis by bleomycin were developed in Muc5ac-/- lungs compared to Muc5ac+/+ lungs. More severe mucous cell metaplasia in fibrotic Muc5ac-/- lungs coincided with bronchial Muc2, Muc4, and Muc5b overexpression. Airway RSV replication was higher in Muc5ac-/- than in Muc5ac+/+ during early infection. RSV-caused pulmonary epithelial death, bronchial smooth muscle thickening, and syncytia formation were more severe in Muc5ac-/- compared to Muc5ac+/+. Nasal septal damage and subepithelial mucoserous gland enrichment by RSV were greater in Muc5ac-/- than in Muc5ac+/+. Ozone exposure developed more severe nasal airway injury accompanying submucosal gland hyperplasia and pulmonary proliferation in Muc5ac-/- than in Muc5ac+/+. Ozone caused periodic acid-Schiff-positive secretion only in Muc5ac-/- nasal airways. Lung E-cadherin level was relatively lower in Muc5ac-/- than in Muc5ac+/+ basally and after bleomycin, RSV, and ozone exposure. Results indicate that MUC5AC is an essential mucosal component in acute phase airway injury protection. Subepithelial gland hyperplasia and adaptive increase of other epithelial mucins may compensate airway defense in Muc5ac-/- mice.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Soojung Park
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Laura Miller
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Huei-Chen Lee
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Robert Langenbach
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| |
Collapse
|
9
|
Sepahzad A, Morris-Rosendahl DJ, Davies JC. Cystic Fibrosis Lung Disease Modifiers and Their Relevance in the New Era of Precision Medicine. Genes (Basel) 2021; 12:genes12040562. [PMID: 33924524 PMCID: PMC8069009 DOI: 10.3390/genes12040562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cystic fibrosis (CF) has grown exponentially since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989. With evolving genetic and genomic tools, we have come to better understand the role of CFTR genotypes in the pathophysiology of the disease. This, in turn, has paved the way for the development of modulator therapies targeted at mutations in the CFTR, which are arguably one of the greatest advances in the treatment of CF. These modulator therapies, however, do not target all the mutations in CFTR that are seen in patients with CF and, furthermore, a variation in response is seen in patients with the same genotype who are taking modulator therapies. There is growing evidence to support the role of non-CFTR modifiers, both genetic and environmental, in determining the variation seen in CF morbidity and mortality and also in the response to existing therapies. This review focusses on key findings from studies using candidate gene and genome-wide approaches to identify CF modifier genes of lung disease in cystic fibrosis and considers the interaction between modifiers and the response to modulator therapies. As the use of modulator therapies expands and we gain data around outcomes, it will be of great interest to investigate this interaction further. Going forward, it will also be crucial to better understand the relative influence of genomic versus environmental factors. With this understanding, we can truly begin to deliver personalised care by better profiling the likely disease phenotype for each patient and their response to treatment.
Collapse
Affiliation(s)
- Afsoon Sepahzad
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
| | | | - Jane C. Davies
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
- National Heart & Lung Institute, Imperial College London, Emmanuel Kay Building, 1b Manresa Rd, London SW3 6LR, UK
- Correspondence:
| |
Collapse
|
10
|
Martinez-Valdebenito C, Andaur C, Angulo J, Henriquez C, Ferrés M, Le Corre N. Characterization of Oral Immunity in Cases and Close Household Contacts Exposed to Andes Orthohantavirus (ANDV). Front Cell Infect Microbiol 2020; 10:557273. [PMID: 33224896 PMCID: PMC7670062 DOI: 10.3389/fcimb.2020.557273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Andes orthohantavirus (ANDV) is the sole etiologic agent of Hantavirus Cardiopulmonary Syndrome in Chile and, until now, the only Hantavirus known to be transmitted by person-to-person route. The main risk of person-to-person transmission is to be a sexual partner of an index case, and deep kissing the main mechanism of infection. Experimental reports suggest that ANDV infection can be inhibited by some saliva components. Therefore, some host factors like saliva quality, could help to explain why some individuals do not become infected even though their exposure to the virus is high. Aim: To compare some saliva components, such cytokines and mucins, between ANDV-infected cases (exposed-sick), their close household contacts (exposed-not sick) and healthy control not exposed. Methods: Sixty-nine confirmed ANDV-infected cases, 76 close household contacts exposed to ANDV but not infected (CHC) and 39 healthy control not exposed (HCNE). The following components were measured in saliva: secretory immunoglobulin A (sIgA) by ELISA; cytokines (IL1β, IL12p70, TNFα, INFy, IL10, IL6, VEGF, IP10, and IL8) by Multiplex Assay and mucins MUC7 and MUC5B by Western Blotting. Results: Among infected cases, CHC and HCNE analyzed 74, 45, and 33% were men, respectively (p ≤ 0.05). The average age for cases, CHC and HCNE was 37.7, 28.7, and 32 years, respectively (p ≤ 0.05). The average concentration of sIgA in infected cases was 4.846 mg/mL, higher than for CHC group, 0.333 mg/mL (p ≤ 0.05). For cytokines, significant differences were found comparing all groups for IFNy, IL12p70, and IL8. Among CHC group, there was a higher frequency of detection of MUC7 isoform (62.6%; 31/49) compared to ANDV-infected cases (40.5%; 17/42) (p < 0.05). Similarly, presence of MUC5B was higher among CHC groups (62.16%; 46/74) than in ANDV-infected cases (44.4%; 28/63) (p < 0.05). Conclusions: Three salivary components showed differences between infected cases and close household contacts (sIgA, cytokines, and mucins). These differences can be explained by the acute state of the disease in the ANDV-infected cases group. However, the differences in MUC5B and isoforms of MUC7 are not entirely explainable by the infection itself. This work represents a novel description of salivary components in the context of ANDV infection.
Collapse
Affiliation(s)
- Constanza Martinez-Valdebenito
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile
| | - Camila Andaur
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile
| | - Jenniffer Angulo
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile.,Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia (IMII), Santiago, Chile
| | - Carolina Henriquez
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile
| | - Marcela Ferrés
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile
| | - Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Infectología y Virología Molecular, Red Salud UC Christus, Santiago, Chile
| |
Collapse
|
11
|
Javitt G, Khmelnitsky L, Albert L, Bigman LS, Elad N, Morgenstern D, Ilani T, Levy Y, Diskin R, Fass D. Assembly Mechanism of Mucin and von Willebrand Factor Polymers. Cell 2020; 183:717-729.e16. [PMID: 33031746 PMCID: PMC7599080 DOI: 10.1016/j.cell.2020.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lev Khmelnitsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lis Albert
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lavi Shlomo Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
12
|
The comparative inhibitory potency of salivary mucins against human immunodeficiency virus type 1. Virology 2020; 553:1-8. [PMID: 33190061 DOI: 10.1016/j.virol.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
MUC5B and MUC7 salivary mucins are reported to inhibit HIV-1 entry into target cells in vitro; however, their relative inhibitory potencies have not been quantitively compared. There is also conflicting evidence regarding whether HIV-1 infection diminishes mucins' inhibitory efficacy. We explored the effect of donor HIV-1 status upon the anti-HIV-1 potency of purified MUC5B and MUC7 while comparing their relative inhibitory potential using a pseudovirus-based neutralization assay. HIV status of sample donors had no detectable effect on HIV-1 inhibition by salivary mucins. MUC5B (median IC50 50 μg/ml, IQR 10-116 μg/ml) exhibited significantly more potent HIV-1 inhibition than MUC7 (median IC50 458 μg/ml, IQR 192->2000 μg/ml; Mann-Whitney U p < 0.0001). We suggest that larger size, gel-forming properties and extensive glycosylation of MUC5B allow more effective binding and aggregation of viral particles. MUC5B is also more abundant in the saliva and is therefore likely to make a substantially greater contribution to it's anti-HIV-1 properties.
Collapse
|
13
|
Niv Y, Ho SB, Rokkas T. Mucin Secretion in Cystic Fibrosis: A Systematic Review. Dig Dis 2020; 39:375-381. [PMID: 33049746 DOI: 10.1159/000512268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mucus protects the epithelium against invaders and toxic materials. Sticky and thick mucus is characteristic of CF. OBJECTIVE The aim of this systematic review is to characterize the specific mucins secreted in the lung and intestinal tract of CF patients. METHODS A systematic literature search was conducted up to December 31, 2019. The following terms were used: "cystic fibrosis" AND "mucin." Case-control studies comparing mucin expression in CF patients to healthy controls were included. RESULTS We found 741 eligible studies, 694 studies were rejected because they were performed in animals and not in full text, and 32 studies were excluded being editorials, duplications, review articles, meta-analysis, or not in English. Fifteen studies were eligible for our study, including 150 CF patients compared to 82 healthy controls, all fulfilled the inclusion criteria. The main mucin types expressed in the sinus submucosal glands, sputum, tracheobronchial surface epithelium, and lung submucosal glands were MUC5AC and MUC5B. Increase in the number of sinusoidal submucosal glands and expression of MUC5B was found in CF patients, but no such difference from healthy controls was found for the number of goblet cells in the surface epithelium nor in the expression of -MUC5AC. The opposite was found in the tracheobronchial surface epithelium and in the lungs. CONCLUSIONS Increased expression of MUC5AC in the surface epithelium and of MUC5B in the subepithelial glands may be the result of higher secretion rate of mucin into the lumen of the respiratory tract, causing mucus plaque, infection, and inflammation.
Collapse
Affiliation(s)
- Yaron Niv
- Ministry of Health, Jerusalem, Israel
| | - Samuel B Ho
- Department of Clinical Research, MBRU College of Medicine, Dubai, United Arab Emirates
| | - Theodor Rokkas
- Department of Gastroenterology, Henry Durant Medical Center, Athens, Greece
| |
Collapse
|
14
|
Shanthikumar S, Neeland MN, Saffery R, Ranganathan S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr Pulmonol 2019; 54:1356-1366. [PMID: 31140758 DOI: 10.1002/ppul.24366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung disease is the major source of morbidity and mortality in cystic fibrosis (CF), with large variability in severity between patients. Although accurate prediction of lung disease severity would be extremely useful, no robust methods exist. Twin and sibling studies have highlighted the importance of non-cystic fibrosis transmembrane conductance regulator (CFTR) genes in determining lung disease severity but how these impact on the severity in CF remains unclear. METHODS A systematic review was undertaken to answer the question "In patients with CF which non-CFTR genes modify the severity of lung disease?" The method for this systematic review was based upon the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" statement, with a narrative synthesis of results planned. RESULTS A total of 1168 articles were screened for inclusion, with 275 articles undergoing detailed assessment for inclusion. One hundred and forty articles were included. Early studies focused on candidate genes, whereas more recent studies utilized genome-wide approaches and also examined epigenetic mechanisms, gene expression, and therapeutic response. DISCUSSION A large body of evidence regarding non-CFTR gene modifiers of lung disease severity has been generated, examining a wide array of genes. Limitations to existing studies include heterogeneity in outcome measures used, limited replication, and relative lack of clinical impact. Future work examining non-CFTR gene modifiers will have to overcome these limitations if gene modifiers are to have a meaningful role in the care of patients with CF.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| | - Melanie N Neeland
- Department of Paediatrics, The University of Melbourne, Australia.,Centre of Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard Saffery
- Department of Paediatrics, The University of Melbourne, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarath Ranganathan
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| |
Collapse
|
15
|
Wilton R, Wheelan SJ, Szalay AS, Salzberg SL. The Terabase Search Engine: a large-scale relational database of short-read sequences. Bioinformatics 2019; 35:665-670. [PMID: 30052772 DOI: 10.1093/bioinformatics/bty657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 01/27/2023] Open
Abstract
MOTIVATION DNA sequencing archives have grown to enormous scales in recent years, and thousands of human genomes have already been sequenced. The size of these data sets has made searching the raw read data infeasible without high-performance data-query technology. Additionally, it is challenging to search a repository of short-read data using relational logic and to apply that logic across samples from multiple whole-genome sequencing samples. RESULTS We have built a compact, efficiently-indexed database that contains the raw read data for over 250 human genomes, encompassing trillions of bases of DNA, and that allows users to search these data in real-time. The Terabase Search Engine enables retrieval from this database of all the reads for any genomic location in a matter of seconds. Users can search using a range of positions or a specific sequence that is aligned to the genome on the fly. AVAILABILITY AND IMPLEMENTATION Public access to the Terabase Search Engine database is available at http://tse.idies.jhu.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Richard Wilton
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah J Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexander S Szalay
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.,Department of Computer Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven L Salzberg
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Computer Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Svensson F, Lang T, Johansson MEV, Hansson GC. The central exons of the human MUC2 and MUC6 mucins are highly repetitive and variable in sequence between individuals. Sci Rep 2018; 8:17503. [PMID: 30504806 PMCID: PMC6269512 DOI: 10.1038/s41598-018-35499-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
The DNA sequence of the two human mucin genes MUC2 and MUC6 have not been completely resolved due to the repetitive nature of their central exon coding for Proline, Threonine and Serine rich sequences. The exact nucleotide sequence of these exons has remained unknown for a long time due to limitations in traditional sequencing techniques. These are still very poorly covered in new whole genome sequencing projects with the corresponding protein sequences partly missing. We used a BAC clone containing both these genes and third generation sequencing technology, SMRT sequencing, to obtain the full-length contiguous MUC2 and MUC6 tandem repeat sequences. The new sequences span the entire repeat regions with good coverage revealing their length, variation in repeat sequences and their internal organization. The sequences obtained were used to compare with available sequences from whole genome sequencing projects indicating variation in number of repeats and their internal organization between individuals. The lack of these sequences has limited the association of genetic alterations with disease. The full sequences of these mucins will now allow such studies, which could be of importance for inflammatory bowel diseases for MUC2 and gastric ulcer diseases for MUC6 where deficient mucus protection is assumed to play an important role.
Collapse
Affiliation(s)
- Frida Svensson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tiange Lang
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P. R. China
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Pollard BS, Pollard HB. Induced pluripotent stem cells for treating cystic fibrosis: State of the science. Pediatr Pulmonol 2018; 53:S12-S29. [PMID: 30062693 DOI: 10.1002/ppul.24118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a recently developed technology in which fully differentiated cells such as fibroblasts from individual CF patients can be repaired with [wildtype] CFTR, and reprogrammed to differentiate into fully differentiated cells characteristic of the proximal and distal airways. Here, we review properties of different epithelial cells in the airway, and the in vitro genetic roadmap which iPSCs follow as they are step-wise differentiated into either basal stem cells, for the proximal airway, or into Type II Alveolar cells for the distal airways. The central theme is that iPSC-derived basal stem cells, are penultimately dependent on NOTCH signaling for differentiation into club cells, goblet cells, ciliated cells, and neuroendocrine cells. Furthermore, given the proper matrix, these cellular progenies are also able to self-assemble into a fully functional pseudostratified squamous proximal airway epithelium. By contrast, club cells are reserve stem cells which are able to either differentiate into goblet or ciliated cells, but also to de-differentiate into basal stem cells. Variant club cells, located at the transition between airway and alveoli, may also be responsible for differentiation into Type II Alveolar cells, which then differentiate into Type I Alveolar cells for gas exchange in the distal airway. Using gene editing, the mutant CFTR gene in iPSCs from CF patients can be repaired, and fully functional epithelial cells can thus be generated through directed differentiation. However, there is a limitation in that the lung has other CFTR-dependent cells besides epithelial cells. Another limitation is that there are CFTR-dependent cells in other organs which would continue to contribute to CF disease. Furthermore, there are also bystander or modifier genes which affect disease outcome, not only in the lung, but specifically in other CF-affected organs. Finally, we discuss future personalized applications of the iPSC technology, many of which have already survived the "proof-of-principle" test. These include (i) patient-derived iPSCs used as a "lung-on-a-chip" tool for personalized drug discovery; (ii) replacement of mutant lung cells by wildtype lung cells in the living lung; and (iii) development of bio-artificial lungs. It is hoped that this review will give the reader a roadmap through the most complicated of the obstacles, and foster a guardedly optimistic view of how some of the remaining obstacles might one day be overcome.
Collapse
Affiliation(s)
| | - Harvey B Pollard
- Department of Cell Biology and Genetics, Uniformed Services University School of Medicine-America's Medical School, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
19
|
Cong WJ, Li J, Liao YJ, Zhang XF, Jiang CW, Xiang SY, Huang WB, Liu XY, Liu ZB. Effect of electroacupuncture on expressions of acetylcholine and mucin 5AC in the lungs of rats with chronic obstructive pulmonary disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2018. [DOI: 10.1007/s11726-018-1038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
21
|
Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn JL. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018; 252:69-82. [PMID: 29329667 DOI: 10.1016/j.cis.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology. This approach can be used to investigate both the nature of gel-forming mucins interactions and factors that influence hydrogel formation. This knowledge is directly relevant to the development of new drugs to modulate mucus viscoelasticity and to restore normal mucus functions in diseases such as in cystic fibrosis. The aim of the present review is to summarize the current knowledge about the relationship between the mucus protein matrix and its functions, with emphasis on mucus viscoelasticity.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University, UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France.
| |
Collapse
|
22
|
Cowley AC, Thornton DJ, Denning DW, Horsley A. Aspergillosis and the role of mucins in cystic fibrosis. Pediatr Pulmonol 2017; 52:548-555. [PMID: 27870227 PMCID: PMC5396363 DOI: 10.1002/ppul.23618] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
The prevalence of aspergillosis in CF patients has until recently been underestimated, but increasing evidence suggests that it may play an important role in the progression of CF lung disease. In healthy airways, Aspergillus fumigatus can be efficiently removed from the lung by mechanisms such as mucociliary clearance and cough. However, these mechanisms are defective in CF, allowing pathogens such as A. fumigatus to germinate and establish chronic infections within the airways. The precise means by which A. fumigatus contributes to CF lung disease remain largely unclear. As the first point of contact within the lung, and an important component of the innate immune system, it is likely that the mucus barrier plays an important role in this process. Study of the functional interplay between this vital protective barrier, and in particular its principal structural components, the polymeric gel-forming mucins, and CF pathogens such as A. fumigatus, is at an early stage. A. fumigatus protease activity has been shown to upregulate mucus production by inducing mucin mRNA and protein expression, and A. fumigatus proteases and glycosidases are able to degrade mucins. This may allow A. fumigatus to alter mucus barrier properties to promote fungal colonization of the airways and/or utilize mucins as a nutrient source. Moreover, conidial surface lectin binding to mucin glycans is a key aspect of clearance of Aspergillus from the lung in health but may be an important aspect of colonization, where mucociliary clearance is compromised, as in the CF lung. Here we discuss the nature of the mucus barrier and its mucin components in CF, and how they may be implicated in A. fumigatus infection. Pediatr Pulmonol 2017;52:548-555. © 2016 The Authors. Pediatric Pulmonology. Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail C Cowley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Denning
- Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Alexander Horsley
- Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Adult CF Centre, Manchester, United Kingdom
| |
Collapse
|
23
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
24
|
Sonneville F, Ruffin M, Guillot L, Rousselet N, Le Rouzic P, Corvol H, Tabary O. New insights about miRNAs in cystic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:897-908. [PMID: 25687559 DOI: 10.1016/j.ajpath.2014.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
The molecular basis of cystic fibrosis (CF) is a mutation-related defect in the epithelial-cell chloride channel called CF transmembrane conductance regulator (CFTR). This defect alters chloride ion transport and impairs water transport across the cell membrane. Marked clinical heterogeneity occurs even among patients carrying the same mutation in the CFTR gene. Recent studies suggest that such heterogeneity could be related to epigenetic factors and/or miRNAs, which are small noncoding RNAs that modulate the expression of various proteins via post-transcriptional inhibition of gene expression. In the respiratory system, it has been shown that the dysregulation of miRNAs could participate in and lead to pathogenicity in several diseases. In CF airways, recent studies have proposed that miRNAs may modulate disease progression by affecting the production of either CFTR or various proteins that are dysregulated in the CF lung. Herein, we provide an overview of studies showing how miRNAs may modulate CF pathology and the efforts to develop miRNA-based treatments and/or to consider miRNAs as biomarkers. The identification of miRNAs involved in CF disease progression opens up new avenues toward treatments targeting selected clinical components of CF, independently from the CFTR mutation.
Collapse
Affiliation(s)
- Florence Sonneville
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Manon Ruffin
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Loïc Guillot
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Nathalie Rousselet
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Philippe Le Rouzic
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Harriet Corvol
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France; Paediatric Respiratory Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France.
| |
Collapse
|
25
|
Gallati S. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. APPLICATION OF CLINICAL GENETICS 2014; 7:133-46. [PMID: 25053892 PMCID: PMC4104546 DOI: 10.2147/tacg.s18675] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.
Collapse
Affiliation(s)
- Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, and Department of Clinical Research, Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
26
|
Meconium ileus in cystic fibrosis is not linked to central repetitive region length variation in MUC1, MUC2, and MUC5AC. J Cyst Fibros 2014; 13:613-6. [PMID: 24920497 DOI: 10.1016/j.jcf.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mucins are excellent candidates for contributing to the presence of meconium ileus (MI) in cystic fibrosis (CF) due to their extensive genetic variation and known function in intestinal physiology. The length of variants in mucin central repetitive regions has not been explored as "risk" factors for MI in CF. METHODS We investigated the length polymorphisms in the central repetitive regions of MUC1, MUC2, and MUC5AC by Southern blot and tested for association with MI in CF subjects. RESULTS No significant associations were found for the allele sizes of any of the genes with respect to the prevalence of MI (p values=0.33, 0.16, and 0.71 for MUC1, MUC2, and MUC5AC, respectively). CONCLUSIONS The genetic length variants in the central repetitive region of three MUC genes studied are not associated with MI in subjects with CF.
Collapse
|
27
|
Johnson L, Shah I, Loh AX, Vinall LE, Teixeira AS, Rousseau K, Holloway JW, Hardy R, Swallow DM. MUC5AC and inflammatory mediators associated with respiratory outcomes in the British 1946 birth cohort. Respirology 2014; 18:1003-10. [PMID: 23551418 PMCID: PMC3784974 DOI: 10.1111/resp.12092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/10/2013] [Accepted: 01/24/2013] [Indexed: 01/21/2023]
Abstract
Background and objective: Dysregulation of respiratory mucins, MUC5AC in particular, has been implicated in respiratory disease and MUC5AC expression is up-regulated in response to environmental challenges and inflammatory mediators. The aim of this study was to examine the effect of genetic variation on susceptibility to common respiratory conditions. Methods: The association of MUC5AC and the closely linked genes MUC2 and MUC5B with respiratory outcomes was tested in the MRC National Survey of Health and Development, a longitudinal birth cohort of men and women born in 1946. Also examined were the functional variants of the genes encoding inflammatory mediators, IL13, IL1B, IL1RN, TNFA and ERBB1, for which there is a likely influence on MUC5AC expression and were explored potential gene-gene interactions with these inflammatory mediators. Results: Statistically significant associations between the 3'ter MUC5AC simple nucleotide polymorphism (SNP) rs1132440 and various non-independent respiratory outcomes (bronchitis, wheeze, asthma, hay fever) were reported while the adjacent loci show slight (but largely non-statistically significant) differences, presumably reflective of linkage disequilibrium (allelic association) across the region. A novel association between bronchitis and a non-synonymous functional ERBB1 SNP, rs2227983 (aka epidermal growth factor receptor:R497K, R521K) is also reported and evidence presented of interaction between MUC5AC and ERBB1 and between MUC5AC and IL1RN with respect to bronchitis. The ERBB1 result suggests a clear mechanism for a biological interaction in which the allelic variants of epidermal growth factor receptor differentially affect mucin expression. Conclusions: The MUC5AC association and the interactions with inflammatory mediators suggest that genetically determined differences in MUC5AC expression alter susceptibility to respiratory disease. SUMMARY AT A GLANCE This longitudinal cohort study shows occurrence of the common respiratory conditions bronchitis, wheeze, asthma and hay fever to be associated with genetic variation in a mucin gene, MUC5AC. Functional variation in the epidermal growth factor receptor (epidermal growth factor receptor encoded by ERBB1) is also associated with bronchitis and modulates the MUC5AC effect.
Collapse
Affiliation(s)
- Lauren Johnson
- Research Department of Genetics, Evolution and Environment, University College London Darwin Building, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guo X, Zheng S, Dang H, Pace RG, Stonebraker JR, Jones CD, Boellmann F, Yuan G, Haridass P, Fedrigo O, Corcoran DL, Seibold MA, Ranade SS, Knowles MR, O'Neal WK, Voynow JA. Genome reference and sequence variation in the large repetitive central exon of human MUC5AC. Am J Respir Cell Mol Biol 2014; 50:223-32. [PMID: 24010879 DOI: 10.1165/rcmb.2013-0235oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite modern sequencing efforts, the difficulty in assembly of highly repetitive sequences has prevented resolution of human genome gaps, including some in the coding regions of genes with important biological functions. One such gene, MUC5AC, encodes a large, secreted mucin, which is one of the two major secreted mucins in human airways. The MUC5AC region contains a gap in the human genome reference (hg19) across the large, highly repetitive, and complex central exon. This exon is predicted to contain imperfect tandem repeat sequences and multiple conserved cysteine-rich (CysD) domains. To resolve the MUC5AC genomic gap, we used high-fidelity long PCR followed by single molecule real-time (SMRT) sequencing. This technology yielded long sequence reads and robust coverage that allowed for de novo sequence assembly spanning the entire repetitive region. Furthermore, we used SMRT sequencing of PCR amplicons covering the central exon to identify genetic variation in four individuals. The results demonstrated the presence of segmental duplications of CysD domains, insertions/deletions (indels) of tandem repeats, and single nucleotide variants. Additional studies demonstrated that one of the identified tandem repeat insertions is tagged by nonexonic single nucleotide polymorphisms. Taken together, these data illustrate the successful utility of SMRT sequencing long reads for de novo assembly of large repetitive sequences to fill the gaps in the human genome. Characterization of the MUC5AC gene and the sequence variation in the central exon will facilitate genetic and functional studies for this critical airway mucin.
Collapse
Affiliation(s)
- Xueliang Guo
- 1 Cystic Fibrosis/Pulmonary Research and Treatment Center, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ehre C, Ridley C, Thornton DJ. Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 2014; 52:136-45. [PMID: 24685676 DOI: 10.1016/j.biocel.2014.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 02/01/2023]
Abstract
Our current understanding of cystic fibrosis (CF) has revealed that the biophysical properties of mucus play a considerable role in the pathogenesis of the disease in view of the fact that most mucus-producing organs are affected in CF patients. In this review, we discuss the potential causal relationship between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the production of mucus with abnormal biophysical properties in the intestine and lungs, highlighting what has been learned from cell cultures and animal models that mimic CF pathogenesis. A similar cascade of events, including mucus obstruction, infection and inflammation, is common to all epithelia affected by impaired surface hydration. Hence, the main structural components of mucus, namely the polymeric, gel-forming mucins, are critical to the onset of the disease. Defective CFTR leads to epithelial surface dehydration, altered pH/electrolyte composition and mucin concentration. Further, it can influence mucin transition from the intracellular to extracellular environment, potentially resulting in aberrant mucus gel formation. While defective HCO3(-) production has long been identified as a feature of CF, it has only recently been considered as a key player in the transition phase of mucins. We conclude by examining the influence of mucins on the biophysical properties of CF sputum and discuss existing and novel therapies aimed at removing mucus from the lungs. This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.
Collapse
Affiliation(s)
- Camille Ehre
- CF/Pulmonary Research & Treatment Centre, The University of North Carolina at Chapel Hill, USA.
| | - Caroline Ridley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|
30
|
Char JE, Wolfe MH, Cho HJ, Park IH, Jeong JH, Frisbee E, Dunn C, Davies Z, Milla C, Moss RB, Thomas EAC, Wine JJ. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor. PLoS One 2014; 9:e88564. [PMID: 24520399 PMCID: PMC3919757 DOI: 10.1371/journal.pone.0088564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/12/2014] [Indexed: 01/02/2023] Open
Abstract
To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (-) ivacaftor, 3 only (+) ivacaftor and 3 (+/-) ivacaftor (1-5 tests per condition). The total number of gland measurements was 852 (-) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.
Collapse
Affiliation(s)
- Jessica E. Char
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Marlene H. Wolfe
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Hyung-ju Cho
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Il-Ho Park
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Jin Hyeok Jeong
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Eric Frisbee
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Colleen Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zoe Davies
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard B. Moss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ewart A. C. Thomas
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Psychology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
31
|
Gardet A, Zheng TS, Viney JL. Genetic architecture of human fibrotic diseases: disease risk and disease progression. Front Pharmacol 2013; 4:159. [PMID: 24391588 PMCID: PMC3866586 DOI: 10.3389/fphar.2013.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
Genetic studies of human diseases have identified multiple genetic risk loci for various fibrotic diseases. This has provided insights into the myriad of biological pathways potentially involved in disease pathogenesis. These discoveries suggest that alterations in immune responses, barrier function, metabolism and telomerase activity may be implicated in the genetic risks for fibrotic diseases. In addition to genetic disease-risks, the identification of genetic disease-modifiers associated with disease complications, severity or prognosis provides crucial insights into the biological processes implicated in disease progression. Understanding the biological processes driving disease progression may be critical to delineate more effective strategies for therapeutic interventions. This review provides an overview of current knowledge and gaps regarding genetic disease-risks and genetic disease-modifiers in human fibrotic diseases.
Collapse
|
32
|
Wine JJ, Char JE, Chen J, Cho HJ, Dunn C, Frisbee E, Joo NS, Milla C, Modlin SE, Park IH, Thomas EAC, Tran KV, Verma R, Wolfe MH. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands. PLoS One 2013; 8:e77114. [PMID: 24204751 PMCID: PMC3811985 DOI: 10.1371/journal.pone.0077114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.
Collapse
Affiliation(s)
- Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Jessica E. Char
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Jonathan Chen
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Hyung-ju Cho
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Colleen Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eric Frisbee
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sara E. Modlin
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Il-Ho Park
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Ewart A. C. Thomas
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Kim V. Tran
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Rohan Verma
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Marlene H. Wolfe
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| |
Collapse
|
33
|
|
34
|
Clarke LA, Sousa L, Barreto C, Amaral MD. Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. Respir Res 2013; 14:38. [PMID: 23537407 PMCID: PMC3637641 DOI: 10.1186/1465-9921-14-38] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/07/2013] [Indexed: 01/06/2023] Open
Abstract
Background Microarray studies related to cystic fibrosis (CF) airway gene expression have gone some way in clarifying the complex molecular background of CF lung diseases, but have made little progress in defining a robust “molecular signature” associated with mutant CFTR expression. Disparate methodological and statistical analyses complicate comparisons between independent studies of the CF transcriptome, and although each study may be valid in isolation, the conclusions reached differ widely. Methods We carried out a small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygotes in comparison to non-CF controls. We performed superficial comparisons with other microarray datasets in an attempt to identify a subset of regulated genes that could act as a signature of F508del-CFTR expression in native airway tissue samples. Results Among the alterations detected in CF, up-regulation of genes involved in cell proliferation, and down-regulation of cilia genes were the most notable. Other changes involved gene expression changes in calcium and membrane pathways, inflammation, defence response, wound healing and the involvement of estrogen signalling. Comparison of our data set with previously published studies allowed us to assess the consistency of independent microarray data sets, and shed light on the limitations of such snapshot studies in measuring a system as subtle and dynamic as the transcriptome. Comparison of in-vivo studies nevertheless yielded a small molecular CF signature worthy of future investigation. Conclusions Despite the variability among the independent studies, the current CF transcriptome meta-analysis identified subsets of differentially expressed genes in native airway tissues which provide both interesting clues to CF pathogenesis and a possible CF biomarker.
Collapse
Affiliation(s)
- Luka A Clarke
- BioFIG-Centre for Biodiversity, Functional and Integrative Genomics, FCUL-Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal.
| | | | | | | |
Collapse
|
35
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Abstract
Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl(-) channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na(+) channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO(3)(-) deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology.
Collapse
Affiliation(s)
- Silvia M Kreda
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27517-7248, USA
| | | | | |
Collapse
|
37
|
Livraghi-Butrico A, Grubb BR, Kelly EJ, Wilkinson KJ, Yang H, Geiser M, Randell SH, Boucher RC, O'Neal WK. Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction. Physiol Genomics 2012; 44:470-84. [PMID: 22395316 DOI: 10.1152/physiolgenomics.00185.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ<BALB/cJ<C3H/HeN<C57BL/6N), which correlated with the incidence of upper airway mucus plugging and the levels of Muc5b in bronchoalveolar lavage. The strains also exhibited variable Clara cell necrotic degeneration in neonatal intrapulmonary airways and a variable incidence of pulmonary hemorrhage and lung atelectasis. The spontaneous occurrence of a high surviving BALB/cJ line, which exhibited delayed onset of Na(+) hyperabsorption, provided evidence that: 1) air-space enlargement and postnatal death were only present when Na(+) hyperabsorption occurred early, and 2) inflammation and mucus obstruction developed whenever Na(+) hyperabsorption was expressed. In summary, the genetic context and timing of airway innate immune dysfunction critically determines lung disease phenotype. These mouse strains may be useful to identify key modifier genes and pathways.
Collapse
Affiliation(s)
- Alessandra Livraghi-Butrico
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|