1
|
Sobotta K, Schulze-Luehrmann J, Ölke M, Boden K, Lührmann A. Acid Tolerance of Coxiella burnetii Is Strain-Specific and Might Depend on Stomach Content. Pathogens 2025; 14:272. [PMID: 40137758 PMCID: PMC11945843 DOI: 10.3390/pathogens14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Q fever is a zoonotic disease caused by the obligate intracellular bacterium Coxiella (C.) burnetii. Human infections occur mainly via inhalation, but infections via the oral route have been observed. Gastric acidic conditions (pH 2-4) are the first defense mechanism to limit food-associated infections. In this study, we tested the ability of C. burnetii to survive extremely acidic conditions (pH 2-3) to assess the risk of oral infection in humans. We treated different C. burnetii strains with different pH values and calculated the recovery rate by counting colony-forming units. The analysis of an additional eight C. burnetii strains showed that some strains are acid-resistant, while others are not. Importantly, the presence of pepsin, an endopeptidase and the main digestive enzyme in the gastrointestinal tract, increases the survival rate of C. burnetii. Similarly, the presence of milk might also increase the survival rate. These results suggest that oral infections by C. burnetii are possible and depend on the bacterial strain and the stomach microenvironment. Consequently, the digestive infection route of C. burnetii could play a role in the transmission of the pathogen.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina Boden
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
- Synlab MVZ Weiden GmbH, MVZ Thuringia, Ernst-Ruska-Ring 15, 07745 Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Wong BC, Tan HS. Shigella sonnei and Shigella flexneri infection in Caenorhabditis elegans led to species-specific regulatory responses in the host and pathogen. Microb Genom 2025; 11:001339. [PMID: 39853209 PMCID: PMC11893279 DOI: 10.1099/mgen.0.001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
In recent decades, Shigella sonnei has surpassed Shigella flexneri as the leading cause of shigellosis, possibly due to species-specific differences in their transcriptomic responses. This study used dual RNA sequencing to analyse the transcriptomic responses of Caenorhabditis elegans and the two Shigella species at early (10 minutes) and late (24 hours) stages of infection. While the nematode defence response was downregulated during both Shigella infections, only infection by S. sonnei led to downregulation of sphingolipid metabolism, cadmium ion response and xenobiotic response in C. elegans. Furthermore, S. sonnei upregulates biofilm formation and energy generation/conservation during infection, acid resistance-related genes and biofilm regulators compared to S. flexneri. These findings highlight species-specific responses during C. elegans infection.
Collapse
Affiliation(s)
- Bao Chi Wong
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Subang Jaya, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Subang Jaya, Malaysia
| |
Collapse
|
3
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Romano P, Simonetti S, Gambi MC, Luckenbach T, Zupo V, Corsi I. Preliminary investigation on the potential involvement of an ABC-like gene in Halomicronema metazoicum (Cyanobacteria) tolerance to low seawater pH in an ocean acidification scenario. MARINE POLLUTION BULLETIN 2024; 205:116584. [PMID: 38878421 DOI: 10.1016/j.marpolbul.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024]
Abstract
Decreasing ocean surface pH, called ocean acidification (OA), is among the major risks for marine ecosystems due to human-driven atmospheric pCO2 increase. Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of consequences of future OA scenarios for marine life. This study examined whether the ATP-binding cassette (ABC)-like gene slr2019 confers tolerance to the marine cyanobacterium Halomicronema metazoicum to low seawater pH conditions (7.7, 7.2, 6.5) in short- and long-term exposures (7 and 30 d). Photosynthetic pigment content indicated that the species can tolerate all three lowered-pH conditions. At day 7, slr2019 was up-regulated at pH 7.7 while no changes were observed at lower pH. After 30-d exposure, a significant decrease in slr2019 transcript levels was observed in all low-pH treatments. These first results indicate an effect of low pH on the examined transporter expression in H. metazoicum.
Collapse
Affiliation(s)
- Patrizia Romano
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Department of BEOM, Napoli, Italy.
| | - Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Integrative Marine Ecology Department, Napoli, Italy.
| | | | - Till Luckenbach
- Department Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Integrative Marine Ecology Department, Napoli, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
5
|
Sadredinamin M, Yazdansetad S, Alebouyeh M, Yazdi MMK, Ghalavand Z. Shigella Flexneri Serotypes: O-antigen Structure, Serotype Conversion, and Serotyping Methods. Oman Med J 2023; 38:e522. [PMID: 37724320 PMCID: PMC10505279 DOI: 10.5001/omj.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/04/2022] [Indexed: 09/20/2023] Open
Abstract
Shigella flexneri is the most common cause of shigellosis in developing countries. Up to now, 23 serotypes of S. flexneri have been reported. Different serotypes result from the addition of acetyl, glucosyl, or phosphatidylethanolamine groups on the O-antigen backbone and horizontal transfer of mentioned groups can lead to serotype conversion among S. flexneri strains. Serotype conversion causes either a circulation of pre-existing serotypes or is responsible for the emergence of new serotypes. Serotype conversion plays a pivotal role in the protection and evasion of S. flexneri from the host immune response. Furthermore, spreading any new serotype can provide evolutionary advantages. Hence, information about S. flexneri O-antigen structure, serotype conversion, and serotyping methods can be helpful to understand the disease that attributes distinct serotypes in order to apply control or prevention methods in accordance with predominant serotypes over the course of time. Thus, the scope of this review is to give an overview of the serotype structures, factors involved in O-antigen modification, molecular analysis, and epidemiological evidence for the benefits of serotype conversion for S. flexneri serotypes. We are also providing a review of the typing methods.
Collapse
Affiliation(s)
- Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
7
|
Dávalos A, García-de los Santos A. Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1. PeerJ 2023; 11:e14925. [PMID: 36846457 PMCID: PMC9948745 DOI: 10.7717/peerj.14925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background In the last decade, the use of copper has reemerged as a potential strategy to limit healthcare-associated infections and to control the spread of multidrug-resistant pathogens. Numerous environmental studies have proposed that most opportunistic pathogens have acquired antimicrobial resistance in their nonclinical primary habitat. Thus, it can be presumed that copper-resistant bacteria inhabiting a primary commensal niche might potentially colonize clinical environments and negatively affect the bactericidal efficacy of Cu-based treatments. The use of copper in agricultural fields is one of the most important sources of Cu pollution that may exert selection pressure for the increase of copper resistance in soil and plant-associated bacteria. To assess the emergence of copper-resistant bacteria in natural habitats, we surveyed a laboratory collection of bacterial strains belonging to the order Rhizobiales. This study proposes that Methylorubrum extorquens AM1 is an environmental isolate well adapted to thrive in copper-rich environments that could act as a reservoir of copper resistance genes. Methods The minimal inhibitory concentrations (MICs) of CuCl2 were used to estimate the copper tolerance of eight plant-associated facultative diazotrophs (PAFD) and five pink-pigmented facultative methylotrophs (PPFM) belonging to the order Rhizobiales presumed to come from nonclinical and nonmetal-polluted natural habitats based on their reported source of isolation. Their sequenced genomes were used to infer the occurrence and diversity of Cu-ATPases and the copper efflux resistome of Mr. extorquens AM1. Results These bacteria exhibited minimal inhibitory concentrations (MICs) of CuCl2 ranging between 0.020 and 1.9 mM. The presence of multiple and quite divergent Cu-ATPases per genome was a prevalent characteristic. The highest copper tolerance exhibited by Mr. extorquens AM1 (highest MIC of 1.9 mM) was similar to that found in the multimetal-resistant model bacterium Cupriavidus metallidurans CH34 and in clinical isolates of Acinetobacter baumannii. The genome-predicted copper efflux resistome of Mr. extorquens AM1 consists of five large (6.7 to 25.7 kb) Cu homeostasis gene clusters, three clusters share genes encoding Cu-ATPases, CusAB transporters, numerous CopZ chaperones, and enzymes involved in DNA transfer and persistence. The high copper tolerance and the presence of a complex Cu efflux resistome suggest the presence of relatively high copper tolerance in environmental isolates of Mr. extorquens.
Collapse
|
8
|
Huan YW, Fa-Arun J, Wang B. The Role of O-antigen in P1 Transduction of Shigella flexneri and Escherichia coli with its Alternative S' Tail Fibre. J Mol Biol 2022; 434:167829. [PMID: 36116540 DOI: 10.1016/j.jmb.2022.167829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.
Collapse
Affiliation(s)
- Yang W Huan
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Jidapha Fa-Arun
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China; Research Centre of Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
9
|
Obuobi S, Ngoc Phung A, Julin K, Johannessen M, Škalko-Basnet N. Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules 2021; 23:303-315. [PMID: 34914360 PMCID: PMC8753600 DOI: 10.1021/acs.biomac.1c01274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
To avert the poor
bioavailability of antibiotics during S. aureus biofilm
infections, a series of zwitterionic nanoparticles
containing nucleic acid nanostructures were fabricated for the delivery
of vancomycin. The nanoparticles were prepared with three main lipids:
(i) neutral (soy phosphatidylcholine; P), (ii) positively charged
ionizable (1,2-dioleyloxy-3-dimethylaminopropane; D), and (iii) anionic
(1,2-dipalmitoyl-sn-glycero-3-phospho((ethyl-1′,2′,3′-triazole)
triethylene glycolmannose; M) or (cholesteryl hemisuccinate; C) lipids.
The ratio of the anionic lipid was tuned between 0 and 10 mol %, and
its impact on surface charge, size, stability, toxicity, and biofilm
sensitivity was evaluated. Under biofilm mimicking conditions, the
enzyme degradability (via dynamic light scattering (DLS)), antitoxin
(via DLS and spectrophotometry), and antibiotic release profile was
assessed. Additionally, biofilm penetration, prevention (in
vitro), and eradication (ex vivo) of the
vancomycin loaded formulation was investigated. Compared with the
unmodified nanoparticles which exhibited the smallest size (188 nm),
all three surface modified formulations showed significantly larger
sizes (i.e., 222–277 nm). Under simulations of biofilm pH conditions,
the mannose modified nanoparticle (PDM 90/5/5) displayed ideal charge
reversal from a neutral (+1.69 ± 1.83 mV) to a cationic surface
potential (+17.18 ± 2.16 mV) to improve bacteria binding and
biofilm penetration. In the presence of relevant bacterial enzymes,
the carrier rapidly released the DNA nanoparticles to function as
an antitoxin against α-hemolysin. Controlled release of vancomycin
prevented biofilm attachment and significantly reduced early stage
biofilm formations within 24 h. Enhanced biocompatibility and significant ex vivo potency of the PDM 90/5/5 formulation was also observed.
Taken together, these results emphasize the benefit of these nanocarriers
as potential therapies against biofilm infections and fills the gap
for multifunctional nanocarriers that prevent biofilm infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Anna Ngoc Phung
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Kjersti Julin
- Host Microbe Interaction research group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Mona Johannessen
- Host Microbe Interaction research group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
10
|
Akinola SA, Ayangbenro AS, Babalola OO. The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3193-3201. [PMID: 33215702 DOI: 10.1002/jsfa.10948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/31/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The geographical diversification in chemical, biological and physical properties of plant biospheres instigates heterogenicity in the proliferation of important soil microbiome. Controlling functions and structure of plant rhizosphere from a better understanding and prediction of a plant's immediate environment will help assess plant-microbe interplay, improve the productivity of plant ecosystems and improve plant response to adverse soil conditions. Here we characterized functional genes of the microbial community of maize rhizosphere using a culture-independent method. RESULTS Our metadata showed microbial genes involved in nitrogen fixation, phosphate solubilization, quorum sensing molecules, trehalose, siderophore production, phenazine biosynthesis protein, daunorubicin resistance, acetoin, 1-aminocyclopropane-1-carboxylate deaminase, 4-hydroxybenzoate, disease control and stress-reducing genes (superoxidase dismutase, catalase, peroxidase, etc.). β-Diversity showed that there is a highly significant difference between most of the genes mined from rhizosphere soil samples and surrounding soils. CONCLUSIONS The high relative abundance of stress-reducing genes mined from this study showed that the sampling sites harbor not only important plant-beneficial organisms but also a hotspot for developing bio-fertilizers. Nevertheless, since most of these organisms are unculturable, mapping cultivation strategies for their growth could make them readily available as bio-inoculants and possible biotechnological applications in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saheed Adekunle Akinola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
11
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
12
|
Díaz-Zúñiga J, More J, Melgar-Rodríguez S, Jiménez-Unión M, Villalobos-Orchard F, Muñoz-Manríquez C, Monasterio G, Valdés JL, Vernal R, Paula-Lima A. Alzheimer's Disease-Like Pathology Triggered by Porphyromonas gingivalis in Wild Type Rats Is Serotype Dependent. Front Immunol 2020; 11:588036. [PMID: 33240277 PMCID: PMC7680957 DOI: 10.3389/fimmu.2020.588036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer’s disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aβ1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Matías Jiménez-Unión
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Zhang Q, Zhang C. Chronic Exposure to Low Concentration of Graphene Oxide Increases Bacterial Pathogenicity via the Envelope Stress Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12412-12422. [PMID: 32910654 DOI: 10.1021/acs.est.0c04538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO), which has diverse antimicrobial mechanisms, is a promising material to address antibiotic resistance. Considering the emergence of antibiotic tolerance/resistance due to prolonged exposure to sublethal antibiotics, it is imperative to assess the microbiological effects and related adaptive mechanisms under chronic exposure to sublethal levels of GO, which have rarely been explored. After repetitive exposure to 5 mg/L GO for 200 subcultures (400 days), evolved Escherichia coli (E. coli) cells (EGO) differed significantly from their ancestor cells according to transcriptomic and metabolomic analyses. Contact with GO surfaces transformed E. coli by activating the Cpx envelope stress response (ESR), resulting in more than twofold greater extracellular protease release and biofilm formation. The ESR also modulated the envelope structure and function via increases in membrane fluidity, permeation, and lipopolysaccharide content to fulfill growth requirements and combat envelope stress. As a consequence of metabolic adjustment, EGO cells showed advantages of surviving in an acidic and oxidative environment, which resembles the cytosol of host cells. With these adaptive features, EGO cells exhibited higher pathogenicity than ancestor E. coli cells as evidenced by increased bacterial invasion and intracellular survival and a more severe inflammatory response in macrophage cells. To conclude, we seek to raise awareness of the possible occurrence of microbial adaptation to antimicrobial nanomaterials, which may be implicated in cross-adaptation to harsh environments and eventually the prevalence of virulence.
Collapse
Affiliation(s)
- Qiurong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China
| |
Collapse
|
14
|
Nguyen PL, van Baalen M. On the difficult evolutionary transition from the free-living lifestyle to obligate symbiosis. PLoS One 2020; 15:e0235811. [PMID: 32730262 PMCID: PMC7392539 DOI: 10.1371/journal.pone.0235811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Obligate symbiosis evolved from free-living individuals most likely via the intermediate stage of facultative symbiosis. However, why should facultative symbionts, who can live independently but also benefit from their partners if these are available, give up this best of both worlds? Using the adaptive dynamics approach, we analyse a simple model, focusing on one partner of the symbiosis, to gain more insight into the selective forces that make individuals forgo the ability to reproduce in the free-living state. Our results suggest that, similar to the parasitism-mutualism continuum, the free-living way of life and obligate symbiosis are two extremes of a continuum of the ability to reproduce independently of a partner. More importantly, facultative symbiosis should be the rule as for many parameter combinations completely giving up independent reproduction or adopting a pure free-living strategy is not so easy. We also show that if host encounter comes at a cost, individuals that put more effort into increasing the chances to meet with their partners are more likely to give up the ability to reproduce independently. Finally, our model does not specify the ecological interactions between hosts and symbionts but we discuss briefly how the ecological nature of an interaction can influence the transition from facultative to obligate symbiosis.
Collapse
Affiliation(s)
| | - Minus van Baalen
- Institut de Biologie de l’École Normale Supérieur, Paris, France
| |
Collapse
|
15
|
Rahnamoun A, Kim K, Pedersen JA, Hernandez R. Ionic Environment Affects Bacterial Lipopolysaccharide Packing and Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3149-3158. [PMID: 32069057 DOI: 10.1021/acs.langmuir.9b03162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of lipopolysaccharides (LPS) with metal cations strongly affects the stability and function of the Gram-negative bacterial outer membrane. The sensitivity of deep rough (Re) LPS packing and function to the ionic environment, as affected by cation valency and ionic radius, has been determined using molecular dynamics simulations and Langmuir balance experiments. The degree of LPS aggregation within the LPS models in the presence of different cations is assessed by measuring the effective mean molecular area (Âm) of each LPS molecule projected onto the interfacial plane at the end of the equilibration. These results are compared to the LPS mean molecular area from experimental measurements in which the LPS monolayers are assembled at the air-water interface using a Langmuir film balance. We found that packing of the LPS arrays is sensitive to the ionic radius and ion valency of the cations present in solution during LPS array packing. Using enhanced sampling of the free energy for the intercalation of oligo(allylamine HCl) (OAH) into deep rough Salmonella enterica LPS bilayers, we obtained the affinity of the core section of LPS to OAH as a function of the nature of the metal cations present in solution. We found that packing of the solvated LPS bilayer models is sensitive to ionic radius and ion valency of the neutralizing cations. This further suggests that ion bridging and steric barriers rather than charge shielding are important factors in mitigating ligand intercalation under conditions with low ionic concentrations.
Collapse
Affiliation(s)
- Ali Rahnamoun
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kyoungtea Kim
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel A Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Departments of Soil Science, Chemistry, Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Igiehon NO, Babalola OO, Aremu BR. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol 2019; 19:159. [PMID: 31296165 PMCID: PMC6624879 DOI: 10.1186/s12866-019-1536-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of soil microorganisms in plant growth, nutrient utilization, drought tolerance as well as biocontrol activity cannot be over-emphasized, especially in this era when food crisis is a global challenge. This research was therefore designed to gain genomic insights into plant growth promoting (PGP) Rhizobium species capable of enhancing soybean (Glycine max L.) seeds germination under drought condition. RESULTS Rhizobium sp. strain R1, Rhizobium tropici strain R2, Rhizobium cellulosilyticum strain R3, Rhizobium taibaishanense strain R4 and Ensifer meliloti strain R5 were found to possess the entire PGP traits tested. Specifically, these rhizobial strains were able to solubilize phosphate, produce exopolysaccharide (EPS), 1-aminocyclopropane-1-carboxylate (ACC), siderophore and indole-acetic-acid (IAA). These strains also survived and grew at a temperature of 45 °C and in an acidic condition with a pH 4. Consequently, all the Rhizobium strains enhanced the germination of soybean seeds (PAN 1532 R) under drought condition imposed by 4% poly-ethylene glycol (PEG); nevertheless, Rhizobium sp. strain R1 and R. cellulosilyticum strain R3 inoculations were able to improve seeds germination more than R2, R4 and R5 strains. Thus, genomic insights into Rhizobium sp. strain R1 and R. cellulosilyticum strain R3 revealed the presence of some genes with their respective proteins involved in symbiotic establishment, nitrogen fixation, drought tolerance and plant growth promotion. In particular, exoX, htrA, Nif, nodA, eptA, IAA and siderophore-producing genes were found in the two rhizobial strains. CONCLUSIONS Therefore, the availability of the whole genome sequences of R1 and R3 strains may further be exploited to comprehend the interaction of drought tolerant rhizobia with soybean and other legumes and the PGP ability of these rhizobial strains can also be harnessed for biotechnological application in the field especially in semiarid and arid regions of the globe.
Collapse
Affiliation(s)
- Nicholas O Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa
| | - Olubukola O Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa.
| | - Bukola R Aremu
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa
| |
Collapse
|
17
|
Gill A, Tamber S, Yang X. Relative response of populations of Escherichia coli and Salmonella enterica to exposure to thermal, alkaline and acidic treatments. Int J Food Microbiol 2019; 293:94-101. [PMID: 30677561 DOI: 10.1016/j.ijfoodmicro.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
We evaluated the relative response of generic Escherichia coli (GEC), Shiga toxin-producing E. coli (STEC) and Salmonella enterica to heat, alkaline or acid treatments. GEC included strains from carcasses (n = 24) and trim (n = 25) at a small beef plant where no decontamination interventions are used and at a large plant where multiple decontamination interventions are used (carcass n = 25 and trim n = 25). STEC strains belonging to nine serogroups, included isolates from cattle (n = 53), beef (n = 16) and humans (n = 44). S. enterica strains belonging to 29 serotypes, included isolates from humans (n = 30), poultry (n = 26), pork (n = 10) and beef (n = 33). Strains were grown in Brain Heart Infusion (BHI) broth and subjected to the following treatments: 60 °C for 2 min, 5% lactic acid (pH 2.9) for 1 h at 4 °C, or NaOH (pH 11.0) for 2 h at 4 °C. Median log reductions of the GEC populations after heat, alkaline and acid treatment ranged from 2.3 to 3.8, 0.7 to 2.2 and 0.7 to 1.2 log CFU/mL, respectively. No statistically significant difference in reductions was observed between carcass GEC or trim GEC from the large or small plant, except for a greater reduction in trim GEC from the small plant. Median reductions of the STEC populations ranged from 3.3 to 3.5, 0.0 to 0.6, and 0.3 to 0.5 log CFU/mL after heat, alkaline and acid treatment, respectively. The median reductions were not dependent upon isolation source, except between STEC cattle and human isolates after alkaline treatment, where the reduction of the former was higher by 0.6 log unit. For the Salmonella populations, median log reductions ranged from 3.5 to 4.0, 1.7 to 2.4 and 3.7 to 4.1 log CFU/mL after heat, alkaline and acid treatment, respectively. The reductions were not isolation source related. The median log reductions were in the order GEC < STEC < Salmonella after heat treatment and STEC < GEC < Salmonella after alkaline or acid treatment. Overall, the relative response of GEC, STEC and Salmonella in the model system suggests that exposure to heat or pH-based decontamination interventions in meat plants is not associated with increased resistance among E. coli strains in these environments, and total E. coli counts on beef can be indicative of treatment efficacy for the control of Salmonella by heat, lactic acid and alkaline treatment and for the control of STEC subjected to heat.
Collapse
Affiliation(s)
- Alexander Gill
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, P.L. 2204E, Ottawa, ON K1A-0K9, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, P.L. 2204E, Ottawa, ON K1A-0K9, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada.
| |
Collapse
|
18
|
Guerrero-Castro J, Lozano L, Sohlenkamp C. Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899. Front Microbiol 2018; 9:846. [PMID: 29760688 PMCID: PMC5936775 DOI: 10.3389/fmicb.2018.00846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/12/2018] [Indexed: 11/27/2022] Open
Abstract
Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Collapse
Affiliation(s)
- Julio Guerrero-Castro
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
19
|
Chourabi K, Campoy S, Rodriguez JA, Kloula S, Landoulsi A, Chatti A. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects. Curr Microbiol 2017; 74:1261-1269. [PMID: 28744569 DOI: 10.1007/s00284-017-1311-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022]
Abstract
Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.
Collapse
Affiliation(s)
- Kalthoum Chourabi
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technology Centre, Technopole of Borj-Cédria, BP 273, Soliman, 8020, Tunisia.
| | - Susana Campoy
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08290, Barcelona, Spain
| | - Jesus A Rodriguez
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08290, Barcelona, Spain
| | - Salma Kloula
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technology Centre, Technopole of Borj-Cédria, BP 273, Soliman, 8020, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, Zarzouna, 7021, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technology Centre, Technopole of Borj-Cédria, BP 273, Soliman, 8020, Tunisia
| |
Collapse
|
20
|
Paredes AJ, Naranjo-Palma T, Alfaro-Valdés HM, Barriga A, Babul J, Wilson CAM. New visible and selective DNA staining method in gels with tetrazolium salts. Anal Biochem 2017; 517:31-35. [PMID: 27840054 DOI: 10.1016/j.ab.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
Abstract
DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry.
Collapse
Affiliation(s)
- Aaron J Paredes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Tatiana Naranjo-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Hilda M Alfaro-Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
21
|
Xu D, Zhang W, Zhang B, Liao C, Shao Y. Characterization of a biofilm-forming Shigella flexneri phenotype due to deficiency in Hep biosynthesis. PeerJ 2016; 4:e2178. [PMID: 27478696 PMCID: PMC4950558 DOI: 10.7717/peerj.2178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/05/2016] [Indexed: 11/20/2022] Open
Abstract
Deficiency in biosynthesis of inner core of lipopolysaccharide (LPS) rendered a characteristic biofilm-forming phenotype in E. coli. The pathological implications of this new phenotype in Shigella flexneri, a highly contagious enteric Gram-negative bacteria that is closely related to E. coli, were investigated in this study. The ΔrfaC (also referred as waaC) mutant, with incomplete inner core of LPS due to deficiency in Hep biosynthesis, was characteristic of strong biofilm formation ability and exhibited much more pronounced adhesiveness and invasiveness to human epithelial cells than the parental strain and other LPS mutants, which also showed distinct pattern of F-actin recruitment. Failure to cause keratoconjunctivitis and colonize in the intestine in guinea pigs revealed that the fitness gain on host adhesion resulted from biofilm formation is not sufficient to offset the loss of fitness on survivability caused by LPS deletion. Our study suggests a clear positive relationship between increased surface hydrophobicity and adhesiveness of Shigella flexneri, which should be put into consideration of virulence of Shigella, especially when therapeutic strategy targeting the core oligosaccharide (OS) is considered an alternative to deal with bacterial antibiotics-resistance.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chongbing Liao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
22
|
Sigida EN, Fedonenko YP, Shashkov AS, Arbatsky NP, Zdorovenko EL, Konnova SA, Ignatov VV, Knirel YA. Elucidation of a masked repeating structure of the O-specific polysaccharide of the halotolerant soil bacteria Azospirillum halopraeferens Au4. Beilstein J Org Chem 2016; 12:636-42. [PMID: 27340454 PMCID: PMC4902059 DOI: 10.3762/bjoc.12.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
An O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide isolated by the phenol-water extraction from the halotolerant soil bacteria Azospirillum halopraeferens type strain Au4. The polysaccharide was studied by sugar and methylation analyses, selective cleavages by Smith degradation and solvolysis with trifluoroacetic acid, one- and two-dimensional (1)H and (13)C NMR spectroscopy. The following masked repeating structure of the O-specific polysaccharide was established: →3)-α-L-Rhap2Me-(1→3)-[β-D-Glcp-(1→4)]-α-D-Fucp-(1→2)-β-D-Xylp-(1→, where non-stoichiometric substituents, an O-methyl group (~45%) and a side-chain glucose residue (~65%), are shown in italics.
Collapse
Affiliation(s)
- Elena N Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Yuliya P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Evelina L Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Svetlana A Konnova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
- Chernyshevsky Saratov State University, Ulitsa Astrakhanskaya 83, Saratov 410012, Russia
| | - Vladimir V Ignatov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| |
Collapse
|
23
|
Mann E, Ovchinnikova OG, King JD, Whitfield C. Bacteriophage-mediated Glucosylation Can Modify Lipopolysaccharide O-Antigens Synthesized by an ATP-binding Cassette (ABC) Transporter-dependent Assembly Mechanism. J Biol Chem 2015; 290:25561-70. [PMID: 26330553 DOI: 10.1074/jbc.m115.660803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Lysogenic bacteriophages may encode enzymes that modify the structures of lipopolysaccharide O-antigen glycans, altering the structure of the bacteriophage receptor and resulting in serotype conversion. This can enhance virulence and has implications for antigenic diversity and vaccine development. Side chain glucosylation is a common modification strategy found in a number of bacterial species. To date, glucosylation has only been observed in O-antigens synthesized by Wzy-dependent pathways, one of the two most prevalent O-antigen synthesis systems. Here we exploited a heterologous system to study the glucosylation potential of a model O-antigen produced in an ATP-binding cassette (ABC) transporter-dependent system. Although O-antigen production is cryptic in Escherichia coli K-12, because of a mutation in the synthesis genes, it possesses a prophage glucosylation cluster, which modifies the GlcNAc residue in an α-l-Rha-(1→3)-d-GlcNAc motif found in the original O16 antigen. Raoultella terrigena ATCC 33257 produces an O-antigen possessing the same disaccharide motif, but its assembly uses an ABC transporter-dependent system. E. coli harboring the R. terrigena O-antigen biosynthesis genes produced an O-antigen displaying reduced reactivity toward antisera raised against the native R. terrigena repeat structure, indicative of an altered chemical structure. Structural determination using NMR revealed the addition of glucose side chains to the repeat units. O-antigen modification was dependent on a functional ABC transporter, consistent with modification in the periplasm, and was eliminated by deletion of the glucosylation genes from the E. coli chromosome, restoring native level antisera sensitivity and structure. There are therefore no intrinsic mechanistic barriers for bacteriophage-mediated O-antigen glucosylation in ABC transporter-dependent pathways.
Collapse
Affiliation(s)
- Evan Mann
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olga G Ovchinnikova
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jerry D King
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
Matsuhashi A, Tahara H, Ito Y, Uchiyama J, Ogawa S, Ohta H. Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2015; 125:267-277. [PMID: 25822232 DOI: 10.1007/s11120-015-0129-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Living organisms must defend themselves against various environmental stresses. Extracellular polysaccharide-producing cells exhibit enhanced tolerance toward adverse environmental stress. In Synechocystis sp. PCC6803 (Synechocystis), lipopolysaccharide (LPS) may play a role in this protection. To examine the relationship between stress tolerance of Synechocystis and LPS, we focused on Slr2019 because Slr2019 is homologous to MsbA in Escherichia coli, which is related to LPS synthesis. First, to obtain a defective mutant of LPS, we constructed the slr2019 insertion mutant (slr2019) strain. Sodium deoxycholate-polyacrylamide gel electrophoresis indicated that slr2019 strain did not synthesize normal LPS. Second, to clarify the participation of LPS in acid tolerance, wild type (WT) and slr2019 strain were grown under acid stress; slr2019 strain growth was significantly weaker than WT growth. Third, to examine influences on stress tolerance, slr2019 strain was grown under various stresses. Under salinity and temperature stress, slr2019 strain grew significantly slower than WT. To confirm cell morphology, cell shape and envelope of slr2019 strain were observed by transmission electron microscopy; slr2019 cells contained more electron-transparent bodies than WT cells. Finally, to confirm whether electron-transparent bodies are poly-3-hydroxybutyrate (PHB), slr2019 strain was stained with Nile Blue A, a PHB detector, and observed by fluorescence microscopy. The PHB granule content ratio of WT and slr2019 strain grown at BG-11 pH 8.0 was each 7.18 and 8.41 %. At pH 6.0, the PHB granule content ratio of WT and slr2019 strain was 2.99 and 2.60 %. However, the PHB granule content ratio of WT and slr2019 strain grown at BG-11N-reduced was 10.82 and 0.56 %. Because slr2019 strain significantly decreased PHB under BG-11N-reduced compared with WT, LPS synthesis may be related to PHB under particular conditions. These results indicated that Slr2019 is necessary for Synechocystis survival in various stresses.
Collapse
Affiliation(s)
- Ayumi Matsuhashi
- Graduate School of Mathematics and Science Education, Tokyo University of Science, Shinjuku-ku, Tokyo, 162-8601, Japan,
| | | | | | | | | | | |
Collapse
|
25
|
Díaz L, Hoare A, Soto C, Bugueño I, Silva N, Dutzan N, Venegas D, Salinas D, Pérez-Donoso JM, Gamonal J, Bravo D. Changes in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe 2015; 33:25-32. [PMID: 25638398 DOI: 10.1016/j.anaerobe.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 01/19/2023]
Abstract
Virulence factors on the surface of Porphyromonas gingivalis constitute the first line of interaction with host cells and contribute to immune modulation and periodontitis progression. In order to characterize surface virulence factors present on P. gingivalis, we obtained clinical isolates from healthy and periodontitis subjects and compared them with reference strains. Colony morphology, aggregation in liquid medium, surface charge, membrane permeability to bactericidal compounds, novobiocin and polymyxin B resistance, capsule presence and lipopolysaccharide (LPS) profiles were evaluated. By comparing isolates from healthy and periodontitis subjects, differences in colony morphology and aggregation in liquid culture were found; the latter being similar to two reference strains. These differences were not a consequence of variations in bacterial surface charge. Furthermore, isolates also presented differences in polymyxin B and novobiocin resistance; isolates from healthy subjects were susceptible to polymyxin B and resistant to novobiocin and, in contrast, isolates from periodontitis subjects were resistant to polymyxin B and susceptible to novobiocin. These changes in antimicrobial resistance levels correlate with variations in LPS profiles, since -unlike periodontitis isolates-isolates from healthy samples synthesize LPS molecules lacking both O-antigen moieties and anionic polysaccharide. Additionally, this phenotype correlated with the absence of O-antigen ligase activity. Altogether, our results reveal novel variations on surface components of P. gingivalis isolates obtained from healthy and periodontitis subjects that could be associated with differences in bacterial virulence and periodontitis progression.
Collapse
Affiliation(s)
- Leonor Díaz
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nora Silva
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nicolás Dutzan
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Darna Venegas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniela Salinas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gamonal
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Denisse Bravo
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Shigella spp. are important etiologic agents of diarrhea worldwide. This review summarizes the recent findings on the epidemiology, diagnosis, virulence genes, and pathobiology of Shigella infection. RECENT FINDINGS Shigella flexneri and Shigella sonnei have been identified as the main serogroups circulating in developing and developed countries, respectively. However, a shift in the dominant species from S. flexneri to S. sonnei has been observed in countries that have experienced recent improvements in socioeconomic conditions. Despite the increasing usage of molecular methods in the diagnosis and virulence characterization of Shigella strains, researchers have been unsuccessful in finding a specific target gene for this bacillus. New research has demonstrated the role of proteins whose expressions are temperature-regulated, as well as genes involved in the processes of adhesion, invasion, dissemination, and inflammation, aiding in the clarification of the complex pathobiology of shigellosis. SUMMARY Knowledge about the epidemiologic profile of circulating serogroups of Shigella and an understanding of its pathobiology as well as of the virulence genes is important for the development of preventive measures and interventions to reduce the worldwide spread of shigellosis.
Collapse
|
27
|
Niu XY, Niu C, Feng EL, Liu XK, Zhu L, Zhang M. Preparation of samples for electron microscopy by high osmotic pressure method. Shijie Huaren Xiaohua Zazhi 2013; 21:3994-3998. [DOI: 10.11569/wcjd.v21.i35.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare different methods for preparation of samples for electron microscopic observation of Shigella flexneri surface structures.
METHODS: Three Shigella flexneri strains were cultured and used to prepare samples for electron microscopy. Samples were prepared in different osmotic environments. The obtained electron micrographs were compared to obtain the optimal sample preparation conditions.
RESULTS: Hyperosmotic environment in sample preparation often makes cytoplasmic shrinkage occur, which is beneficial for cell surface ultrastructure observation. By comparing the electron microscopic pictures of the three strains of Shigella flexneri, we found that the abundance of bacterial lipopolysaccharides (LPS) was less at 37 ℃ than that at 30 ℃.
CONCLUSION: High osmotic pressure sample preparation is better than common methods in observing bacterial cell surface ultrastructures. Using this sample preparation method, electron microscopy analysis revealed that the relative density of LPS of Shigella flexneri varied among different culture temperatures.
Collapse
|
28
|
Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci U S A 2013; 110:E4345-54. [PMID: 24167293 DOI: 10.1073/pnas.1303641110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
LPS is a potent bacterial effector triggering the activation of the innate immune system following binding with the complex CD14, myeloid differentiation protein 2, and Toll-like receptor 4. The LPS of the enteropathogen Shigella flexneri is a hexa-acylated isoform possessing an optimal inflammatory activity. Symptoms of shigellosis are produced by severe inflammation caused by the invasion process of Shigella in colonic and rectal mucosa. Here we addressed the question of the role played by the Shigella LPS in eliciting a dysregulated inflammatory response of the host. We unveil that (i) Shigella is able to modify the LPS composition, e.g., the lipid A and core domains, during proliferation within epithelial cells; (ii) the LPS of intracellular bacteria (iLPS) and that of bacteria grown in laboratory medium differ in the number of acyl chains in lipid A, with iLPS being the hypoacylated; (iii) the immunopotential of iLPS is dramatically lower than that of bacteria grown in laboratory medium; (iv) both LPS forms mainly signal through the Toll-like receptor 4/myeloid differentiation primary response gene 88 pathway; (v) iLPS down-regulates the inflammasome-mediated release of IL-1β in Shigella-infected macrophages; and (vi) iLPS exhibits a reduced capacity to prime polymorfonuclear cells for an oxidative burst. We propose a working model whereby the two forms of LPS might govern different steps of the invasive process of Shigella. In the first phases, the bacteria, decorated with hypoacylated LPS, are able to lower the immune system surveillance, whereas, in the late phases, shigellae harboring immunopotent LPS are fully recognized by the immune system, which can then successfully resolve the infection.
Collapse
|
29
|
Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2013; 57:4831-40. [PMID: 23877686 DOI: 10.1128/aac.00865-13] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.
Collapse
|
30
|
Chopra S, Ramkissoon K, Anderson DC. A systematic quantitative proteomic examination of multidrug resistance in Acinetobacter baumannii. J Proteomics 2013; 84:17-39. [PMID: 23542354 DOI: 10.1016/j.jprot.2013.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 03/17/2013] [Indexed: 12/29/2022]
Abstract
UNLABELLED Multidrug-resistant Acinetobacter baumannii strains have been examined at the DNA sequence level, but seldom using large-scale quantitative proteomics. We have compared the proteome of the multidrug resistant strain BAA-1605, with the proteome of the drug-sensitive strain ATCC 17978, using iTRAQ labeling and online 2D LC/MS/MS for peptide/protein identification. Of 1484 proteins present in at least 2 of 4 independent experiments, 114 are 2-fold to 66-fold more abundant in BAA-1605, and 99 are 2-fold to 50-fold less abundant. Proteins with 2-fold or greater abundance in the multidrug resistant strain include drug-, antibiotic-, and heavy metal-resistance proteins, stress-related proteins, porins, membrane transporters, proteins important for acquisition of foreign DNA, biofilm-related proteins, cell-wall and exopolysaccharide-related proteins, lipoproteins, metabolic proteins, and many with no annotated function. The porin CarO, inactivated in carbapenem-resistant strains, is 2.3-fold more abundant in BAA-1605. Likewise, the porin OmpW, less abundant in carbapenem- and colistin-resistant A. baumannii strains, is 3-fold more abundant in BAA-1605. Nine proteins, all present in the drug-sensitive strain but from 2.2-fold to 16-fold more abundant in the MDR strain, can potentially account for the observed resistance of BAA-1605 to 18 antibiotics. BIOLOGICAL SIGNIFICANCE Multidrug resistant (MDR) strains of the pathogen Acinetobacter baumannii are a significant cause of hospital-acquired infections, are associated with increased mortality and length of stay, and may be a major factor underlying the spread of this pathogen, which is difficult to eradicate from clinical settings. To obtain a better understanding of antimicrobial resistance mechanisms in MDR A. baumannii, we report the first large scale 2D LC/MS/MS-based quantitative proteomics comparison of a drug-sensitive strain and an MDR strain of this pathogen. Ca. 20% of the expressed proteome changes 2-fold or more between the compared strains, including 42 proteins with literature or informatics annotations related to resistance mechanisms, modification of xenobiotics, or drug transport. Other categories of proteins differing 2-fold or more between strains include stress-response related proteins, porins, OMPs, transporters and secretion-related proteins, cell wall- and expolysaccharide-related proteins, lipoproteins, and DNA- and plasmid-related proteins. While the compared strains also differ in other aspects than multi-drug resistance, the observed differences, combined with protein functional annotation, suggest that complex protein expression changes may accompany the MDR phenotype. Expression changes of nine proteins in the MDR strain can potentially account for the observed resistance to 18 antibiotics.
Collapse
Affiliation(s)
- Sidharth Chopra
- Center for Infectious Disease and Biodefense Research, SRI International, 333 Ravenswood, Avenue, Menlo Park, CA 94025, USA
| | | | | |
Collapse
|
31
|
Niu C, Shang N, Liao X, Feng E, Liu X, Wang D, Wang J, Huang P, Hua Y, Zhu L, Wang H. Analysis of Soluble protein complexes in Shigella flexneri reveals the influence of temperature on the amount of lipopolysaccharide. Mol Cell Proteomics 2013; 12:1250-8. [PMID: 23378524 DOI: 10.1074/mcp.m112.025270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shigella flexneri, which is closely related to Escherichia coli, is the most common cause of the endemic form of shigellosis. In this study, 53 homomultimeric protein complexes and nine heteromultimeric protein complexes from S. flexneri 2a strain 2457T were separated and identified. Among these, three potential homomultimeric protein complexes had not been previously described. One complex, thought to be composed of 12 PhoN1 subunits, is a periplasmic protein with an unknown physiological role encoded on the virulence plasmid of S. flexneri. The abundance of the protein complexes was compared following growth at 37 or 30°C, and the abundance of three protein complexes (PyrB-PyrI, GlmS, and MglB) related to the synthesis of lipopolysaccharides (LPS) appeared to be temperature-dependent. Many studies have shown that LPS is essential to the virulence of S. flexneri. Here, we report the influence of temperature on the amount of LPS.
Collapse
Affiliation(s)
- Chang Niu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735. [PMID: 23270491 PMCID: PMC3557214 DOI: 10.1186/1471-2164-13-735] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/15/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pâmela Menna
- Embrapa Soja, C. P. 231, Londrina, Paraná, 86001-970, Brazil
| | - Luiz Gonzaga P Almeida
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Manuel Megías
- Universidad de Sevilla, Apdo Postal 874, Sevilla, 41080, Spain
| | | | | |
Collapse
|
33
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|