1
|
Onishi S, Jayamohan S, Chowdhury A, Rivas S, Otani Y, Murphy SA, Rivera-Caraballo KA, Walbridge S, Shah AH, Sisay B, Maric D, Elkahloun A, Johnson K, Heiss J, Lee TJ, Kumbar SG, Brown DA, Yoo JY, Brenner A, Kaur B, Sareddy GR, Banasavadi-Siddegowda YK. PRMT5 inhibition sensitizes glioblastoma tumor models to temozolomide. RESEARCH SQUARE 2025:rs.3.rs-5936706. [PMID: 39989968 PMCID: PMC11844640 DOI: 10.21203/rs.3.rs-5936706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, glioblastoma patients show dismal prognosis. Protein Arginine Methyltransferase 5 (PRMT5) is overexpressed in glioblastoma and its inhibition imparts an anti-tumor effect. Even though Temozolomide (TMZ) is the standard chemotherapeutic agent in the treatment of glioblastoma, tumor cells invariably develop resistance to TMZ. However, the mechanistic role of PRMT5 in glioblastoma therapy resistance is unknown. Methods Patient-derived primary glioblastoma neurospheres (GBMNS), treated with PRMT5 inhibitor (LLY-283) or transfected with PRMT5 target-specific siRNA were treated with TMZ and subjected to in vitro functional and mechanistic studies. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. Results We found that PRMT5 inhibition increased the cytotoxic effect and caspase 3/7 activity of TMZ in GBMNS suggesting that apoptosis is the potential mode of cell death in the combination treatment. PRMT5 inhibition abrogated the TMZ-induced G2/M cell cycle arrest. Unbiased transcriptomic studies indicate that PRMT5 inhibition negatively enriches DNA damage repair genes. Importantly, combination therapy increased DNA double-strand breaks (H2AX foci) and enhanced the DNA damage (comet assay), suggesting that the combination treatment increases the TMZ-induced DNA damage. Specifically, the LLY-283 treatment blocked homologous recombination repair in GBMNS. In vivo, LLY-283 and TMZ combination significantly curbed the tumor growth and prolonged the survival of tumor-bearing mice. Conclusion Concomitant treatment of LLY-283 and TMZ has significantly greater antitumor efficacy, suggesting that PRMT5 inhibition and TMZ combination could be a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bayu Sisay
- National Human Genome Research Institute, National Institutes of Health
| | | | - Abdel Elkahloun
- National Human Genome Research Institute, National Institutes of Health
| | | | | | - Tae Jin Lee
- University of Texas Health Science Center at Houston
| | | | | | - Ji Young Yoo
- University of Texas Health Science Center at Houston
| | - Andrew Brenner
- Mays Cancer Center at University of Texas Health San Antonio
| | | | | | | |
Collapse
|
2
|
Kastendiek N, Coletti R, Gross T, Lopes MB. Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification. BioData Min 2024; 17:56. [PMID: 39696678 DOI: 10.1186/s13040-024-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.
Collapse
Affiliation(s)
- Nina Kastendiek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal
| | - Thilo Gross
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, 26129, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
| |
Collapse
|
3
|
Harbi E, Aschner M. Role of BRCA1 in glioblastoma etiology. Cell Oncol (Dordr) 2024; 47:2091-2098. [PMID: 39656422 DOI: 10.1007/s13402-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
BRCA1 (Breast Cancer 1) is a tumor suppressor gene with a role in DNA repair by Homologous Recombination (HR), and maintenance of genomic stability that is frequently investigated in breast, prostate, and ovarian cancers. BRCA1 mutations or dysregulation in glioblastoma can lead to impaired DNA repair mechanisms, resulting in tumor progression and resistance to standard therapies. Several studies have shown that BRCA1 expression is altered, albeit rarely, in glioblastoma, leading to poor prognosis and increased tumor aggressiveness. In addition, the communication of BRCA1 with other molecular pathways such as p53 and PTEN further complicates its role in glioblastoma pathogenesis. Targeting BRCA1-related pathways in these cases has shown the potential to improve the efficacy of standard treatments, including radiotherapy and chemotherapy. The development of (Poly (ADP-ribose) Polymerase) PARP inhibitors that exploit the lack of HR also offers a therapeutic approach to glioblastoma patients with BRCA1 mutations. Despite these advances, the heterogeneity of glioblastoma and its complex tumor microenvironment make the translation of such approaches into clinical practice still challenging, and there is an "unmet need". This review discusses the current mechanisms of etiology and potential treatment of BRCA1-related glioblastoma.
Collapse
Affiliation(s)
- Emirhan Harbi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
4
|
Uechi Y, Fujikane R, Morita S, Tamaoki S, Hidaka M. Bloom syndrome DNA helicase mitigates mismatch repair-dependent apoptosis. Biochem Biophys Res Commun 2024; 723:150214. [PMID: 38850810 DOI: 10.1016/j.bbrc.2024.150214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Generation of O6-methylguanine (O6-meG) by DNA-alkylating agents such as N-methyl N-nitrosourea (MNU) activates the multiprotein mismatch repair (MMR) complex and the checkpoint response involving ATR/CHK1 and ATM/CHK2 kinases, which may in turn trigger cell cycle arrest and apoptosis. The Bloom syndrome DNA helicase BLM interacts with the MMR complex, suggesting functional relevance to repair and checkpoint responses. We observed a strong interaction of BLM with MMR proteins in HeLa cells upon treatment with MNU as evidenced by co-immunoprecipitation as well as colocalization in the nucleus as revealed by dual immunofluorescence staining. Knockout of BLM sensitized HeLa MR cells to MNU-induced cell cycle disruption and enhanced expression of the apoptosis markers cleaved caspase-9 and PARP1. MNU-treated BLM-deficient cells also exhibited a greater number of 53BP1 foci and greater phosphorylation levels of H2AX at S139 and RPA32 at S8, indicating the accumulation of DNA double-strand breaks. These findings suggest that BLM prevents double-strand DNA breaks during the MMR-dependent DNA damage response and mitigates O6-meG-induced apoptosis.
Collapse
Affiliation(s)
- Yuka Uechi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan.
| | - Sho Morita
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| |
Collapse
|
5
|
Leong VWS, Khan S, Sharma P, Wu S, Thomas RR, Li X, Singh SK, Lang FF, Yung AWK, Koul D. MGMT function determines the differential response of ATR inhibitors with DNA-damaging agents in glioma stem cells for GBM therapy. Neurooncol Adv 2024; 6:vdad165. [PMID: 38213834 PMCID: PMC10783493 DOI: 10.1093/noajnl/vdad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Background The most prevalent cancer treatments cause cell death through DNA damage. However, DNA damage response (DDR) repair pathways, initiated by tumor cells, can withstand the effects of anticancer drugs, providing justification for combining DDR inhibitors with DNA-damaging anticancer treatments. Methods Cell viability assays were performed with CellTiter-Glo assay. DNA damage was evaluated using Western blotting analysis. RNA-seq and single-cell level expression were used to identify the DDR signatures. In vivo, studies were conducted in mice to determine the effect of ATris on TMZ sensitization. Results We found a subpopulation of glioma sphere-forming cells (GSCs) with substantial synergism with temozolomide (TMZ) using a panel of 3 clinical-grade ataxia-telangiectasia- and Rad3-related kinase inhibitors (ATRis), (elimusertib, berzosertib, and ceralasertib). Interestingly, most synergistic cell lines had O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, indicating that ATRi mainly benefits tumors with no MGMT repair. Further, TMZ activated the ATR-checkpoint kinase 1 (Chk1) axis in an MGMT-dependent way. TMZ caused ATR-dependent Chk1 phosphorylation and DNA double-strand breaks as shown by increased γH2AX. Increased DNA damage and decreased Chk1 phosphorylation were observed upon the addition of ATRis to TMZ in MGMT-methylated (MGMT-) GSCs. TMZ also improved sensitivity to ATRis in vivo, as shown by increased mouse survival with the TMZ and ATRi combination treatment. Conclusions This research provides a rationale for selectively targeting MGMT-methylated cells using ATRis and TMZ combination. Overall, we believe that MGMT methylation status in GBM could serve as a robust biomarker for patient selection for ATRi combined with TMZ.
Collapse
Affiliation(s)
- Vincent W S Leong
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Riya R Thomas
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alfred W K Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
7
|
Alejo S, Palacios B, Venkata PP, He Y, Li W, Johnson J, Chen Y, Jayamohan S, Pratap U, Clarke K, Zou Y, Lv Y, Weldon K, Viswanadhapalli S, Lai Z, Ye Z, Chen Y, Gilbert A, Suzuki T, Tekmal R, Zhao W, Zheng S, Vadlamudi R, Brenner A, Sareddy GR. Lysine-specific histone demethylase 1A (KDM1A/LSD1) inhibition attenuates DNA double-strand break repair and augments the efficacy of temozolomide in glioblastoma. Neuro Oncol 2023; 25:1249-1261. [PMID: 36652263 PMCID: PMC10326496 DOI: 10.1093/neuonc/noad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.
Collapse
Affiliation(s)
- Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Kyra Clarke
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yingli Lv
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
8
|
Chen Z, Wang X, Yan Z, Zhang M. Identification of tumor antigens and immune subtypes of glioma for mRNA vaccine development. Cancer Med 2022; 11:2711-2726. [PMID: 35285582 PMCID: PMC9249984 DOI: 10.1002/cam4.4633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Recent evidence suggested that the mRNA vaccine has been effective for many tumors, but its progress in gliomas was slow. In this study, we screened potential tumor antigens and suitable populations for mRNA vaccine to develop mRNA vaccine for glioma. We integrated the normalized RNA sequencing expression data and somatic mutation data from TCGA-GBM, TCGA-LGG, and CGGA datasets. Putative antigens in glioma were identified by selecting highly mutated genes with intimate correlation with clinical survival and immune infiltration. An unsupervised partition around medoids algorithm was utilized to stably cluster the patients into five different immune subtypes. Among them, IS1/2 was cold tumor with low tumor mutation burden (TMB), immunogenic cell death (ICDs), and immune checkpoints (ICPs), and IS4/5 was hot tumor with high TMB, ICDs, and ICPs. Monocle3 package was used to evaluate the immune status similarity and evolution in glioma, which identified cluster IS2A/2B within IS2 subtype to be more suitable vaccination receivers. Weighted gene co-expression network analysis identified five hub immune genes as the biomarkers of patients' immune status in glioma. In conclusion, NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813 are potential antigens suitable for glioma mRNA vaccine. IS1/2A/2B are suitable for mRNA vaccination.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Xiang Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Zhouyi Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Mengqi Zhang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
9
|
Ubiquitin-Specific Protease 6 n-Terminal-like Protein (USP6NL) and the Epidermal Growth Factor Receptor (EGFR) Signaling Axis Regulates Ubiquitin-Mediated DNA Repair and Temozolomide-Resistance in Glioblastoma. Biomedicines 2022; 10:biomedicines10071531. [PMID: 35884836 PMCID: PMC9312792 DOI: 10.3390/biomedicines10071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma, with a 30–60% epidermal growth factor receptor (EGFR) mutation. This mutation is associated with unrestricted cell growth and increases the possibility of cancer invasion. Patients with EGFR-mutated GBM often develop resistance to the available treatment modalities and higher recurrence rates. The drug resistance observed is associated with multiple genetic or epigenetic factors. The ubiquitin-specific protease 6 N-terminal-like protein (USP6NL) is a GTPase-activating protein that functions as a deubiquitinating enzyme and regulates endocytosis and signal transduction. It is highly expressed in many cancer types and may promote the growth and proliferation of cancer cells. We hypothesized that USP6NL affects GBM chemoresistance and tumorigenesis, and that its inhibition may be a novel therapeutic strategy for GBM treatment. The USP6NL level, together with EGFR expression in human GBM tissue samples and cell lines associated with therapy resistance, tumor growth, and cancer invasion, were investigated. Its pivotal roles and potential mechanism in modulating tumor growth, and the key mechanism associated with therapy resistance of GBM cells, were studied, both in vitro and in vivo. Herein, we found that deubiquitinase USP6NL and growth factor receptor EGFR were strongly associated with the oncogenicity and resistance of GBM, both in vitro and in vivo, toward temozolomide, as evidenced by enhanced migration, invasion, and acquisition of a highly invasive and drug-resistant phenotype by the GBM cells. Furthermore, abrogation of USP6NL reversed the properties of GBM cells and resensitized them toward temozolomide by enhancing autophagy and reducing the DNA damage repair response. Our results provide novel insights into the probable mechanism through which USP6NL/EGFR signaling might suppress the anticancer therapeutic response, induce cancer invasiveness, and facilitate reduced sensitivity to temozolomide treatment in GBM in an autolysosome-dependent manner. Therefore, controlling the USP6NL may offer an alternative, but efficient, therapeutic strategy for targeting and eradicating otherwise resistant and recurrent phenotypes of aggressive GBM cells.
Collapse
|
10
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Nageeb AM, Mohamed MM, Ezz El Arab LR, Khalifa MK, Swellam M. Next generation sequencing of BRCA genes in glioblastoma multiform Egyptian patients: a pilot study. Arch Physiol Biochem 2022; 128:809-817. [PMID: 32100578 DOI: 10.1080/13813455.2020.1729814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Germ line mutations of BRCA1 and BRCA2 were correlated with a variety of cancer Authors aimed to use next-generation sequencing (NGS) to detect BRCA1 and BRCA2 germ line mutations in glioblastoma multiform (GBM) Egyptian patients. MATERIALS AND METHODS Genomic DNA was extracted from six GBM cases, amplified using Ion AmpliSeq BRCA1 and BRCA2 panel. DNA libraries were pooled, barcoded and finally sequenced using Ion Torrent Personal Genome Machine sequencer. RESULTS BRCA1 the previously reported rs1799966, rs1799950, rs16941 were found in five cases and they are in a linkage disequilibrium forming two distinct haplotypes, which might support their role in cancer predisposition. Out of the 18 reported variants in BRCA2, three denovo mutations were detected which leads to frame shift. CONCLUSION Further studies on large number of GBM patients and control cases to determine BRCA1 and BRCA2 germline mutations and haplotypes; diagnostic and prognostic role are encouraged.
Collapse
Affiliation(s)
- Amira M Nageeb
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Lobna R Ezz El Arab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
13
|
BRCA2 deficiency increases sensitivity of medulloblastoma to Olaparib by inhibiting RAD51-mediated DNA damage repair system. Clin Transl Oncol 2022; 24:919-926. [PMID: 35001340 DOI: 10.1007/s12094-021-02742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE BRCA2 defect exists in glioma and regulates drug resistance of glioma to chemotherapy. However, its role in medulloblastoma and the mechanism is not known. To investigate the effects of BRCA2 deficiency combined with Olaparib in medulloblastoma and the mechanism. METHODS BRCA2 was knocked down by RNAi technology and cell proliferation was detected by CCK-8 assay. Cell apoptosis was determined by FACS analysis when the in vivo role of BRCA2 was explored with xenograft mice model. Western blotting technology was used to explore the mechanism of BRCA2. RESULTS Knockdown of BRCA2 enhanced the inhibitory effect of Olaparib on proliferation of Daoy and LN229 cells. The inhibition rate of Olaparib on Daoy or LN229 cells was 61.1%, 66.03% in shBRCA2 group, while it was 42.9%, 41.1% in shNC group. Overexpression of RAD51 partially reversed the effect of shBRCA2. In Daoy cells, apoptotic rate was 26.9% in Olaparib group and 58.9% in Olaparib/shBRCA2 group. However, it was 33.4% after RAD51 was overexpressed. It was the same in LN229 cells. In xenograft mice model, tumor volume in Olaparib and Olaparib/shBRCA2 group was 376.12 and 84.95mm3 when tumor weight was 0.46 g and 0.12 g. In addition, the level of RAD51, RAD50, MRE11, and NBS was increased by Olaparib alone but decreased reversely after knockdown of BRCA2 in Daoy cells. CONCLUSIONS Knockdown of BRCA2 increases the sensitivity of medulloblastoma cells to Olaparib and strengthens the efficacy of Olaparib in vitro and in vivo. Knockdown of BRCA2 causes DNA damage repair by regulating RAD51-mediated signaling pathway in Daoy cells.
Collapse
|
14
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
15
|
Hanisch D, Krumm A, Diehl T, Stork CM, Dejung M, Butter F, Kim E, Brenner W, Fritz G, Hofmann TG, Roos WP. Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death Dis 2022; 13:293. [PMID: 35365623 PMCID: PMC8975953 DOI: 10.1038/s41419-022-04751-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.
Collapse
Affiliation(s)
- Daniela Hanisch
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Tamara Diehl
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Carla M Stork
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Ella Kim
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Medical Center of the University Mainz, 55131, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Wynand P Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
16
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
17
|
Meimand SE, Pour-Rashidi A, Shahrbabak MM, Mohammadi E, Meimand FE, Rezaei N. The Prognostication Potential of BRCA Genes Expression in Gliomas: A Genetic Survival Analysis Study. World Neurosurg 2021; 157:e123-e128. [PMID: 34607064 DOI: 10.1016/j.wneu.2021.09.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gliomas are the most common type of central nervous system tumor in adults, and they have an extremely poor prognosis. Gliomas are classified into 4 grades, with low-grade gliomas (LGGs) constituting grades I and II and glioblastoma multiforme (GBM) constituting grade IV. Breast cancer susceptibility genes BRCA1 and BRCA2 play a role in DNA repair and are required for genome stability. METHODS We analyzed the LGG and GBM cohorts from The Cancer Genome Atlas. We used Kaplan-Meier and log-rank analysis to determine the relationship between BRCA1 and BRCA2 expression and survival. RESULTS Correlation of BRCA1 and BRCA2 expression with survival in patients with LGG was significant (P = 0.00 and P = 0.00). The higher the levels of expression were, the lower survival rates were in both LGG and GBM cohorts, but the correlation was not significant in patients with GBM (P < 0.01). CONCLUSIONS Our findings suggest that BRCA1 and BRCA2 can be regarded as poor prognostic factors in patients with glioma, with greater significance in patients with LGG. In the future, more in-depth experiments will enable us to elucidate the mechanism of gliomagenesis and identify potential gene therapy targets.
Collapse
Affiliation(s)
- Sepideh Ebrahimi Meimand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Esmaeil Mohammadi
- Department of Pediatric Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran.
| |
Collapse
|
18
|
Wang N, Gu Y, Chi J, Liu X, Xiong Y, Zhong C, Wang F, Wang X, Li L. Screening of DNA Damage Repair Genes Involved in the Prognosis of Triple-Negative Breast Cancer Patients Based on Bioinformatics. Front Genet 2021; 12:721873. [PMID: 34408776 PMCID: PMC8365772 DOI: 10.3389/fgene.2021.721873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a special subtype of breast cancer with poor prognosis. DNA damage response (DDR) is one of the hallmarks of this cancer. However, the association of DDR genes with the prognosis of TNBC is still unclear. Methods: We identified differentially expressed genes (DEGs) between normal and TNBC samples from The Cancer Genome Atlas (TCGA). DDR genes were obtained from the Molecular Signatures Database through six DDR gene sets. After the expression of six differential genes were verified by quantitative real-time polymerase chain reaction (qRT-PCR), we then overlapped the DEGs with DDR genes. Based on univariate and LASSO Cox regression analyses, a prognostic model was constructed to predict overall survival (OS). Kaplan–Meier analysis and receiver operating characteristic curve were used to assess the performance of the prognostic model. Cox regression analysis was applied to identify independent prognostic factors in TNBC. The Human Protein Atlas was used to study the immunohistochemical data of six DEGs. The prognostic model was validated using an independent dataset. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis were performed by using gene set enrichment analysis (GSEA). Single-sample gene set enrichment analysis was employed to estimate immune cells related to this prognostic model. Finally, we constructed a transcriptional factor (TF) network and a competing endogenous RNA regulatory network. Results: Twenty-three differentially expressed DDR genes were detected between TNBC and normal samples. The six-gene prognostic model we developed was shown to be related to OS in TNBC using univariate and LASSO Cox regression analyses. All the six DEGs were identified as significantly up-regulated in the tumor samples compared to the normal samples in qRT-PCR. The GSEA analysis indicated that the genes in the high-risk group were mainly correlated with leukocyte migration, cytokine interaction, oxidative phosphorylation, autoimmune diseases, and coagulation cascade. The mutation data revealed the mutated genes were different. The gene-TF regulatory network showed that Replication Factor C subunit 4 occupied the dominant position. Conclusion: We identified six gene markers related to DDR, which can predict prognosis and serve as an independent biomarker for TNBC patients.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Demircan T, Yavuz M, Kaya E, Akgül S, Altuntaş E. Cellular and Molecular Comparison of Glioblastoma Multiform Cell Lines. Cureus 2021; 13:e16043. [PMID: 34345539 PMCID: PMC8322107 DOI: 10.7759/cureus.16043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiform (GBM) is one of the most severe tumor types. It is highly invasive and characterized as a grade IV neoplastic cancer. Its resistance to chemotherapy-temozolomide (TMZ treatment)-in combination with tumor treating fields (TTFields), limits the cure of GBM. Therefore researchers are searching for new treatment options to increase the length of recurrence time and improve overall survival for GBM patients. Several cell lines have been established and are in use to understand the molecular basis of GBM and to test the developed drugs. On one hand, it is highly advantageous to utilize multiple cell lines with different genetic backgrounds to gain more insight into the characterization and treatment of the disease. However, on the other hand, characteristics of these cell lines such as proliferation rate, invasion, and colony formation capacity differ greatly among these cells. Hence, a detailed comparison concerning molecular and cellular features of commonly used cell lines is essential. In this study, cell proliferation and apoptosis rate, cell migration capacity, and gene expression profile of U87, Ln229, and SvGp12 cells have been investigated and compared.
Collapse
Affiliation(s)
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| | - Egemen Kaya
- Surgery, Mugla Sitki Kocman University, Muğla, TUR
| | - Sıddıka Akgül
- Institute of Health Sciences, Aydın Adnan Menderes University, Aydın, TUR
| | - Ebru Altuntaş
- Institute of Natural Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| |
Collapse
|
20
|
Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 2021; 78:5587-5604. [PMID: 34100981 PMCID: PMC8257519 DOI: 10.1007/s00018-021-03864-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.
Collapse
|
21
|
Inhibition of DNA Repair in Combination with Temozolomide or Dianhydrogalactiol Overcomes Temozolomide-Resistant Glioma Cells. Cancers (Basel) 2021; 13:cancers13112570. [PMID: 34073837 PMCID: PMC8197190 DOI: 10.3390/cancers13112570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glioblastoma is the most prevalent and lethal brain tumor. Temozolomide is usually used for the treatment of glioblastoma. The poor prognosis of the tumor is due to drug resistance and tumor heterogeneity. The mechanism of the resistance to temozolomide is various within the same tumor. The aim of the study was to clarify the mechanism of temozolomide resistance and find methods to overcome temozolomide resistance in glioma. Inhibition of DNA repair (homologous recombination or base excision repair) resensitized resistant cells harboring different resistance mechanism to temozolomide. Additionally, a bifunctional DNA-targeting agent, dianhydrogalactiol, showed anti-tumor effect independent of MGMT and mismatch repair status. Further, inhibition of checkpoint or homologous recombination enhanced dianhydrogalactiol-induced cytotoxicity in temozolomide-resistant glioma cells. Although resistance to temozolomide is clinically important issue, selecting suitable treatments for resistance mechanism can improve the prognosis of glioma. Abstract Resistance to temozolomide and intratumoral heterogeneity contribute to the poor prognosis of glioma. The mechanisms of temozolomide resistance can vary within a heterogeneous tumor. Temozolomide adds a methyl group to DNA. The primary cytotoxic lesion, O6-methylguanine, mispairs with thymine, leading to a futile DNA mismatch repair cycle, formation of double-strand breaks, and eventual cell death when O6-methylguanine DNA methyltransferase (MGMT) is absent. N7-methylguanine and N3-methyladenine are repaired by base excision repair (BER). The study aim was to elucidate temozolomide resistance mechanisms and identify methods to overcome temozolomide resistance in glioma. Several temozolomide-resistant clones were analyzed. Increased homologous recombination and mismatch repair system deficiencies contributed to temozolomide resistance. Inhibition of homologous recombination resensitized resistant cells with high homologous recombination efficiency. For the mismatch repair-deficient cells, inhibition of BER by PARP inhibitor potentiated temozolomide-induced cytotoxicity. Dianhydrogalactiol is a bifunctional DNA-targeting agent that forms N7-alkylguanine and inter-strand DNA crosslinks. Dianhydrogalactiol reduced the proliferation of cells independent of MGMT and mismatch repair, inducing DNA double-strand breaks and apoptosis in temozolomide-resistant cells. Further, inhibition of chk1 or homologous recombination enhanced dianhydrogalactiol-induced cytotoxicity in the cells. Selecting treatments most appropriate to the types of resistance mechanisms can potentially improve the prognosis of glioma.
Collapse
|
22
|
Lee IN, Yang JT, Huang C, Huang HC, Wu YP, Chen JC. Elevated XRCC5 expression level can promote temozolomide resistance and predict poor prognosis in glioblastoma. Oncol Lett 2021; 21:443. [PMID: 33868481 PMCID: PMC8045174 DOI: 10.3892/ol.2021.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistance and disease recurrence are important contributors for the poor prognosis of glioblastoma multiforme (GBM). Temozolomide (TMZ), the standard chemotherapy for GBM treatment, can methylate DNA and cause the formation of double-strand breaks (DSBs). X-ray repair cross complementing 5 (XRCC5), also known as Ku80 or Ku86, is required for the repair of DSBs. The present study identified novel determinants that sensitize cells to TMZ, using an array-based short hairpin (sh)RNA library. Then, cBioportal, Oncomine, and R2 databases were used to analyze the association between gene expression levels and clinical characteristics. Subsequently, lentiviral shRNA or pCMV was used to knockdown or overexpress the gene of interest, and the effects on TMZ sensitivity were determined using a MTT assay and western blot analysis. TMZ-resistant cells were also established and were used in in vitro and in vivo experiments to analyze the role of the gene of interest in TMZ resistance. The results indicated that XRCC5 was effective in enhancing TMZ cytotoxicity. The results from the bioinformatics analysis revealed that XRCC5 mRNA expression levels were associated with clinical deterioration and lower overall survival rates. In addition, XRCC5 knockdown could significantly increase TMZ sensitivity in GBM cells, while XRCC5 overexpression caused the cancer cells to be resistant to TMZ. Both the in vivo and in vitro experiments showed that TMZ treatment could induce expression of XRCC5 in TMZ-resistant cells. Taken together these findings suggested that XRCC5 could be a promising target for GBM treatment and could also be used as a diagnostic marker for refractory GBM.
Collapse
Affiliation(s)
- I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C.,College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Earth and Life Sciences, University of Taipei, Taipei 11153, Taiwan, R.O.C
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu 30014, Taiwan, R.O.C
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
23
|
Samuel SM, Varghese E, Koklesová L, Líšková A, Kubatka P, Büsselberg D. Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells. Cancers (Basel) 2020; 12:E2482. [PMID: 32883003 PMCID: PMC7565921 DOI: 10.3390/cancers12092482] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the leaps and bounds in achieving success in the management and treatment of breast cancers through surgery, chemotherapy, and radiotherapy, breast cancer remains the most frequently occurring cancer in women and the most common cause of cancer-related deaths among women. Systemic therapeutic approaches, such as chemotherapy, although beneficial in treating and curing breast cancer subjects with localized breast tumors, tend to fail in metastatic cases of the disease due to (a) an acquired resistance to the chemotherapeutic drug and (b) the development of intrinsic resistance to therapy. The existence of cancer stem cells (CSCs) plays a crucial role in both acquired and intrinsic chemoresistance. CSCs are less abundant than terminally differentiated cancer cells and confer chemoresistance through a unique altered metabolism and capability to evade the immune response system. Furthermore, CSCs possess active DNA repair systems, transporters that support multidrug resistance (MDR), advanced detoxification processes, and the ability to self-renew and differentiate into tumor progenitor cells, thereby supporting cancer invasion, metastasis, and recurrence/relapse. Hence, current research is focusing on targeting CSCs to overcome resistance and improve the efficacy of the treatment and management of breast cancer. Studies revealed that metformin (1, 1-dimethylbiguanide), a widely used anti-hyperglycemic agent, sensitizes tumor response to various chemotherapeutic drugs. Metformin selectively targets CSCs and improves the hypoxic microenvironment, suppresses the tumor metastasis and inflammation, as well as regulates the metabolic programming, induces apoptosis, and reverses epithelial-mesenchymal transition and MDR. Here, we discuss cancer (breast cancer) and chemoresistance, the molecular mechanisms of chemoresistance in breast cancers, and metformin as a chemo-sensitizing/re-sensitizing agent, with a particular focus on breast CSCs as a critical contributing factor to acquired and intrinsic chemoresistance. The review outlines the prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer/chemo-sensitizing drug in the treatment of breast cancer. It intends to provide a rationale for the use of metformin as a combinatory therapy in a clinical setting.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Lenka Koklesová
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
24
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
25
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Ding J, Wu S, Zhang C, Garyali A, Martinez-Ledesma E, Gao F, Pokkulandra A, Li X, Bristow C, Carugo A, Koul D, Yung WKA. BRCA1 identified as a modulator of temozolomide resistance in P53 wild-type GBM using a high-throughput shRNA-based synthetic lethality screening. Am J Cancer Res 2019; 9:2428-2441. [PMID: 31815044 PMCID: PMC6895442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of primary brain tumor, is universally fatal, with a median survival duration ranging from 12-15 months despite maximum treatment efforts. Temozolomide (TMZ) is the current standard of care for GBM patients; however patients usually develop resistance to TMZ and limits its benefit. The identification of novel synergistic targets in GBM will lead to the development of new targeted drugs, which could be combined with broad-spectrum cytotoxic agents. In this study, we used a high-throughput synthetic lethality screen with a pooled short hairpin DNA repair library, in combination with TMZ, to identify targets that will enhance TMZ-induced antitumor effects. Using an unbiased bioinformatical analysis, we identified BRCA1 as a potential promising candidate gene that induced synthetic lethality with TMZ in glioma sphere-forming cells (GSCs). BRCA1 knockdown resulted in antitumor activity with TMZ in P53 wild-type GSCs but not in P53 mutant GSCs. TMZ treatment induced a DNA damage repair response; the activation of BRCA1 DNA repair pathway targets and knockdown of BRCA1, together with TMZ, led to increased DNA damage and cell death in P53 wild-type GSCs. Our study identified BRCA1 as a potential target that sensitizes TMZ-induced cell death in P53 wild-type GBM, suggesting that the combined inhibition of BRCA1 and TMZ treatment will be a successful targeted therapy for GBM patients.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Arnav Garyali
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMonterrey, Nuevo Leon, Mexico
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Adarsha Pokkulandra
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Christopher Bristow
- Department of Applied Cancer Science, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Alessandro Carugo
- Department of Applied Cancer Science, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - WK Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
27
|
Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH, Han JA, Moon JW, Kim JH, Kim SJ, Lee EJ, In Park S, Park SH, Kim HS. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res 2019; 21:115. [PMID: 31640742 PMCID: PMC6805313 DOI: 10.1186/s13058-019-1204-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemotherapy is a standard therapeutic regimen to treat triple-negative breast cancer (TNBC); however, chemotherapy alone does not result in significant improvement and often leads to drug resistance in patients. In contrast, combination therapy has proven to be an effective strategy for TNBC treatment. Whether metformin enhances the anticancer effects of cisplatin and prevents cisplatin resistance in TNBC cells has not been reported. METHODS Cell viability, wounding healing, and invasion assays were performed on Hs 578T and MDA-MB-231 human TNBC cell lines to demonstrate the anticancer effects of combined cisplatin and metformin treatment compared to treatment with cisplatin alone. Western blotting and immunofluorescence were used to determine the expression of RAD51 and gamma-H2AX. In an in vivo 4T1 murine breast cancer model, a synergistic anticancer effect of metformin and cisplatin was observed. RESULTS Cisplatin combined with metformin decreased cell viability and metastatic effect more than cisplatin alone. Metformin suppressed cisplatin-mediated RAD51 upregulation by decreasing RAD51 protein stability and increasing its ubiquitination. In contrast, cisplatin increased RAD51 expression in an ERK-dependent manner. In addition, metformin also increased cisplatin-induced phosphorylation of γ-H2AX. Overexpression of RAD51 blocked the metformin-induced inhibition of cell migration and invasion, while RAD51 knockdown enhanced cisplatin activity. Moreover, the combination of metformin and cisplatin exhibited a synergistic anticancer effect in an orthotopic murine model of 4T1 breast cancer in vivo. CONCLUSIONS Metformin enhances anticancer effect of cisplatin by downregulating RAD51 expression, which represents a novel therapeutic target in TNBC management.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Won Seok Byun
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Shin Ae Kim
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Il Hyeok Seo
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Jeong Ah Han
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji Hae Kim
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sun Hwa Park
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst) 2019; 78:128-141. [PMID: 31039537 DOI: 10.1016/j.dnarep.2019.04.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
Alkylating agents have been used since the 60ties in brain cancer chemotherapy. Their target is the DNA and, although the DNA of normal and cancer cells is damaged unselectively, they exert tumor-specific killing effects because of downregulation of some DNA repair activities in cancer cells. Agents exhibiting methylating properties (temozolomide, procarbazine, dacarbazine, streptozotocine) induce at least 12 different DNA lesions. These are repaired by damage reversal mechanisms involving the alkyltransferase MGMT and the alkB homologous protein ALKBH2, and through base excision repair (BER). There is a strong correlation between the MGMT expression level and therapeutic response in high-grade malignant glioma, supporting the notion that O6-methylguanine and, for nitrosoureas, O6-chloroethylguanine are the most relevant toxic damages at therapeutically relevant doses. Since MGMT has a significant impact on the outcome of anti-cancer therapy, it is a predictive marker of the effectiveness of methylating anticancer drugs, and clinical trials are underway aimed at assessing the influence of MGMT inhibition on the therapeutic success. Other DNA repair factors involved in methylating drug resistance are mismatch repair, DNA double-strand break (DSB) repair by homologous recombination (HR) and DSB signaling. Base excision repair and ALKBH2 might also contribute to alkylating drug resistance and their downregulation may have an impact on drug sensitivity notably in cells expressing a high amount of MGMT and at high doses of temozolomide, but the importance in a therapeutic setting remains to be shown. MGMT is frequently downregulated in cancer cells (up to 40% in glioblastomas), which is due to CpG promoter methylation. Astrocytoma (grade III) are frequently mutated in isocitrate dehydrogenase (IDH1). These tumors show a surprisingly good therapeutic response. IDH1 mutation has an impact on ALKBH2 activity thus influencing DNA repair. A master switch between survival and death is p53, which often retains transactivation activity (wildtype) in malignant glioma. The role of p53 in regulating survival via DNA repair and the routes of death are discussed and conclusions as to cancer therapeutic options were drawn.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
29
|
He Y, Roos WP, Wu Q, Hofmann TG, Kaina B. The SIAH1-HIPK2-p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death. Mol Cancer Res 2019; 17:1129-1141. [PMID: 30796178 DOI: 10.1158/1541-7786.mcr-18-1306] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/02/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Patients suffering from glioblastoma have a dismal prognosis, indicating the need for new therapeutic targets. Here we provide evidence that the DNA damage kinase HIPK2 and its negative regulatory E3-ubiquitin ligase SIAH1 are critical factors controlling temozolomide-induced cell death. We show that HIPK2 downregulation (HIPK2kd) significantly reduces the level of apoptosis. This was not the case in glioblastoma cells expressing the repair protein MGMT, suggesting that the primary DNA lesion responsible for triggering HIPK2-mediated apoptosis is O6 -methylguanine. Upon temozolomide treatment, p53 becomes phosphorylated whereby HIPK2kd had impact exclusively on ser46, but not ser15. Searching for the transcriptional target of p-p53ser46, we identified the death receptor FAS (CD95, APO-1) being involved. Thus, the expression of FAS was attenuated following HIPK2kd, supporting the conclusion that HIPK2 regulates temozolomide-induced apoptosis via p-p53ser46-driven FAS expression. This was substantiated in chromatin-immunoprecipitation experiments, in which p-p53ser46 binding to the Fas promotor was regulated by HIPK2. Other pro-apoptotic proteins such as PUMA, NOXA, BAX, and PTEN were not affected in HIPK2kd, and also double-strand breaks following temozolomide remained unaffected. We further show that downregulation of the HIPK2 inactivator SIAH1 significantly ameliorates temozolomide-induced apoptosis, suggesting that the ATM/ATR target SIAH1 together with HIPK2 plays a proapoptotic role in glioma cells exhibiting p53wt status. A database analysis revealed that SIAH1, but not SIAH2, is significantly overexpressed in glioblastomas. IMPLICATIONS: The identification of a novel apoptotic pathway triggered by the temozolomide-induced DNA damage O6 -methylguanine supports the role of p53 in the decision between survival and death and suggests SIAH1 and HIPK2 as new therapeutic targets.
Collapse
Affiliation(s)
- Yang He
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Qianchao Wu
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany.
| |
Collapse
|
30
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
31
|
Ingham MA, McGuinness JE, Kalinsky K, Schwartz GK. Exceptional Response to Dacarbazine in Uterine Leiomyosarcoma With Homozygous BRCA2 Deletion Highlights the Role of Homologous Recombination in Response to DNA Damage From Alkylating Agents. JCO Precis Oncol 2018; 2:1-6. [DOI: 10.1200/po.18.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Matthew A. Ingham
- All authors: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Julia E. McGuinness
- All authors: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Kevin Kalinsky
- All authors: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Gary K. Schwartz
- All authors: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| |
Collapse
|
32
|
Aasland D, Götzinger L, Hauck L, Berte N, Meyer J, Effenberger M, Schneider S, Reuber EE, Roos WP, Tomicic MT, Kaina B, Christmann M. Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR-CHK1, p21, and NF-κB. Cancer Res 2018; 79:99-113. [PMID: 30361254 DOI: 10.1158/0008-5472.can-18-1733] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
The DNA-methylating drug temozolomide, which induces cell death through apoptosis, is used for the treatment of malignant glioma. Here, we investigate the mechanisms underlying the ability of temozolomide to induce senescence in glioblastoma cells. Temozolomide-induced senescence was triggered by the specific DNA lesion O6-methylguanine (O6MeG) and characterized by arrest of cells in the G2-M phase. Inhibitor experiments revealed that temozolomide-induced senescence was initiated by damage recognition through the MRN complex, activation of the ATR/CHK1 axis of the DNA damage response pathway, and mediated by degradation of CDC25c. Temozolomide-induced senescence required functional p53 and was dependent on sustained p21 induction. p53-deficient cells, not expressing p21, failed to induce senescence, but were still able to induce a G2-M arrest. p14 and p16, targets of p53, were silenced in our cell system and did not seem to play a role in temozolomide-induced senescence. In addition to p21, the NF-κB pathway was required for senescence, which was accompanied by induction of the senescence-associated secretory phenotype. Upon temozolomide exposure, we found a strong repression of the mismatch repair proteins MSH2, MSH6, and EXO1 as well as the homologous recombination protein RAD51, which was downregulated by disruption of the E2F1/DP1 complex. Repression of these repair factors was not observed in G2-M arrested p53-deficient cells and, therefore, it seems to represent a specific trait of temozolomide-induced senescence. SIGNIFICANCE: These findings reveal a mechanism by which the anticancer drug temozolomide induces senescence and downregulation of DNA repair pathways in glioma cells.
Collapse
Affiliation(s)
- Dorthe Aasland
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Laura Götzinger
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Laura Hauck
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Nancy Berte
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Jessica Meyer
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | | | - Simon Schneider
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Emelie E Reuber
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Wynand P Roos
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
33
|
Kaina B, Izzotti A, Xu J, Christmann M, Pulliero A, Zhao X, Dobreanu M, Au WW. Inherent and toxicant-provoked reduction in DNA repair capacity: A key mechanism for personalized risk assessment, cancer prevention and intervention, and response to therapy. Int J Hyg Environ Health 2018; 221:993-1006. [PMID: 30041861 DOI: 10.1016/j.ijheh.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
Genomic investigations reveal novel evidence which indicates that genetic predisposition and inherent drug response are key factors for development of cancer and for poor response to therapy. However, mechanisms for these outcomes and interactions with environmental factors have not been well-characterized. Therefore, cancer risk, prevention, intervention and prognosis determinations have still mainly been based on population, rather than on individualized, evaluations. The objective of this review was to demonstrate that a key mechanism which contributes to the determination is inherent and/or toxicant-provoked reduction in DNA repair capacity. In addition, functional and quantitative determination of DNA repair capacity on an individual basis would dramatically change the evaluation and management of health problems from a population to a personalized basis. In this review, justifications for the scenario were delineated. Topics to be presented include assays for detection of functional DNA repair deficiency, mechanisms for DNA repair defects, toxicant-perturbed DNA repair capacity, epigenetic mechanisms (methylation and miRNA expression) for alteration of DNA repair function, and bioinformatics approach to analyze large amount of genomic data. Information from these topics has recently been and will be used for better understanding of cancer causation and of response to therapeutic interventions. Consequently, innovative genomic- and mechanism-based evidence can be increasingly used to develop more precise cancer risk assessment, and target-specific and personalized medicine.
Collapse
Affiliation(s)
| | - Alberto Izzotti
- University of Genoa, Genoa, Italy; IRCCS Policlinico San Martino Genoa, Italy
| | - Jianzhen Xu
- Shantou University Medical College, Shantou, China
| | | | | | - Xing Zhao
- Shantou University Medical College, Shantou, China
| | | | - William W Au
- Shantou University Medical College, Shantou, China; University of Medicine and Pharmacy, Tirgu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
34
|
Christmann M, Diesler K, Majhen D, Steigerwald C, Berte N, Freund H, Stojanović N, Kaina B, Osmak M, Ambriović-Ristov A, Tomicic MT. Integrin αVβ3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair. Oncotarget 2018; 8:27754-27771. [PMID: 27487141 PMCID: PMC5438606 DOI: 10.18632/oncotarget.10897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Integrins have been suggested as possible targets in anticancer therapy. Here we show that knockdown of integrins αVβ3, αVβ5, α3β1 and α4β1 and pharmacological inhibition using a cyclo-RGD integrin αVβ3/αVβ5 antagonist sensitized multiple high-grade glioma cell lines to temozolomide (TMZ)-induced cytotoxicity. The greatest effect was observed in LN229 cells upon integrin β3 silencing, which led to inhibition of the FAK/Src/Akt/NFκB signaling pathway and increased formation of γH2AX foci. The integrin β3 knockdown led to the proteasomal degradation of Rad51, reduction of Rad51 foci and reduced repair of TMZ-induced DNA double-strand breaks by impairing homologous recombination efficiency. The down-regulation of β3 in Rad51 knockdown (LN229-Rad51kd) cells neither further sensitized them to TMZ nor increased the number of γH2AX foci, confirming causality between β3 silencing and Rad51 reduction. RIP1 was found cleaved and IκBα significantly less degraded in β3-silenced/TMZ-exposed cells, indicating inactivation of NFκB signaling. The anti-apoptotic proteins Bcl-xL, survivin and XIAP were proteasomally degraded and caspase-3/−2 cleaved. Increased H2AX phosphorylation, caspase-3 cleavage, reduced Rad51 and RIP1 expression, as well as sustained IκBα expression were also observed in mouse glioma xenografts treated with the cyclo-RGD inhibitor and TMZ, confirming the molecular mechanism in vivo. Our data indicates that β3 silencing in glioma cells represents a promising strategy to sensitize high-grade gliomas to TMZ therapy.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Kathrin Diesler
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | | | - Nancy Berte
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Halima Freund
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Maja Osmak
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signaling, Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, D-55131 Mainz, Germany
| |
Collapse
|
35
|
Roos WP, Frohnapfel L, Quiros S, Ringel F, Kaina B. XRCC3 contributes to temozolomide resistance of glioblastoma cells by promoting DNA double-strand break repair. Cancer Lett 2018; 424:119-126. [PMID: 29574277 DOI: 10.1016/j.canlet.2018.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 01/02/2023]
Abstract
Glioblastoma is the most frequent and aggressive form of high-grade malignant glioma. Due to the dismal prognosis faced by patients suffering from this disease, there is a need for identifying new targets that might improve therapy. The aim of this study was to determine the contribution of the DNA double-strand break (DSB) repair protein X-ray repair cross-complementing 3 (XRCC3) to the resistance of glioma cells to the chemotherapeutic drug temozolomide. Analysis of a publicly available database, E-GEOD-4290, showed that gliomas overexpress XRCC3 (NM_005432) compared to normal brain tissue. Using an isogenic glioma cell system, in which XRCC3 was downregulated by interference RNA, we demonstrate that XRCC3 protects glioma cells against temozolomide-induced reproductive cell death, apoptosis and cell cycle inhibition. Furthermore, XRCC3 knockdown significantly reduced the rate of repair of DSBs following TMZ treatment, which results in increased drug sensitivity. This study confirms the importance of homologous recombination in the resistance of glioma cells to the methylating drug temozolomide and adds XRCC3 to the list of homology-directed DNA repair proteins as possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
| | - Larissa Frohnapfel
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
| | - Steve Quiros
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany.
| |
Collapse
|
36
|
Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts. Mol Cancer Ther 2018; 17:1207-1216. [PMID: 29549168 DOI: 10.1158/1535-7163.mct-17-1267] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under in vitro conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation. In a similar concentration-dependent manner, VX-984 treatment enhanced the radiosensitivity of each GBM cell line as defined by clonogenic analysis. As determined by γH2AX expression and neutral comet analyses, VX-984 inhibited the repair of radiation-induced DNA double-strand break in U251 and NSC11 GBM cells, suggesting that the VX-984-induced radiosensitization is mediated by an inhibition of DNA repair. Extending these results to an in vivo model, treatment of mice with VX-984 inhibited radiation-induced DNA-PKcs phosphorylation in orthotopic brain tumor xenografts, indicating that this compound crosses the blood-brain tumor barrier at sufficient concentrations. For mice bearing U251 or NSC11 brain tumors, VX-984 treatment alone had no significant effect on overall survival; radiation alone increased survival. The survival of mice receiving the combination protocol was significantly increased as compared with control and as compared with radiation alone. These results indicate that VX-984 enhances the radiosensitivity of brain tumor xenografts and suggest that it may be of benefit in the therapeutic management of GBM. Mol Cancer Ther; 17(6); 1207-16. ©2018 AACR.
Collapse
Affiliation(s)
- Cindy R Timme
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Barbara H Rath
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - John W O'Neill
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
37
|
Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 2018; 7:67235-67250. [PMID: 27626497 PMCID: PMC5341871 DOI: 10.18632/oncotarget.11972] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor with a dismal prognosis, shows a high level of chemo- and radioresistance and, therefore, attempts to sensitize glioma cells are highly desired. Here, we addressed the question of whether artesunate (ART), a drug currently used in the treatment of malaria, enhances the killing response of glioblastoma cells to temozolomide (TMZ), which is the first-line therapeutic for GBM. We measured apoptosis, necrosis, autophagy and senescence, and the extent of DNA damage in glioblastoma cells. Further, we determined the tumor growth in nude mice. We show that ART enhances the killing effect of TMZ in glioblastoma cell lines and in glioblastoma stem-like cells. The DNA double-strand break level induced by TMZ was not clearly enhanced in the combined treatment regime. Also, we did not observe an attenuation of TMZ-induced autophagy, which is considered a survival mechanism. However, we observed a significant effect of ART on homologous recombination (HR) with downregulation of RAD51 protein expression and HR activity. Further, we found that ART is able to inhibit senescence induced by TMZ. Since HR and senescence are pro-survival mechanisms, its inhibition by ART appears to be a key node in enhancing the TMZ-induced killing response. Enhancement of the antitumor effect of TMZ by co-administration of ART was also observed in a mouse tumor model. In conclusion, the amelioration of TMZ-induced cell death upon ART co-treatment provides a rational basis for a combination regime of TMZ and ART in glioblastoma therapy.
Collapse
|
38
|
Weatherbee JL, Kraus JL, Ross AH. ER stress in temozolomide-treated glioblastomas interferes with DNA repair and induces apoptosis. Oncotarget 2018; 7:43820-43834. [PMID: 27286262 PMCID: PMC5190062 DOI: 10.18632/oncotarget.9907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor. Radiation in combination with temozolomide (TMZ), the current chemotherapeutic for GBMs, only provides 12–14 months survival post diagnosis. Because GBMs are dependent on both activation of the DNA damage pathway and the endoplasmic reticulum (ER) stress response, we asked if a novel ER stress inducing agent, JLK1486, increases the efficacy of TMZ. We found that the combination of TMZ+JLK1486 resulted in decreased proliferation in a panel of adherent GBM cells lines and reduced secondary sphere formation in non-adherent and primary lines. Decreased proliferation correlated with increased cell death due to apoptosis. We found prolonged ER stress in TMZ+JLK1486 treated cells that resulted in sustained activation of the unfolded protein response (UPR) through increased levels of BiP, ATF4, and CHOP. In addition, TMZ+JLK1486 treatment caused decreased RAD51 levels, impairing DNA damage repair. Furthermore, we found delayed time to tumor doubling in TMZ+JLK1486 treated mice. Our data shows that the addition of JLK1486 to TMZ increases the efficaciousness of the treatment by decreasing proliferation and inducing cell death. We propose increased cell death is due to two factors. One, prolonged ER stress driving the expression of the pro-apoptotic transcription factor CHOP, and, second, unresolved DNA double strand breaks, due to decreased RAD51 levels. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between unresolved ER stress and the DNA damage response pathway.
Collapse
Affiliation(s)
- Jessica L Weatherbee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean-Louis Kraus
- Developmental Biology Institute of Marseille-Luminy (IBDML), Aix-Marseille University (AMU) and CNRS, UMR 7288, IBDML, Case 907, Marseille, France
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
RAD51C/XRCC3 Facilitates Mitochondrial DNA Replication and Maintains Integrity of the Mitochondrial Genome. Mol Cell Biol 2018; 38:MCB.00489-17. [PMID: 29158291 DOI: 10.1128/mcb.00489-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying mitochondrial genome maintenance have recently gained wide attention, as mutations in mitochondrial DNA (mtDNA) lead to inherited muscular and neurological diseases, which are linked to aging and cancer. It was previously reported that human RAD51, RAD51C, and XRCC3 localize to mitochondria upon oxidative stress and are required for the maintenance of mtDNA stability. Since RAD51 and RAD51 paralogs are spontaneously imported into mitochondria, their precise role in mtDNA maintenance under unperturbed conditions remains elusive. Here, we show that RAD51C/XRCC3 is an additional component of the mitochondrial nucleoid having nucleus-independent roles in mtDNA maintenance. RAD51C/XRCC3 localizes to the mtDNA regulatory regions in the D-loop along with the mitochondrial polymerase POLG, and this recruitment is dependent upon Twinkle helicase. Moreover, upon replication stress, RAD51C and XRCC3 are further enriched at the mtDNA mutation hot spot region D310. Notably, the absence of RAD51C/XRCC3 affects the stability of POLG on mtDNA. As a consequence, RAD51C/XRCC3-deficient cells exhibit reduced mtDNA synthesis and increased lesions in the mitochondrial genome, leading to overall unhealthy mitochondria. Together, these findings lead to the proposal of a mechanism for a direct role of RAD51C/XRCC3 in maintaining mtDNA integrity under replication stress conditions.
Collapse
|
40
|
Croglio MP, Haake JM, Ryan CP, Wang VS, Lapier J, Schlarbaum JP, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque JR, Albanese C, Yarden RI. Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget 2017; 7:13984-4001. [PMID: 26910887 PMCID: PMC4924693 DOI: 10.18632/oncotarget.7414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/28/2022] Open
Abstract
Strigolactones are a novel class of plant hormones produced in roots that regulate shoot and root development. We previously reported that strigolactone analogs (SLs) induce G2/M cell cycle arrest and apoptosis in a variety of human cancer cells and inhibit tumor growth of human breast cancer xenografts in mice. SLs had no significant influences on non-transformed cells. Here we report for the first time that SLs induce DNA damage in the form of DNA double-strand breaks (DSBs) and activate the DNA damage response signaling by inducing phosphorylation of ATM, ATR and DNA-PKcs and co-localization of the DNA damage signaling protein, 53BP1, with γH2AX nuclear foci. We further report that in addition to DSBs induction, SLs simultaneously impair DSBs repair, mostly homology-directed repair (HDR) and to a lesser extent non-homologous end joining (NHEJ). In response to SLs, RAD51, the homologous DSB repair protein, is ubiquitinated and targeted for proteasomal degradation and it fails to co-localize with γH2AX foci. Interestingly, SLs synergize with DNA damaging agents-based therapeutics. The combination of PARP inhibitors and SLs showed an especially potent synergy, but only in BRCA1-proficient cells. No synergy was observed between SLs and PARP inhibitors in BRCA1-deficient cells, supporting a role for SLs in HDR impairment. Together, our data suggest that SLs increase genome instability and cell death by a unique mechanism of inducing DNA damage and inhibiting DNA repair.
Collapse
Affiliation(s)
- Michael P Croglio
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jefferson M Haake
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Colin P Ryan
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Victor S Wang
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jennifer Lapier
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jamie P Schlarbaum
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Yaron Dayani
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Emma Artuso
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet Dagan, Israel
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yu Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas Tricoli
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jeannine R LaRocque
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Christopher Albanese
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, NW, Washington DC, USA
| | - Ronit I Yarden
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| |
Collapse
|
41
|
Dungrawala H, Bhat KP, Le Meur R, Chazin WJ, Ding X, Sharan SK, Wessel SR, Sathe AA, Zhao R, Cortez D. RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks. Mol Cell 2017; 67:374-386.e5. [PMID: 28735897 PMCID: PMC5548441 DOI: 10.1016/j.molcel.2017.06.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023]
Abstract
RAD51 promotes homology-directed repair (HDR), replication fork reversal, and stalled fork protection. Defects in these functions cause genomic instability and tumorigenesis but also generate hypersensitivity to cancer therapeutics. Here we describe the identification of RADX as an RPA-like, single-strand DNA binding protein. RADX is recruited to replication forks, where it prevents fork collapse by regulating RAD51. When RADX is inactivated, excessive RAD51 activity slows replication elongation and causes double-strand breaks. In cancer cells lacking BRCA2, RADX deletion restores fork protection without restoring HDR. Furthermore, RADX inactivation confers chemotherapy and PARP inhibitor resistance to cancer cells with reduced BRCA2/RAD51 pathway function. By antagonizing RAD51 at forks, RADX allows cells to maintain a high capacity for HDR while ensuring that replication functions of RAD51 are properly regulated. Thus, RADX is essential to achieve the proper balance of RAD51 activity to maintain genome stability.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kamakoti P Bhat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rémy Le Meur
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aditya A Sathe
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
42
|
Ning J, Wakimoto H, Peters C, Martuza RL, Rabkin SD. Rad51 Degradation: Role in Oncolytic Virus-Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma. J Natl Cancer Inst 2017; 109:1-13. [PMID: 28376211 DOI: 10.1093/jnci/djw229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
Background Clinical success of poly(ADP-ribose) polymerase inhibitors (PARP i ) has been limited to repair-deficient cancers and by resistance. Oncolytic herpes simplex viruses (oHSVs) selectively kill cancer cells, irrespective of mutation, and manipulate DNA damage responses (DDR). Here, we explore potential synthetic lethal-like interactions between oHSV and PARP i . Methods The efficacy of combining PARP i , oHSV MG18L, and G47Δ in killing patient-derived glioblastoma stem cells (GSCs) was assessed using cell viability assays and Chou-Talalay synergy analysis. Effects on DDR pathways, apoptosis, and cell cycle after manipulation with pharmacological inhibitors and lentivirus-mediated knockdown or overexpression were examined by immunoblotting and FACS. In vivo efficacy was evaluated in two GSC-derived orthotopic xenograft models (n = 7-8 per group). All statistical tests were two-sided. Results GSCs are differentially sensitive to PARP i despite uniform inhibition of PARP activity. oHSV sensitized GSCs to PARP i , irrespective of their PARP i sensitivity through selective proteasomal degradation of key DDR proteins; Rad51, mediating the combination effects; and Chk1. Rad51 degradation required HSV DNA replication. This synthetic lethal-like interaction increased DNA damage, apoptosis, and cell death in vitro and in vivo. Combined treatment of mice bearing PARP i -sensitive or -resistant GSC-derived brain tumors greatly extended median survival compared to either agent alone (vs olaparib: P ≤.001; vs MG18L: P = .005; median survival for sensitive of 83 [95% CI = 77 to 86], 94 [95% CI = 75 to 107], 102 [95% CI = 85 to 110], and 131 [95% CI = 108 to 170] days and for resistant of 54 [95% CI = 52 to 58], 56 [95% CI = 52 to 61], 62 [95% CI = 56 to 72], and 75 [95% CI = 64 to 90] days for mock, PARPi, oHSV, and combination, respectively). Conclusions The unique oHSV property to target multiple components of DDR generates cancer selective sensitivity to PARP i . This combination of oHSV with PARP i is a new anticancer strategy that overcomes the clinical barriers of PARP i resistance and DNA repair proficiency and is applicable not only to glioblastoma, an invariably lethal tumor, but also to other tumor types.
Collapse
Affiliation(s)
- Jianfang Ning
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Cole Peters
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.,Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Robert L Martuza
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.,Program in Virology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Nikolova T, Kiweler N, Krämer OH. Interstrand Crosslink Repair as a Target for HDAC Inhibition. Trends Pharmacol Sci 2017; 38:822-836. [PMID: 28687272 DOI: 10.1016/j.tips.2017.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022]
Abstract
DNA interstrand crosslinks (ICLs) covalently connect complementary DNA strands. Consequently, DNA replication and transcription are hampered, DNA damage responses (DDR) are initiated, and cell death is triggered. Therefore, drugs inducing ICLs are effective against rapidly growing cancer cells. However, tumors engage a complicated enzymatic machinery to repair and survive ICLs. Several factors, including the post-translational acetylation/deacetylation of lysine residues within proteins, control this network. Histone deacetylases (HDACs) modulate the expression and functions of DNA repair proteins which remove ICLs and control the accessibility of chromatin. Accordingly, histone deacetylase inhibitors (HDACi) are small, pharmacologically and clinically relevant molecules that sensitize cancer cells to ICL inducers. We discuss the mechanism of ICL repair and targets of HDACi within this pathway.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | - Nicole Kiweler
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| |
Collapse
|
44
|
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; 6:S875-S891. [PMID: 30574452 PMCID: PMC6298755 DOI: 10.21037/tcr.2017.06.02] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the fight against cancer. It is non-invasive and painless, and with advanced tumor imaging and beam control systems, radiation can be delivered to patients safely, generally with minor or no adverse side effects, accounting for its increasing use against a broad range of tumors. Tumors and normal cells respond to radiation-induced DNA damage by activating a complex network of DNA damage signaling and repair pathways that determine cell fate including survival, death, and genome stability. DNA damage response (DDR) proteins represent excellent targets to augment radiotherapy, and many agents that inhibit key response proteins are being combined with radiation and genotoxic chemotherapy in clinical trials. This review focuses on how insights into molecular mechanisms of DDR pathways are translated to small animal preclinical studies, to clinical studies of naturally occurring tumors in companion animals, and finally to human clinical trials. Companion animal studies, under the umbrella of comparative oncology, have played key roles in the development of clinical radiotherapy throughout its >100-year history. There is growing appreciation that rapid translation of basic knowledge of DNA damage and repair systems to improved radiotherapy practice requires a comprehensive approach that embraces the full spectrum of cancer research, with companion animal clinical trials representing a critical bridge between small animal preclinical studies, and human clinical trials.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Allen
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
45
|
Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma. Cancers (Basel) 2017; 9:E57. [PMID: 28587121 PMCID: PMC5483876 DOI: 10.3390/cancers9060057] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022] Open
Abstract
Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.
Collapse
Affiliation(s)
- Laura Annovazzi
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| | - Marta Mellai
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| | - Davide Schiffer
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100 Vercelli, Italy.
| |
Collapse
|
46
|
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868:29-39. [PMID: 28143714 DOI: 10.1016/j.bbcan.2017.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O6-chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Herwig M Strik
- Department of Neurology, University Medical Center, Baldinger Strasse, 35033 Marburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
47
|
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:157-178. [PMID: 28840557 DOI: 10.1007/978-3-319-60733-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
Collapse
|
48
|
Berte N, Piée-Staffa A, Piecha N, Wang M, Borgmann K, Kaina B, Nikolova T. Targeting Homologous Recombination by Pharmacological Inhibitors Enhances the Killing Response of Glioblastoma Cells Treated with Alkylating Drugs. Mol Cancer Ther 2016; 15:2665-2678. [PMID: 27474153 DOI: 10.1158/1535-7163.mct-16-0176] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
Malignant gliomas exhibit a high level of intrinsic and acquired drug resistance and have a dismal prognosis. First- and second-line therapeutics for glioblastomas are alkylating agents, including the chloroethylating nitrosoureas (CNU) lomustine, nimustine, fotemustine, and carmustine. These agents target the tumor DNA, forming O6-chloroethylguanine adducts and secondary DNA interstrand cross-links (ICL). These cross-links are supposed to be converted into DNA double-strand breaks, which trigger cell death pathways. Here, we show that lomustine (CCNU) with moderately toxic doses induces ICLs in glioblastoma cells, inhibits DNA replication fork movement, and provokes the formation of DSBs and chromosomal aberrations. Since homologous recombination (HR) is involved in the repair of DSBs formed in response to CNUs, we elucidated whether pharmacologic inhibitors of HR might have impact on these endpoints and enhance the killing effect. We show that the Rad51 inhibitors RI-1 and B02 greatly ameliorate DSBs, chromosomal changes, and the level of apoptosis and necrosis. We also show that an inhibitor of MRE11, mirin, which blocks the formation of the MRN complex and thus the recognition of DSBs, has a sensitizing effect on these endpoints as well. In a glioma xenograft model, the Rad51 inhibitor RI-1 clearly enhanced the effect of CCNU on tumor growth. The data suggest that pharmacologic inhibition of HR, for example by RI-1, is a reasonable strategy for enhancing the anticancer effect of CNUs. Mol Cancer Ther; 15(11); 2665-78. ©2016 AACR.
Collapse
Affiliation(s)
- Nancy Berte
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Andrea Piée-Staffa
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Nadine Piecha
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Mengwan Wang
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Teodora Nikolova
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
49
|
Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:19-35. [PMID: 27543314 DOI: 10.1016/j.mrrev.2016.05.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.
Collapse
Affiliation(s)
- Hélène Erasimus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Matthieu Gobin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Simone Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
50
|
Krumm A, Barckhausen C, Kücük P, Tomaszowski KH, Loquai C, Fahrer J, Krämer OH, Kaina B, Roos WP. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Res 2016; 76:3067-77. [PMID: 26980768 DOI: 10.1158/0008-5472.can-15-2680] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR.
Collapse
Affiliation(s)
- Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Pelin Kücük
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Carmen Loquai
- Department of Dermatology, Medical Center of the University Mainz, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Bernd Kaina
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | - Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany.
| |
Collapse
|