1
|
Mwima R, Hui TYJ, Kayondo JK, Burt A. The population genetics of partial diapause, with applications to the aestivating malaria mosquito Anopheles coluzzii. Mol Ecol Resour 2024; 24:e13949. [PMID: 38511493 DOI: 10.1111/1755-0998.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Diapause, a form of dormancy to delay or halt the reproductive development during unfavourable seasons, has evolved in many insect species. One example is aestivation, an adult-stage diapause enhancing malaria vectors' survival during the dry season (DS) and their re-establishment in the next rainy season (RS). This work develops a novel genetic approach to estimate the number or proportion of individuals undergoing diapause, as well as the breeding sizes of the two seasons, using signals from temporal allele frequency dynamics. Our modelling shows the magnitude of drift is dampened at early RS when previously aestivating individuals reappear. Aestivation severely biases the temporal effective population size (N e $$ {N}_e $$ ), leading to overestimation of the DS breeding size by1 / 1 - α 2 $$ 1/{\left(1-\alpha \right)}^2 $$ across 1 year, whereα $$ \alpha $$ is the aestivating proportion. We find sampling breeding individuals in three consecutive seasons starting from an RS is sufficient for parameter estimation, and perform extensive simulations to verify our derivations. This method does not require sampling individuals in the dormant state, the biggest challenge in most studies. We illustrate the method by applying it to a published data set for Anopheles coluzzii mosquitoes from Thierola, Mali. Our method and the expected evolutionary implications are applicable to any species in which a fraction of the population diapauses for more than one generation, and are difficult or impossible to sample during that stage.
Collapse
Affiliation(s)
- Rita Mwima
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
2
|
Manzano-Alvarez J, Terradas G, Holmes CJ, Benoit JB, Rasgon JL. Dehydration stress and Mayaro virus vector competence in Aedes aegypti. J Virol 2023; 97:e0069523. [PMID: 38051046 PMCID: PMC10734514 DOI: 10.1128/jvi.00695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.
Collapse
Affiliation(s)
- Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| | - Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Mwima R, Hui TYJ, Nanteza A, Burt A, Kayondo JK. Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: a narrative review. Malar J 2023; 22:336. [PMID: 37936194 PMCID: PMC10631165 DOI: 10.1186/s12936-023-04775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.
Collapse
Affiliation(s)
- Rita Mwima
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Tin-Yu J Hui
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ann Nanteza
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Austin Burt
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda.
| |
Collapse
|
4
|
Kuang J, Michel K, Scoglio C. GeCoNet-Tool: a software package for gene co-expression network construction and analysis. BMC Bioinformatics 2023; 24:281. [PMID: 37434115 DOI: 10.1186/s12859-023-05382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Network analysis is a powerful tool for studying gene regulation and identifying biological processes associated with gene function. However, constructing gene co-expression networks can be a challenging task, particularly when dealing with a large number of missing values. RESULTS We introduce GeCoNet-Tool, an integrated gene co-expression network construction and analysis tool. The tool comprises two main parts: network construction and network analysis. In the network construction part, GeCoNet-Tool offers users various options for processing gene co-expression data derived from diverse technologies. The output of the tool is an edge list with the option of weights associated with each link. In network analysis part, the user can produce a table that includes several network properties such as communities, cores, and centrality measures. With GeCoNet-Tool, users can explore and gain insights into the complex interactions between genes.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA.
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
5
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
6
|
Kuang J, Scoglio C, Michel K. Feature learning and network structure from noisy node activity data. Phys Rev E 2022; 106:064301. [PMID: 36671154 PMCID: PMC9869472 DOI: 10.1103/physreve.106.064301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
In the studies of network structures, much attention has been devoted to developing approaches to reconstruct networks and predict missing links when edge-related information is given. However, such approaches are not applicable when we are only given noisy node activity data with missing values. This work presents an unsupervised learning framework to learn node vectors and construct networks from such node activity data. First, we design a scheme to generate random node sequences from node context sets, which are generated from node activity data. Then, a three-layer neural network is adopted training the node sequences to obtain node vectors, which allow us to construct networks and capture nodes with synergistic roles. Furthermore, we present an entropy-based approach to select the most meaningful neighbors for each node in the resulting network. Finally, the effectiveness of the method is validated through both synthetic and real data.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering
| | | | | |
Collapse
|
7
|
Kuang J, Buchon N, Michel K, Scoglio C. A global Anopheles gambiae gene co-expression network constructed from hundreds of experimental conditions with missing values. BMC Bioinformatics 2022; 23:170. [PMID: 35534830 PMCID: PMC9082846 DOI: 10.1186/s12859-022-04697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
8
|
Adeogun A, Popoola K, Brooke B, Olakiigbe A, Awolola S. Polymorphic inversion 2La frequencies associated with ecotypes in populations of Anopheles coluzzii from Southwest Nigeria. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Ajayi OM, Eilerts DF, Bailey ST, Vinauger C, Benoit JB. Do Mosquitoes Sleep? Trends Parasitol 2020; 36:888-897. [PMID: 32952061 PMCID: PMC8094063 DOI: 10.1016/j.pt.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Sleep is a phenomenon conserved across the animal kingdom, where studies on Drosophila melanogaster have revealed that sleep phenotypes and molecular underpinnings are similar to those in mammals. However, little is known about sleep in blood-feeding arthropods, which have a critical role in public health as disease vectors. Specifically, sleep studies in mosquitoes are lacking despite considerable focus on how circadian processes, which have a central role in regulating sleep/wake cycles, impact activity, feeding, and immunity. Here, we review observations which suggest that sleep-like states likely occur in mosquitoes and discuss the potential role of sleep in relation to mosquito biology and their ability to function as disease vectors.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @mail.uc.edu
| | - Diane F Eilerts
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @uc.edu
| |
Collapse
|
10
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
11
|
Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep 2018; 8:6804. [PMID: 29717151 PMCID: PMC5931509 DOI: 10.1038/s41598-018-24893-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 11/27/2022] Open
Abstract
Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.
Collapse
|
12
|
Rosendale AJ, Romick-Rosendale LE, Watanabe M, Dunlevy ME, Benoit JB. Mechanistic underpinnings of dehydration stress in the American dog tick revealed through RNA-Seq and metabolomics. ACTA ACUST UNITED AC 2017; 219:1808-19. [PMID: 27307540 DOI: 10.1242/jeb.137315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
Ticks are obligate blood feeders but spend the majority of their lifetime off-host where they must contend with a multitude of environmental stresses. Survival under desiccating conditions is a determinant for habitats where ticks can become established, and water-balance characteristics of ticks have been extensively studied. However, little is known about the underlying aspects associated with dehydration stress in ticks. In this study, we examined the response of male American dog ticks, Dermacentor variabilis, to dehydration using a combined transcriptomics and metabolomics approach. During dehydration, 497 genes were differentially expressed, including an up-regulation of stress-response and protein-catabolism genes and concurrent down-regulation of several energetically expensive biological processes. Accumulation of several metabolites, including specific amino acids, glycerol and gamma aminobutyric acid (GABA), and transcript shifts in the associated pathways for generating these metabolites indicated congruence between changes in the metabolome and gene expression. Ticks treated with exogenous glycerol and GABA demonstrated altered water-balance characteristics; specifically, increased water absorption at high relative humidity. Finally, we observed changes in locomotor activity in response to dehydration, but this change was not influenced by the accumulation of GABA. Overall, the responses to dehydration by these ticks were similar to those observed in other dehydration-tolerant arthropods, but several molecular and behavioral responses are distinct from those associated with other taxa.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Miki Watanabe
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan E Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
13
|
Burger NFV, Venter E, Botha AM. Profiling Diuraphis noxia (Hemiptera: Aphididae) Transcript Expression of the Biotypes SA1 and SAM Feeding on Various Triticum aestivum Varieties. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:692-701. [PMID: 28334389 DOI: 10.1093/jee/tow313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The intimate relationship between an aphid and its host is mediated by the composition of the secreted saliva. In the present study, aphid heads were sampled and transcript profiling conducted after aphids were fed on their preference host and transferred to a variety of preference and nonpreference hosts. It was found that the virulent Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) biotype SAM was able to selectively up-regulate more transcripts when confronted with feeding on a variety of hosts, than was the case with the less virulent D. noxia biotype SA1, suggesting increased genomic regulation when coping with a stressful environment. Collectively, the observed transcriptomic changes are supported by previous findings that host changes induce significant changes in the proteome of phytophagous hemipterans, unlike in many other entomophagous generalist species. The current data suggest that highly specialized hemipterans may be able to counter plant defenses with inducible salivary transcripts with resulting protein biosynthesis, as demonstrated here.
Collapse
Affiliation(s)
- N F V Burger
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland 7601, South Africa ( ; )
- Genetics Department, University of Pretoria, Hillcrest, Pretoria, South Africa
| | - E Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - A-M Botha
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland 7601, South Africa (; )
| |
Collapse
|
14
|
Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors 2014; 7:480. [PMID: 25318645 PMCID: PMC4201709 DOI: 10.1186/s13071-014-0480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis and characterise the underlying mechanisms. While insecticide resistance is rising dramatically in Africa, deciphering how agriculture affects resistance is crucial for improving resistance management strategies. In this context, the multigenerational effect of agricultural pollutants on the selection of insecticide resistance was examined in Anopheles gambiae. Methods An urban Tanzanian An. gambiae population displaying a low resistance level was used as a parental strain for a selection experiment across 20 generations. At each generation larvae were selected with a mixture containing pesticides and herbicides classically used in agriculture in Africa. The resistance levels of adults to deltamethrin, DDT and bendiocarb were compared between the selected and non-selected strains across the selection process together with the frequency of kdr mutations. A microarray approach was used for pinpointing transcription level variations selected by the agricultural pesticide mixture at the adult stage. Results A gradual increase of adult resistance to all insecticides was observed across the selection process. The frequency of the L1014S kdr mutation rose from 1.6% to 12.5% after 20 generations of selection. Microarray analysis identified 90 transcripts over-transcribed in the selected strain as compared to the parental and the non-selected strains. Genes encoding cuticle proteins, detoxification enzymes, proteins linked to neurotransmitter activity and transcription regulators were mainly affected. RT-qPCR transcription profiling of candidate genes across multiple generations supported their link with insecticide resistance. Conclusions This study confirms the potency of agriculture in selecting for insecticide resistance in malaria vectors. We demonstrated that the recurrent exposure of larvae to agricultural pollutants can select for resistance mechanisms to vector control insecticides at the adult stage. Our data suggest that in addition to selected target-site resistance mutations, agricultural pollutants may also favor cuticle, metabolic and synaptic transmission-based resistance mechanisms. These results emphasize the need for integrated resistance management strategies taking into account agriculture activities. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0480-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, 38041, Grenoble cedex 09, France. .,Université Grenoble-Alpes, Grenoble, France. .,National Institute of Medical Research of Tanzania. Amani Medical Research Centre, P. O. Box 81, Muheza, Tanga, Tanzania.
| | - Rodolphe Poupardin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke place, L35QA, Liverpool, UK.
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, 38041, Grenoble cedex 09, France. .,Université Grenoble-Alpes, Grenoble, France.
| | - Idir Akhouayri
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, 38041, Grenoble cedex 09, France. .,Université Grenoble-Alpes, Grenoble, France.
| | - Franklin Mosha
- KCM College of Tumaini University, P. O. Box. 2240, Moshi, Tanzania.
| | - Stephen Magesa
- National Institute of Medical Research of Tanzania. Amani Medical Research Centre, P. O. Box 81, Muheza, Tanga, Tanzania. .,RTI International-Tanzania, P.O.Box 369, Dar es Salaam, Tanzania.
| | - William Kisinza
- National Institute of Medical Research of Tanzania. Amani Medical Research Centre, P. O. Box 81, Muheza, Tanga, Tanzania.
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, 38041, Grenoble cedex 09, France. .,Université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
15
|
Ecophysiology of Anopheles gambiae s.l.: persistence in the Sahel. INFECTION GENETICS AND EVOLUTION 2014; 28:648-61. [PMID: 24933461 DOI: 10.1016/j.meegid.2014.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy.
Collapse
|
16
|
Ayala D, Ullastres A, González J. Adaptation through chromosomal inversions in Anopheles. Front Genet 2014; 5:129. [PMID: 24904633 PMCID: PMC4033225 DOI: 10.3389/fgene.2014.00129] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/22/2014] [Indexed: 12/29/2022] Open
Abstract
Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species-human malaria vectors-is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed.
Collapse
Affiliation(s)
- Diego Ayala
- UMR 224 MIVEGEC/BEES, IRD Montpellier, France ; Unité d'Entomologie Médicale, Centre International de Recherches Médicales de Franceville Franceville, Gabon
| | - Anna Ullastres
- Comparative and Computational Genomics, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona, Spain
| | - Josefa González
- Comparative and Computational Genomics, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona, Spain
| |
Collapse
|
17
|
Yamana TK, Eltahir EAB. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit Vectors 2013; 6:235. [PMID: 23938022 PMCID: PMC3750695 DOI: 10.1186/1756-3305-6-235] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Low levels of relative humidity are known to decrease the lifespan of mosquitoes. However, most current models of malaria transmission do not account for the effects of relative humidity on mosquito survival. In the Sahel, where relative humidity drops to levels <20% for several months of the year, we expect relative humidity to play a significant role in shaping the seasonal profile of mosquito populations. Here, we present a new formulation for Anopheles gambiae sensu lato (s.l.) mosquito survival as a function of temperature and relative humidity and investigate the effect of humidity on simulated mosquito populations. METHODS Using existing observations on relationships between temperature, relative humidity and mosquito longevity, we developed a new equation for mosquito survival as a function of temperature and relative humidity. We collected simultaneous field observations on temperature, wind, relative humidity, and anopheline mosquito populations for two villages from the Sahel region of Africa, which are presented in this paper. We apply this equation to the environmental data and conduct numerical simulations of mosquito populations using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS). RESULTS Relative humidity drops to levels that are uncomfortable for mosquitoes at the end of the rainy season. In one village, Banizoumbou, water pools dried up and interrupted mosquito breeding shortly after the end of the rainy season. In this case, relative humidity had little effect on the mosquito population. However, in the other village, Zindarou, the relatively shallow water table led to water pools that persisted several months beyond the end of the rainy season. In this case, the decrease in mosquito survival due to relative humidity improved the model's ability to reproduce the seasonal pattern of observed mosquito abundance. CONCLUSIONS We proposed a new equation to describe Anopheles gambiae s.l. mosquito survival as a function of temperature and relative humidity. We demonstrated that relative humidity can play a significant role in mosquito population and malaria transmission dynamics. Future modeling work should account for these effects of relative humidity.
Collapse
Affiliation(s)
- Teresa K Yamana
- Massachusetts Institute of Technology, Room 48–207, 15 Vassar Street, Cambridge, MA 02139, USA
| | - Elfatih A B Eltahir
- Massachusetts Institute of Technology, Room 48–207, 15 Vassar Street, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Rajpurohit S, Oliveira CC, Etges WJ, Gibbs AG. Functional genomic and phenotypic responses to desiccation in natural populations of a desert drosophilid. Mol Ecol 2013; 22:2698-715. [PMID: 23505972 PMCID: PMC4032119 DOI: 10.1111/mec.12289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/19/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales.
Collapse
Affiliation(s)
| | - Cássia C. Oliveira
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-1201, USA
| | - William J. Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-1201, USA
| | - Allen G. Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, NV 89119, USA
| |
Collapse
|
19
|
Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc Natl Acad Sci U S A 2012. [PMID: 23197828 DOI: 10.1073/pnas.1218661109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world's southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions.
Collapse
|