1
|
Mai C, Fukui A, Saeki S, Takeyama R, Yamaya A, Shibahara H. Expression of NKp46 and other activating inhibitory receptors on uterine endometrial NK cells in females with various reproductive failures: A review. Reprod Med Biol 2025; 24:e12610. [PMID: 39807425 PMCID: PMC11725765 DOI: 10.1002/rmb2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition. Methods This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures. Main Findings Numerous studies have indicated that the natural cytotoxic receptors, killer cell immunoglobulin-like receptors, and C-type lectin receptors, particularly those expressed on uNK cells, play crucial roles in successful pregnancy. Conclusion As studies on human uNK cells are limited owing to the low availability of fertile samples, and the extrapolation of animal models has certain limitations, the in vivo role of uNK cells has not yet been fully elucidated. However, immunotherapies focusing on modulating uNK cell function have been controversial in terms of pregnancy outcomes. Further research is required to elucidate the role of uNK cells in reproduction.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesFirst Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Shinichiro Saeki
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ryu Takeyama
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ayano Yamaya
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| |
Collapse
|
2
|
Mai C, Yamamoto M, Shibahara H, Wang Q, Fukui A. Higher CD16 -NKp46 bright uterine endometrial natural killer cells may predict pregnancy success in women experiencing recurrent reproductive failure. Reprod Biomed Online 2024:104756. [PMID: 40318990 DOI: 10.1016/j.rbmo.2024.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 05/07/2025]
Abstract
RESEARCH QUESTION Could CD16-NKp46bright uterine endometrial natural killer (uNK) cells serve as a predictor of pregnancy success in women with unknown recurrent reproductive failure (URRF), and what are the underlying mechanisms involved? DESIGN A prospective study involving 63 women with URRF, followed up for 2 years. After age adjustment, 17 women remained in both the pregnant and non-pregnant groups. The pregnant group was further divided into the live birth (n = 10) and miscarriage (n = 4) groups, with three women lost to follow-up. Surface antigens expressed and cytokine produced in uNK cells were analysed with multicolour flow cytometry. RESULTS Expression NKp46+ uNK (P = 0.034), NKp46bright uNK (P = 0.045), CD16-NKp46bright uNK (P = 0.026), NKp46brightNKG2D+ uNK (P = 0.004) and NKp46+NKG2D+ uNK (P = 0.037) cells was significantly lower in the non-pregnant group compared with the pregnant group. Also, the expression of CD16-NKp46bright uNK cells was significantly (P = 0.040) higher in the live birth group compared with the non-pregnant group. The threshold 44.9% of CD16-NKp46bright uNK cells showed the largest area under the curve. Women with decreased CD16-NKp46bright uNK cells (<44.9%), produced significantly higher TNF-α+IFN-γ+ in CD56+ uNK (P = 0.014) and in CD56bright uNK cells (P = 0.013) and significantly lower TNF-α-IFN-γ- in CD56+ uNK (P = 0.039) and in CD56bright uNK cells (P = 0.017), and had an elevated risk of failing to achieve live birth or pregnancy (OR 21.60, 95% CI 2.14 to 218.58; P = 0.004 (OR 11.20, 95% CI 2.20 to 56.93; P = 0.005). CONCLUSIONS CD16-NKp46bright uNK cells are a protective factor as well as an appropriate candidate for predicting pregnancy success in URRF.
Collapse
Affiliation(s)
- Chuxian Mai
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510632, Guangdong, China.; Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Mayu Yamamoto
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Qiong Wang
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510632, Guangdong, China..
| | - Atsushi Fukui
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan..
| |
Collapse
|
3
|
Nörenberg J, Vida P, Bösmeier I, Forró B, Nörenberg A, Buda Á, Simon D, Erdő-Bonyár S, Jáksó P, Kovács K, Mikó É, Berki T, Mezősi E, Barakonyi A. Decidual γδT cells of early human pregnancy produce angiogenic and immunomodulatory proteins while also possessing cytotoxic potential. Front Immunol 2024; 15:1382424. [PMID: 38601161 PMCID: PMC11004470 DOI: 10.3389/fimmu.2024.1382424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
During pregnancy, the maternal immune system must allow and support the growth of the developing placenta while maintaining the integrity of the mother's body. The trophoblast's unique HLA signature is a key factor in this physiological process. This study focuses on decidual γδT cell populations and examines their expression of receptors that bind to non-classical HLA molecules, HLA-E and HLA-G. We demonstrate that decidual γδT cell subsets, including Vδ1, Vδ2, and double-negative (DN) Vδ1-/Vδ2- cells express HLA-specific regulatory receptors, such as NKG2C, NKG2A, ILT2, and KIR2DL4, each with varying dominance. Furthermore, decidual γδT cells produce cytokines (G-CSF, FGF2) and cytotoxic mediators (Granulysin, IFN-γ), suggesting functions in placental growth and pathogen defense. However, these processes seem to be controlled by factors other than trophoblast-derived non-classical HLA molecules. These findings indicate that decidual γδT cells have the potential to actively contribute to the maintenance of healthy human pregnancy.
Collapse
Affiliation(s)
- Jasper Nörenberg
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Péter Vida
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Isabell Bösmeier
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Barbara Forró
- Department of Pathology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Anna Nörenberg
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Buda
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Diana Simon
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Immunology and Biotechnology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Szabina Erdő-Bonyár
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Immunology and Biotechnology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Éva Mikó
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tímea Berki
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Immunology and Biotechnology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Emese Mezősi
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- First Department of Internal Medicine, University of Pécs Medical School, Clinical Center, Pécs, Hungary
| | - Alíz Barakonyi
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Center, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Feyaerts D, Benner M, Comitini G, Shadmanfar W, van der Heijden OW, Joosten I, van der Molen RG. NK cell receptor profiling of endometrial and decidual NK cells reveals pregnancy-induced adaptations. Front Immunol 2024; 15:1353556. [PMID: 38571943 PMCID: PMC10987737 DOI: 10.3389/fimmu.2024.1353556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Natural killer (NK) cells, with a unique NK cell receptor phenotype, are abundantly present in the non-pregnant (endometrium) and pregnant (decidua) humanuterine mucosa. It is hypothesized that NK cells in the endometrium are precursors for decidual NK cells present during pregnancy. Microenvironmental changes can alter the phenotype of NK cells, but it is unclear whether decidual NK cell precursors in the endometrium alter their NK cell receptor repertoire under the influence of pregnancy. To examine whether decidual NK cell precursors reveal phenotypic modifications upon pregnancy, we immunophenotyped the NK cell receptor repertoire of both endometrial and early-pregnancy decidual NK cells using flow cytometry. We showed that NK cells in pre-pregnancy endometrium have a different phenotypic composition compared to NK cells in early-pregnancy decidua. The frequency of killer-immunoglobulin-like receptor (KIR expressing NK cells, especially KIR2DS1, KIR2DL2L3S2, and KIR2DL2S2 was significantly lower in decidua, while the frequency of NK cells expressing activating receptors NKG2D, NKp30, NKp46, and CD244 was significantly higher compared to endometrium. Furthermore, co-expression patterns showed a lower frequency of NK cells co-expressing KIR3DL1S1 and KIR2DL2L3S2 in decidua. Our results provide new insights into the adaptations in NK cell receptor repertoire composition that NK cells in the uterine mucosa undergo upon pregnancy.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marilen Benner
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaia Comitini
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Irma Joosten
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Vomstein K, Egerup P, Kolte AM, Behrendt-Møller I, Boje AD, Bertelsen ML, Eiken CS, Reiersen MR, Toth B, la Cour Freiesleben N, Nielsen HS. Biopsy-free profiling of the uterine immune system in patients with recurrent pregnancy loss and unexplained infertility. Reprod Biomed Online 2023; 47:103207. [PMID: 37211442 DOI: 10.1016/j.rbmo.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
RESEARCH QUESTION What are the differences in menstrual blood lymphocytes between controls, patients with recurrent pregnancy loss (RPL) and patients with unexplained infertility (uINF)? DESIGN Prospective study including 46 healthy controls, 28 RPL and 11 uINF patients. A feasibility study compared lymphocyte compositions of endometrial biopsies and menstrual blood collected during the first 48 h of menstruation in seven controls. In all patients, peripheral and menstrual blood from the first and subsequent 24 h were analysed separately by flow cytometry, focusing on the main lymphocyte populations and natural killer (NK) cell subsets. RESULTS The first 24 h of menstrual blood resembles the uterine immune milieu as tested by endometrial biopsy. RPL patients showed significantly higher menstrual blood CD56+ NK cell numbers than controls (mean ± SD: 31.13 ± 7.52% versus 36.73 ± 5.4%, P = 0.002). Menstrual blood CD56dimCD16bright NK cells within the CD56+ NK cell population were decreased in RPL (16.34 ± 14.65%, P = 0.011) and uINF (15.7 ± 5.91%, P = 0.02) patients versus control (20.42 ± 11.53%). uINF patients had the lowest menstrual blood CD3+ T cell counts (38.81 ± 5.04%, control versus uINF: P = 0.01) and cytotoxicity receptors NKp46 and NKG2D on CD56brightCD16dim cells were higher in uINF (68.12 ± 11.84%, P = 0.006; 45.99 ± 13.83%, P = 0.01, respectively) and RPL (NKp46: 66.21 ± 15.36%, P = 0.009) patients versus controls. RPL and uINF patients had higher peripheral CD56+ NK cell counts versus controls (11.42 ± 4.05%, P = 0.021; 12.86 ± 4.29%, P = 0.009 versus 8.4 ± 3.5%). CONCLUSIONS Compared with controls, RPL and uINF patients had a different menstrual blood-NK-subtype profile, indicating an altered cytotoxicity. In future studies, this non-invasive analysis might enable identification and monitoring of patients receiving immunomodulatory medications.
Collapse
Affiliation(s)
- Kilian Vomstein
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark.
| | - Pia Egerup
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Astrid Marie Kolte
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Ida Behrendt-Møller
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark
| | - Amalie Dyhrberg Boje
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Marie-Louise Bertelsen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Sofie Eiken
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Michelle Raupelyté Reiersen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nina la Cour Freiesleben
- Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhu J, Song G, Zhou X, Han TL, Yu X, Chen H, Mansell T, Novakovic B, Baker PN, Cannon RD, Saffery R, Chen C, Zhang H. CD39/CD73 Dysregulation of Adenosine Metabolism Increases Decidual Natural Killer Cell Cytotoxicity: Implications in Unexplained Recurrent Spontaneous Abortion. Front Immunol 2022; 13:813218. [PMID: 35222389 PMCID: PMC8866181 DOI: 10.3389/fimmu.2022.813218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Unexplained recurrent spontaneous abortion (URSA) is believed to be associated with impaired immunosuppression at the maternal-fetal interface, but the detailed molecular mechanism remains unclear. The ATP-adenosine metabolic pathway regulated by CD39/CD73 has recently been recognized to be important in immunosuppression. This study aimed to investigate the regulation of decidual natural killer (dNK) cells and fetal extravillous trophoblast (EVT) cells by CD39 and CD73 in URSA, as well as the possible regulatory mechanism of CD39/CD73 via the TGF-β-mTOR-HIF-1α pathway using clinical samples and cell models. Fewer CD39+ and CD73+ cells were found in the URSA decidual and villous tissue, respectively. Inhibition of CD39 on dNK cells transformed the cells to an activated state with increased toxicity and decreased apoptosis, and changed their cytokine secretion, leading to impaired invasion and proliferation of the co-cultured HTR8/SVneo cells. Similarly, inhibition of CD73 on HTR8/SVneo cells decreased the adenosine concentration in the cell culture media, increased the proportion of CD107a+ dNK cells, and decreased the invasion and proliferation capabilities of the HTR8/SVneo cells. In addition, transforming growth factor-β (TGF-β) triggered phosphorylation of mammalian target of rapamycin (mTOR) and Smad2/Smad3, which subsequently activated hypoxia-inducible factor-1α (HIF-1α) to induce the CD73 expression on the HTR8/SVneo cells. In summary, reduced numbers of CD39+ and CD73+ cells at the maternal-fetal interface, which may be due to downregulated TGF-β-mTOR-HIF-1α pathway, results in reduced ATP-adenosine metabolism and increased dNK cytotoxicity, and potentially contributes to URSA occurrences.
Collapse
Affiliation(s)
- Jianan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangmin Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Lash GE. Uterine Natural Killer Cells and Implantation. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s2661318221500195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decidual leukocytes make up approximately 30% of all decidual stromal cells in early pregnancy, of which 70% are uterine natural killer (uNK) cells. uNK cells are phenotypically distinct from peripheral blood NK cells, being CD56[Formula: see text]CD16[Formula: see text]. A recent single-cell sequencing project of the decidua identified three subsets of uNK cells, but we are yet to determine how they differ functionally. Several roles for uNK cells in implantation are starting to emerge including biosensing of poor-quality embryos, killing of bacteria infected trophoblast, spiral artery remodeling, and regulation of trophoblast invasion. Altered numbers of uNK cells have been identified in several pathological conditions, but whether this is causative of the condition is currently unclear.
Collapse
Affiliation(s)
- Gendie E. Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
11
|
Tantengco OAG, Richardson L, Lee A, Kammala A, Silva MDC, Shahin H, Sheller-Miller S, Menon R. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel) 2021; 11:life11101061. [PMID: 34685432 PMCID: PMC8537334 DOI: 10.3390/life11101061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Immune homeostasis of the intrauterine cavity is vital for pregnancy maintenance. At term or preterm, fetal and maternal tissue inflammation contributes to the onset of labor. Though multiple immune-modulating molecules are known, human leukocyte antigen (HLA)-G is unique to gestational tissues and contributes to maternal–fetal immune tolerance. Several reports on HLA-G’s role exist; however, ambiguity exists regarding its functional contributions during pregnancy and parturition. To fill these knowledge gaps, a systematic review (SR) of the literature was conducted to better understand the expression, localization, function, and regulation of HLA-G during pregnancy and parturition. Methods: A SR of the literature on HLA-G expression and function reported in reproductive tissues during pregnancy, published between 1976–2020 in English, using three electronic databases (SCOPE, Medline, and ClinicalTrials.gov) was conducted. The selection of studies, data extraction, and quality assessment were performed in duplicate by two independent reviewers. Manuscripts were separated into three categories: (1) expression and localization of HLA-G, (2) regulators of HLA-G, and (3) the mechanistic roles of HAL-G. Data were extracted, analyzed, and summarized. Results: The literature search yielded 2554 citations, 117 of which were selected for full-text evaluation, and 115 were included for the final review based on our inclusion/exclusion criteria. HLA-G expression and function were mostly studied in placental tissue and/or cells and peripheral blood immune cells, while only 13% of the studies reported data on amniotic fluid/cord blood and fetal membranes. Measurements of soluble and membranous HLA-G were determined mostly by RNA-based methods and protein by immunostaining, Western blot, or flow cytometric analyses. HLA-G was reported to regulate inflammation and inhibit immune-cell-mediated cytotoxicity and trophoblast invasion. Clinically, downregulation of HLA-G is reported to be associated with poor placentation in preeclampsia and immune cell infiltration during ascending infection. Conclusions: This SR identified several reports supporting the hypothesized role of immune regulation in gestational tissues during pregnancy. A lack of rigor and reproducibility in the experimental approaches and models in several reports make it difficult to fully elucidate the mechanisms of action of HLA-G in immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1101, Philippines
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Alan Lee
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ananthkumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Mariana de Castro Silva
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu 18618-687, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Samantha Sheller-Miller
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Correspondence:
| |
Collapse
|
12
|
Mikhailova V, Khokhlova E, Grebenkina P, Salloum Z, Nikolaenkov I, Markova K, Davidova A, Selkov S, Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology 2021; 226:152125. [PMID: 34365089 DOI: 10.1016/j.imbio.2021.152125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
NK cell development is affected by their cellular microenvironment and cytokines, including IL-15 and IL-18. NK cells can differentiate in secondary lymphoid organs, liver and within the uterus in close contact with trophoblast cells. The aim was to evaluate changes in the NK cell phenotype and function in the presence of IL-15, IL-18 and JEG-3, a trophoblast cell line. When cocultured with JEG-3 cells, IL-15 caused an increase in the number of NKG2D+ NK-92 cells and the intensity of CD127 expression. IL-18 stimulates an increase in the amount of NKp44+ NK-92 cells and in the intensity of NKp44 expression by pNK in the presence of trophoblast cells. NK-92 cell cytotoxic activity against JEG-3 cells increased only in presence of IL-18. Data on changes in the cytotoxic activity of NK-92 cells against JEG-3 cells in the presence of IL-15 and IL-18 indicate the modulation of NK cell function both by the cytokine microenvironment and directly by target cells. IL-15 and IL-18 were present in conditioned media (CM) from 1st and 3rd trimester placentas. In the presence of 1st trimester CM and JEG-3 cells, NK-92 cells showed an increase in the intensity of NKG2D expression. In the presence of 3rd trimester CM and JEG-3 cells, a decrease in the expression of NKG2D by NK-92 cells was observed. Thus, culturing of NK-92 cells with JEG-3 trophoblast cells stimulated a pronounced change in the NK cell phenotype, bringing it closer to the decidual NK cell-like phenotype.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Evgeniia Khokhlova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Polina Grebenkina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Zeina Salloum
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Igor Nikolaenkov
- Department of Obstetrics, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Kseniya Markova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Alina Davidova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Dmitriy Sokolov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| |
Collapse
|
13
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics 2021; 22:377. [PMID: 34022808 PMCID: PMC8141133 DOI: 10.1186/s12864-021-07701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subfertility is a major problem in modern horse breeding. Especially, mares without clinical signs of reproductive diseases, without known uterine pathogens and no evidence of inflammation but not becoming pregnant after several breeding attempts are challenging for veterinarians. To obtain new insights into the cause of these fertility problems and aiming at improving diagnosis of subfertile mares, a comparative analysis of the intrauterine transcriptome in subfertile and fertile mares was performed. Uterine cytobrush samples were collected during estrus from 57 mares without clinical signs of uterine diseases. RNA was extracted from the cytobrush samples and samples from 11 selected subfertile and 11 fertile mares were used for Illumina RNA-sequencing. Results The cytobrush sampling was a suitable technique to isolate enough RNA of high quality for transcriptome analysis. Comparing subfertile and fertile mares, 114 differentially expressed genes (FDR = 10%) were identified. Metascape enrichment analysis revealed that genes with lower mRNA levels in subfertile mares were related to ‘extracellular matrix (ECM)’, ‘ECM-receptor interaction’, ‘focal adhesion’, ‘immune response’ and ‘cytosolic calcium ion concentration’, while DEGs with higher levels in subfertile mares were enriched for ‘monocarboxyl acid transmembrane transport activity’ and ‘protein targeting’. Conclusion Our study revealed significant differences in the uterine transcriptome between fertile and subfertile mares and provides leads for potential uterine molecular biomarkers of subfertility in the mare. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07701-3.
Collapse
|
15
|
Circulating CD56+ NKG2D+ NK cells and postoperative fertility in ovarian endometrioma. Sci Rep 2020; 10:18598. [PMID: 33122818 PMCID: PMC7596045 DOI: 10.1038/s41598-020-75570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
The current biomarkers for postoperative fertility assessment caused by ovarian endometrioma (OE) are insufficient. The present study hypothesized that the peripheral lymphocyte subpopulation can be used as a candidate biomarker of postoperative infertility in OE. The association of the number of circulating CD4/CD8 T, NK, and γδ T cells with postoperative fertility was assessed in 33 OE patients aged 20 ~ 40 years between June 2018 and January 2019. Concomitantly, 68 healthy female subjects were recruited. The changes in the baseline immune characteristics between the two groups were compared. The data demonstrated significant differences in the ratio of CD4/CD8 T cells and the number of CD56+ NKG2D+ NK cells and γδ T cells between OE patients and control subjects. The patients were followed-up till December 2019 and the number of CD56+ NKG2D+ NK cells in the cases was a significant predictor for postoperative fertility as determined by different COX regression models (crude HR = 0.220, 95% CI = 0.059–0.822; adjusted HR = 0.127, 95% CI = 0.024–0.675). A significant delay to successful pregnancy was noted in OE patients (median time, 173 vs. 99 days, log-rank P = 0.013). The present findings suggested that CD56+ NKG2D+ NK cells are a candidate biomarker of postoperative fertility in OE patients. Larger population studies are warranted.
Collapse
|
16
|
Abdian Asl A, Vaziri Nezamdoust F, Fesahat F, Astani A, Barati M, Raee P, Asadi-Saghandi A. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study. J OBSTET GYNAECOL 2020; 41:774-778. [PMID: 33063590 DOI: 10.1080/01443615.2020.1798906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer group 2, member D (NKG2D) is one of the best known activating receptors of NK cells, which recognises its ligand on altered or stressed cells and activates NK cells to kill them. In this study, the single nucleotide polymorphism of the NKG2D gene for rs1049174 mutation was compared in 140 women with recurrent spontaneous abortion (RSA) and 175 control women with at least one successful pregnancy and without any known pregnancy loss. The findings just revealed that GG genotype and G allele were significantly higher in the case group compared with the control group (p < .001). Our results regarding decreased risk of RSA in C allele (OR = 0.438; 95%CI = 0.310-0.619; p < .001), and GC genotype (OR = 0.492; 95%CI = 0.214-0.574; p < .001) compared with G allele and GG genotype respectively. This study demonstrated a significant association between NKG2D gene polymorphism (rs1049174 G/C) and the risk of RSA in Iranian women.Impact statementWhat is already known on this subject? According to previous investigations, maternal immune responses may affect the foetus, causing recurrent spontaneous abortion (RSA). The main cause of RSA has not yet been detected in nearly 50% of the cases.What do the results of this study add? The results showed that the frequency of G allele and C allele were significantly different in the case group and control group.What are the implications of these findings for clinical practice and/or further research? The results suggest a protective function of C allele because it significantly decreased the risk of RSA compared to G allele. It improves inhibition of NK cells and probably participates in maintaining pregnancy in fertile controls; whereas, G allele is related to a slight inhibition of NK cells, probably leading to increase effectiveness of NK activation and undesirable inflammation, which consequently causes foetal rejection.
Collapse
Affiliation(s)
- Amir Abdian Asl
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meisam Barati
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Anatomy and Reproductive Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Asadi-Saghandi
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Lu H, Jin LP, Huang HL, Ha SY, Yang HL, Chang RQ, Li DJ, Li MQ. Trophoblast-derived CXCL12 promotes CD56 bright CD82 - CD29 + NK cell enrichment in the decidua. Am J Reprod Immunol 2019; 83. [PMID: 31650642 DOI: 10.1111/aji.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Decidual natural killer (dNK) cells play key roles in maternal-fetal immune regulation, trophoblast invasion, and vascular remodeling, and most dNK cell populations are CD56bright CD16- NK cells. However, the enrichment and redistribution of dNK cells in the local decidua have not been clarified yet. METHOD OF STUDY A total of 45 women with normal pregnancies and 8 unexplained recurrent spontaneous abortion (RSA) patients were included. We isolated primary human dNK (n = 53) and peripheral blood NK (pNK) cells (n = 5) from specimen and analyzed CD56, CD82, and CD29 by flow cytometry (FCM). We assessed their adhesion ability by cell counts of NK cells adhered to decidual stromal cells (DSCs) in a co-culture system. RESULTS We found that RSA patients had more CD56dim dNK cells with lower CD82 and higher CD29 than women with normal pregnancies. There were negative correlations of CD82 to CD29 on CD56dim and CD56+ dNK cells. In normal pregnancies, dNK cells had lower CD82 and higher CD29 expression with a stronger adhesion ability than pNK cells. Blocking CD82 on dNK cells increased the adhesive ability and CD29 expression, while blocking CD29 decreased the adhesive ability. Co-culturing dNK cells with trophoblast cells decreased CD82 expression and increased the adhesive ability of dNK cells and the percentage of CD56bright NK cells, while blocking trophoblast-derived CXCL12 increased CD82 expression, decreased CD29 expression, and impaired the adhesive ability of NK cells. CONCLUSION Trophoblast cells enhance the adhesive ability of NK cells to DSCs via the CXCL12/CD82/CD29 signaling pathway and contribute to CD56bright NK cell enrichment in the uterus.
Collapse
Affiliation(s)
- Han Lu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Lan Huang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Rui-Qi Chang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the
in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with
in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.
Collapse
Affiliation(s)
- Judith N Bulmer
- Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
19
|
Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity 2019; 48:951-962.e5. [PMID: 29768178 DOI: 10.1016/j.immuni.2018.03.030] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/20/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.
Collapse
|
20
|
Dunk C, Kwan M, Hazan A, Walker S, Wright JK, Harris LK, Jones RL, Keating S, Kingdom JCP, Whittle W, Maxwell C, Lye SJ. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front Endocrinol (Lausanne) 2019; 10:160. [PMID: 30949130 PMCID: PMC6436182 DOI: 10.3389/fendo.2019.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Failure of uterine vascular transformation is associated with pregnancy complications including Intra Uterine Growth Restriction (IUGR). The decidua and its immune cell populations play a key role in the earliest stages of this process. Here we investigate the hypothesis that abnormal decidualization and failure of maternal immune tolerance in the second trimester may underlie the uteroplacental pathology of IUGR. Placental bed biopsies were obtained from women undergoing elective caesarian delivery of a healthy term pregnancy, an IUGR pregnancy or a pregnancy complicated by both IUGR and preeclampsia. Decidual tissues were also collected from second trimester terminations from women with either normal or high uterine artery Doppler pulsatile index (PI). Immunohistochemical image analysis and flow cytometry were used to quantify vascular remodeling, decidual leukocytes and decidual status in cases vs. controls. Biopsies from pregnancies complicated by severe IUGR with a high uterine artery pulsatile index (PI) displayed a lack of: myometrial vascular transformation, interstitial, and endovascular extravillous trophoblast (EVT) invasion, and a lower number of maternal leukocytes. Apoptotic mural EVT were observed in association with mature dendritic cells and T cells in the IUGR samples. Second trimester pregnancies with high uterine artery PI displayed a higher incidence of small for gestational age fetuses; a skewed decidual immunology with higher numbers of; CD8 T cells, mature CD83 dendritic cells and lymphatic vessels that were packed with decidual leukocytes. The decidual stromal cells (DSCs) failed to differentiate into the large secretory DSC in these cases, remaining small and cuboidal and expressing lower levels of the nuclear progesterone receptor isoform B, and DSC markers Insulin Growth Factor Binding protein-1 (IGFBP-1) and CD10 as compared to controls. This study shows that defective progesterone mediated decidualization and a hostile maternal immune response against the invading endovascular EVT contribute to the failure of uterovascular remodeling in IUGR pregnancies.
Collapse
Affiliation(s)
- Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- *Correspondence: Caroline Dunk
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aleah Hazan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Sierra Walker
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Julie K. Wright
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Rebecca Lee Jones
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Sarah Keating
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C. P. Kingdom
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy Whittle
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Maxwell
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Natural Cytotoxicity Receptors in Decidua Natural Killer Cells of Term Normal Pregnancy. J Pregnancy 2018; 2018:4382084. [PMID: 30155304 PMCID: PMC6093011 DOI: 10.1155/2018/4382084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Aim To investigate the changes in the maternal immune system at term pregnancy, we studied the expression of natural cytotoxicity receptors (NCRs) and the cytokine production of NK cells in term placenta decidua and peripheral blood. Methods Term decidua and peripheral blood were taken from patients undergoing elective cesarean section. The lymphocytes were separated using density gradient centrifugation (DGC) from peripheral blood and were separated from decidua using DGC after enzyme digestion. These cells were stained with FITC anti-CD56 and Per-CP anti-CD3 monoclonal antibodies, and the NCRs were stained with PE-conjugated anti-NKG2D, NKp46, NKp30, and NKp44 monoclonal antibodies. Cytokines, including IFN-γ, TNF-α, IL-10, and TGF-β, were stained and then analyzed by flow cytometry. Results There were fewer cells positive for NKG2D, NKp46, and NKp30 among CD56+CD3- cells in deciduas than in peripheral blood, but the percentages of NKp44-positive cells in CD56+CD3- lymphocytes in deciduas tended to be higher. Conclusion The decreased expression of some NCRs in deciduas may be related to decreased cytotoxicity at term pregnancy, but the increased expression of NKp44 may affect the increased cytokine production in the decidua. Similarly, the expression of NCRs in the decidua may be connected to the maintenance of pregnancy at term.
Collapse
|
22
|
Wensveen FM, Jelenčić V, Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front Immunol 2018; 9:441. [PMID: 29568297 PMCID: PMC5852076 DOI: 10.3389/fimmu.2018.00441] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 01/11/2023] Open
Abstract
NKG2D is an activating receptor that is mostly expressed on cells of the cytotoxic arm of the immune system. Ligands of NKG2D are normally of low abundance, but can be induced in virtually any cell in response to stressors, such as infection and oncogenic transformation. Engagement of NKG2D stimulates the production of cytokines and cytotoxic molecules and traditionally this receptor is, therefore, viewed as a molecule that mediates direct responses against cellular threats. However, accumulating evidence indicates that this classical view is too narrow. During NK cell development, engagement of NKG2D has a long-term impact on the expression of NK cell receptors and their responsiveness to extracellular cues, suggesting a role in NK cell education. Upon chronic NKG2D engagement, both NK and T cells show reduced responsiveness of a number of activating receptors, demonstrating a role of NKG2D in induction of peripheral tolerance. The image that emerges is that NKG2D can mediate both inhibitory and activating signals, which depends on the intensity and duration of ligand engagement. In this review, we provide an overview of the impact of NKG2D stimulation during hematopoietic development and during acute and chronic stimulation in the periphery on responsiveness of other receptors than NKG2D. We propose that NKG2D interprets the context of the immunological environment through detection of cellular cues and in response sets the appropriate activation threshold for a large number of immune receptors. This perspective is of particular importance for future therapies that aim to exploit NKG2D signaling to fight tumors or infection.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Fu Q, Man X, Yu M, Chu Y, Luan X, Piao H, Xue J, Jin C. Human decidua mesenchymal stem cells regulate decidual natural killer cell function via interactions between collagen and leukocyte‑associated immunoglobulin‑like receptor 1. Mol Med Rep 2017; 16:2791-2798. [PMID: 28677766 DOI: 10.3892/mmr.2017.6921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/15/2017] [Indexed: 11/05/2022] Open
Abstract
The development of maternal tolerance to the fetal allograft in critical for the maintenance of the pregnancy, and it is accompanied by the development of a special decidual natural killer (dNK) cell tolerance phenotype. To understand the factors that influence dNK cells during early pregnancy, the present study aimed to identify mesenchymal stem cells (MSCs) from human first‑trimester deciduas, termed decidual MSCs (DMSCs), and to investigate the effect of DMSCs on the regulation of dNK cells via collagen. Decidual samples were collected from women with normal pregnancy that had undergone elective vaginal surgical terminations at 6‑9 weeks gestation. DMSCs derived from human decidual tissues were cultured under differentiation conditions to examine their multipotent differentiation capacities, and the expression of MSC‑specific markers, including cluster of differentiation (CD)44, CD73, CD105, CD90, CD34, CD31, CD14, CD45, CD11b and human leukocyte antigen‑antigen D related, was determined. dNK cells were co‑cultured with DMSCs in order to examine the effect of DMSCs on the tolerance phenotype of dNK cells. The expression of cell surface molecules, natural cytotoxicity triggering receptor 3 and killer cell immunoglobulin‑like receptor (KIR) 2DL1, and the secretion of cytokines, including interferon‑γ, tumor necrosis factor (TNF)‑α, interleukin (IL)‑10, IL‑4 and perforin, were examined by flow cytometry analysis. To determine whether the regulation of dNK cells by DMSCs was mediated by collagen, DMSCs were pre‑treated with human recombinant leukocyte‑associated immunoglobulin‑like receptor (LAIR)‑2 and transfected with pScoR‑GFP‑hP4H to inhibit the interaction between LAIR‑1 and collagen. The present results demonstrated that collagen produced by DMSCs increased the expression of KIR2DL1 and IL‑4, decrease the expression of NKp30 and TNF‑α. In conclusion, the results of the present study demonstrated that DMSCs may be cultured in vitro for prolonged periods, whilst retaining the ability to differentiate into different cell lineages. In addition, DMSCs may modulate the function of dNK cells via the interaction between collagen and LAIR‑1.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Min Yu
- Laboratory of Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Yongli Chu
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiying Luan
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hailan Piao
- Laboratory of Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Jiangnan Xue
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changzhu Jin
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
24
|
Morvan MG, Champsaur M, Reizis B, Lanier LL. Chronic In Vivo Interaction of Dendritic Cells Expressing the Ligand Rae-1ε with NK Cells Impacts NKG2D Expression and Function. Immunohorizons 2017; 1:10-19. [PMID: 28815225 PMCID: PMC5555644 DOI: 10.4049/immunohorizons.1700004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate how dendritic cells (DCs) interact with NK cells in vivo, we developed a novel mouse model in which Rae-1ε, a ligand of the NKG2D receptor, is expressed in cells with high levels of CD11c. In these CD11c-Rae1 mice, expression of Rae-1 was confirmed on all subsets of DCs and a small subset of B and T cells, but not on NK cells. DC numbers and activation status were unchanged, and NK cells in these CD11c-Rae1 mice presented the same Ly49 repertoire and maturation levels as their littermate wildtype controls. Early NK cell activation after mouse CMV infection was slightly lower than in wildtype mice, but NK cell expansion and viral control were comparable. Notably, we demonstrate that chronic interaction of NK cells with NKG2D ligand-expressing DCs leads to a reversible NKG2D down-modulation, as well as impaired NKG2D-dependent NK cell functions, including tumor rejection. In addition to generating a useful mouse model, our studies reveal in vivo the functional importance of the NK cell and DC cross-talk.
Collapse
Affiliation(s)
- Maelig G. Morvan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Marine Champsaur
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
25
|
Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood. Mucosal Immunol 2017; 10:322-331. [PMID: 27271316 DOI: 10.1038/mi.2016.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
Uterine natural killer (NK) cells are abundantly present in endometrium and decidua. Their function is governed by interactions between killer cell immunoglobulin-like receptors (KIRs) and cognate human leukocyte antigen (HLA) class I ligands. These interactions have implications for reproductive success. Whereas most uterine NK cells are known to express KIRs, little information is available about KIR repertoire formation and stability over time. This is primarily due to inherent difficulties in gaining access to human uterine tissue. As endometrial immune cells are shed during menstruation, menstrual blood may serve as a source for studies of KIRs on uterine NK cells. Here, we performed a combined assessment of six inhibitory and activating KIRs on uterine NK cells from paired menstrual and peripheral blood. Menstrual blood contained a high frequency of uterine NK cells expressing KIRs. The uterine NK cell KIR repertoires were markedly different from those in peripheral blood NK cells, biased toward KIR2D-receptor expression, and formed independently of selection conferred by cognate HLA class I molecules. Moreover, uterine NKG2C+self-KIR+ NK cell expansions were detected. Finally, the distinct KIR repertoires of uterine NK cells were stable over multiple menstrual cycles. Our results provide novel insight into KIR repertoire formation on human uterine NK cells.
Collapse
|
26
|
Hackmon R, Pinnaduwage L, Zhang J, Lye SJ, Geraghty DE, Dunk CE. Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12643] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rinat Hackmon
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle WA USA
- Division of MFM Obstetrics and Gynecology; OHSU; Portland Oregon USA
| | | | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Stephen J. Lye
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Daniel E. Geraghty
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle WA USA
| | - Caroline E. Dunk
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| |
Collapse
|
27
|
Shemesh A, Kugel A, Steiner N, Yezersky M, Tirosh D, Edri A, Teltsh O, Rosental B, Sheiner E, Rubin E, Campbell KS, Porgador A. NKp44 and NKp30 splice variant profiles in decidua and tumor tissues: a comparative viewpoint. Oncotarget 2016; 7:70912-70923. [PMID: 27765926 PMCID: PMC5342598 DOI: 10.18632/oncotarget.12292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/10/2016] [Indexed: 11/25/2022] Open
Abstract
NKp44 and NKp30 splice variant profiles have been shown to promote diverse cellular functions. Moreover, microenvironment factors such as TGF-β, IL-15 and IL-18 are able to influence both NKp44 and NKp30 splice variant profiles, leading to cytokine-associated profiles. Placenta and cancerous tissues have many similarities; both are immunologically privileged sites and both share immune tolerance mechanisms to support tissue development. Therefore, we studied the profiles of NKp44 and NKp30 splice variants in these states by comparing (i) decidua from pregnancy disorder and healthy gestation and (ii) matched normal and cancer tissue. Decidua samples had high incidence of both NKp44 and NKp30. In cancerous state it was different; while NKp30 expression was evident in most cancerous and matched normal tissues, NKp44 incidence was lower and was mostly associated with the cancerous tissues. A NKp44-1dominant inhibitory profile predominated in healthy pregnancy gestation. Interestingly, the NKp44-2/3 activation profile becomes the leading profile in spontaneous abortions, whereas balanced NKp44 profiles were observed in preeclampsia. In contrast, a clear preference for the NKp30a/b profile was evident in the 1st trimester decidua, yet no significant differences were observed for NKp30 profiles between healthy gestation and spontaneous abortions/preeclampsia. Both cancerous and matched normal tissues manifested balanced NKp30c inhibitory and NKp30a/b activation profiles with a NKp44-1dominant profile. However, a shift in NKp30 profiles between matched normal and cancer tissue was observed in half of the cases. To summarize, NKp44 and NKp30 splice variants profiles are tissue/condition specific and demonstrate similarity between placenta and cancerous tissues.
Collapse
Affiliation(s)
- Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aleksandra Kugel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Naama Steiner
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Yezersky
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Tirosh
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Teltsh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine and the Hopkins Marine Station, Stanford, CA, USA
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
28
|
Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations. Front Immunol 2016; 7:262. [PMID: 27446091 PMCID: PMC4927633 DOI: 10.3389/fimmu.2016.00262] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation.
Collapse
Affiliation(s)
- Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
29
|
Quillay H, El Costa H, Duriez M, Marlin R, Cannou C, Madec Y, de Truchis C, Rahmati M, Barré-Sinoussi F, Nugeyre MT, Menu E. NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua. Retrovirology 2016; 13:39. [PMID: 27267272 PMCID: PMC4895978 DOI: 10.1186/s12977-016-0271-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Background
During the first trimester of pregnancy, HIV-1 in utero transmission is rare despite the permissivity of the placenta and the decidua (the uterine mucosa during pregnancy) to infection. In the decidua from the first trimester of pregnancy, macrophages (dMs) are the HIV-1 main target cells. Decidual natural killer (dNK) cells account for 70 % of decidual leukocytes. They display distinct phenotype and functions compared to peripheral NK cells. At the periphery, NK cells are involved in the control of HIV-1 infection. In this study, we investigate whether human decidual natural killer (dNK) cells control dM HIV-1 infection. Results Autologous cocultures of infected dMs with dNK cells reveal that dNK cells strongly inhibit dM HIV-1 infection. The addition of dNK cells to dMs at different times after infection suggests that the control occurs before the complete establishment of the infection. Double chamber cocultures show that cellular contacts are necessary for an optimal control of infection. Nevertheless, soluble factors secreted by dMs and dNK cells in double chamber cocultures partially inhibit dM HIV-1 infection, indicating that soluble factors have also a role in the control of infection. IFN-γ secretion is increased in infected and uninfected cocultures. We show that IFN-γ is involved in the control of dM HIV-1 infection by dNK cells. Conclusions These results demonstrate that human dNK cells inhibit efficiently HIV-1 infection in dMs in vitro, and highlight the role of innate immune determinants in the control of HIV-1 transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Quillay
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - H El Costa
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France
| | - M Duriez
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Persistent Viral Infections (PVI) Team, Paris, France
| | - R Marlin
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France.,Immunology of Viral Infections and Autoimmune Diseases/IDMIT Infrastructure, CEA/DRF/iMETI/Division of Immuno-Virology, Université Paris Sud, Inserm U1184, Fontenay-aux-Roses, France.,Vaccine Research Institute (VRI), Créteil, France
| | - C Cannou
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France.,Immunology of Viral Infections and Autoimmune Diseases/IDMIT Infrastructure, CEA/DRF/iMETI/Division of Immuno-Virology, Université Paris Sud, Inserm U1184, Fontenay-aux-Roses, France
| | - Y Madec
- Unité d'Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France
| | - C de Truchis
- Gynecology-Obstetrics Service, A. Béclère Hospital, AP-HP, Clamart, France
| | - M Rahmati
- Gynecology-Obstetrics Service, Pitié Salpêtrière Hospital, AP-HP, Paris, France
| | - F Barré-Sinoussi
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France
| | - M T Nugeyre
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France.,Immunology of Viral Infections and Autoimmune Diseases/IDMIT Infrastructure, CEA/DRF/iMETI/Division of Immuno-Virology, Université Paris Sud, Inserm U1184, Fontenay-aux-Roses, France
| | - E Menu
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France. .,Immunology of Viral Infections and Autoimmune Diseases/IDMIT Infrastructure, CEA/DRF/iMETI/Division of Immuno-Virology, Université Paris Sud, Inserm U1184, Fontenay-aux-Roses, France.
| |
Collapse
|
30
|
Zhang J, Dunk CE, Kwan M, Jones RL, Harris LK, Keating S, Lye SJ. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy. Cell Mol Immunol 2015; 14:203-213. [PMID: 26277900 DOI: 10.1038/cmi.2015.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Decidual natural killer (dNK) cells express an array of activation receptors to regulate placental immunity and development during early pregnancy. We investigated the functional character of human dNK cells during the first and second trimester of gestation and the interaction between dNK and trophoblast cells. Although the frequency of CD56+CD16- dNK among the total CD45+ leukocytes did not change over this period, the expression of the activating receptors, NKp80 and NKG2D, was greatly upregulated. We observed a significantly higher number of extravillous trophoblast cells in proximity to the dNK cells in the first trimester in comparison with the second trimester decidua. NKG2D expression by first trimester dNK cells was decreased when co-cultured with the HTR-8 trophoblast cell line. In the second trimester, functional markers of dNK activation, i.e., angiogenic factor production (e.g., vascular endothelial growth factor, interleukin-8, interferon-gamma), remained stable despite an increase in NKp80 or NKG2D surface expression. Furthermore, the degranulation capacity of dNK cells, as assessed by CD107a, was decreased in the second trimester. We suggest that in the first trimester, trophoblast-dNK interactions generate a population of dNK cells with a suppressed activating phenotype. In the second trimester, the loss of trophoblast-dNK interactions led to the inhibition of dNK cell function, although their activating receptor expression was increased. We speculate that during pregnancy, two mechanisms operate to modulate the dNK cell activation:suppression of activating receptor levels in the first trimester by trophoblasts and disengagement of receptor-ligand coupling in the second trimester.
Collapse
Affiliation(s)
- Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Rebecca L Jones
- Institute of Human Development, University of Manchester, Manchester, M13 9WL, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Lynda K Harris
- Institute of Human Development, University of Manchester, Manchester, M13 9WL, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Sarah Keating
- Department of Pathology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON M5G 1L4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5G 1L4, Canada
| |
Collapse
|
31
|
Gibson DA, Greaves E, Critchley HOD, Saunders PTK. Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2. Hum Reprod 2015; 30:1290-301. [PMID: 25820695 PMCID: PMC4498222 DOI: 10.1093/humrep/dev067] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
STUDY QUESTION Does intrauterine biosynthesis of estrogen play an important role in early pregnancy by altering the function of uterine natural killer (uNK) cells? SUMMARY ANSWER Estrogens directly regulate the function of human uNK cells by increasing uNK cell migration and secretion of uNK cell-derived chemokine (C-C motif) ligand 2 (CCL2) that critically facilitates uNK-mediated angiogenesis. WHAT IS KNOWN ALREADY uNK cells are a phenotypically distinct population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. Recently we discovered that decidualisation of human endometrial stromal cells results in the generation of an estrogen-rich microenvironment in areas of decidualised endometrium. We hypothesize that intrauterine biosynthesis of estrogens plays an important role in early pregnancy by altering the function of uNK cells. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human uNK cells which were isolated from first trimester human decidua (n = 32). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary uNK cells were isolated from first trimester human decidua using magnetic cell sorting. The impact of estrogens on uNK cell function was assessed. Isolated uNK cells were treated with estrone (E1, 10−8 M) or estradiol (E2, 10−8 M) alone or in combination with the anti-estrogen ICI 182 780 (ICI, 10−6 M). uNK cell motility was assessed by transwell migration assay and time-lapse microscopy. Expression of chemokine receptors was assessed by quantitative PCR (qPCR) and immunohistochemistry, and angiogenic factors were assessed by qPCR and cytokine array. Concentrations of CCL2 in supernatants were measured by enzyme-linked immunosorbent assay. Angiogenesis was assessed in a human endometrial endothelial cell network formation assay. MAIN RESULTS AND THE ROLE OF CHANCE Treatment with either E1 or E2 increased uNK cell migration (P = 0.0092 and P = 0.0063, respectively) compared with control. Co-administration of the anti-estrogen ICI blocked the effects of E1 and E2 on cell migration. Concentrations of C-X-C chemokine receptor type 4 (CXCR4) mRNA in uNK cells were increased by E2 treatment. The network formation assay revealed that conditioned media from uNK cells treated with E2 significantly increased human endometrial endothelial cell (HEEC) angiogenesis (P = 0.0029 versus control). Analysis of media from uNK cells treated with E2 using an antibody array identified CCL2 as the most abundant cytokine. Validation assays confirmed concentrations of CCL2 mRNA and protein were increased by E2 in uNK cells (P < 0.05 versus controls). Compared with the control, recombinant human CCL2 was found to increase HEEC network formation (P < 0.05) and neutralization of CCL2 in uNK conditioned media significantly decreased E2-dependent uNK-mediated network formation (P = 0.0006). LIMITATIONS, REASONS FOR CAUTION Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in vivo in humans. Primary human uNK cells were isolated from first trimester decidua at a range of gestations (8–12 weeks), which may be a source of variation. Primary human uNK cells from non-pregnant endometrium were not assessed and therefore the responses of uNK cells to E2 treatment described in this study may be distinct to uNK cells from first trimester decidua. WIDER IMPLICATIONS OF THE FINDINGS E2 is an essential regulator of reproductive competence. This study demonstrates a critical role for E2 in regulating cellular cross-talk within the endometrium during early pregnancy. We provide the first evidence that E2 directly regulates the function of human uNK cells by altering uNK cell migration and the secretion of uNK-derived angiogenic factors. We describe a novel mechanism of estrogen-dependent secretion of CCL2 which critically mediates uNK-dependent endometrial angiogenesis. Dysregulation of uNK cell function has been implicated in the aetiology of early implantation disorders and disorders of pregnancy. These novel findings provide unique insight into the regulation of uNK cell activity during the establishment of pregnancy in women and highlight key processes which may be targeted in future therapeutic strategies. STUDY FUNDING/COMPETING INTEREST(S) Studies undertaken in the authors' laboratory were supported by MRC Programme Grant G1100356/1 to P.T.K.S. The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- D A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - E Greaves
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - H O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - P T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
32
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
33
|
Tessier DR, Yockell-Lelièvre J, Gruslin A. Uterine Spiral Artery Remodeling: The Role of Uterine Natural Killer Cells and Extravillous Trophoblasts in Normal and High-Risk Human Pregnancies. Am J Reprod Immunol 2014; 74:1-11. [PMID: 25472023 DOI: 10.1111/aji.12345] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022] Open
Abstract
The process of uterine spiral artery remodeling in the first trimester of human pregnancy is an essential part of establishing adequate blood perfusion of the placenta that will allow optimal nutrient/waste exchange to meet fetal demands during later development. Key regulators of spiral artery remodeling are the uterine natural killer cells and the invasive extravillous trophoblasts. The functions of these cells as well as regulation of their activation states and temporal regulation of their localization within the uterine tissue are beginning to be known. In this review, we discuss the roles of these two cell lineages in arterial remodeling events, their interaction/influence on one another and the outcomes of altered temporal, and spatial regulation of these cells in pregnancy complications.
Collapse
Affiliation(s)
- Daniel R Tessier
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Andrée Gruslin
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
34
|
Wallace AE, Whitley GS, Thilaganathan B, Cartwright JE. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J Leukoc Biol 2014; 97:79-86. [PMID: 25381387 PMCID: PMC4377829 DOI: 10.1189/jlb.2a0614-282r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HLA-interacting cell surface receptors are altered on decidual natural killer cells
in pregnancy, potentially altering interactions with fetal cells via chemokine
expression. During pregnancy, a specialized type of NK cell accumulates in the lining of the
uterus (decidua) and interacts with semiallogeneic fetal trophoblast cells. dNK cells
are functionally and phenotypically distinct from PB NK and are implicated in
regulation of trophoblast transformation of the uterine spiral arteries, which if
inadequately performed, can result in pregnancy disorders. Here, we have used uterine
artery Doppler RI in the first trimester of pregnancy as a proxy measure of the
extent of transformation of the spiral arteries to identify pregnancies with a high
RI, indicative of impaired spiral artery remodeling. We have used flow cytometry to
examine dNK cells isolated from these pregnancies compared with those from
pregnancies with a normal RI. We report a reduction in the proportion of dNK cells
from high RI pregnancies expressing KIR2DL/S1,3,5 and LILRB1, receptors for HLA-C and
HLA-G on trophoblast. Decreased LILRB1 expression in the decidua was examined by
receptor blocking in trophoblast coculture and altered dNK expression of the
cytokines CXCL10 and TNF-α, which regulate trophoblast
behavior. These results indicate that dNK cells from high RI pregnancies may display
altered interactions with trophoblast via decreased expression of HLA-binding
cell-surface receptors, impacting on successful transformation of the uterus for
pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| | - Guy S Whitley
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| | | | - Judith E Cartwright
- Institute of Cardiovascular and Cell Sciences, St George's University of London, United Kingdom; and
| |
Collapse
|
35
|
Wallace AE, Goulwara SS, Whitley GS, Cartwright JE. Oxygen modulates human decidual natural killer cell surface receptor expression and interactions with trophoblasts. Biol Reprod 2014; 91:134. [PMID: 25232021 DOI: 10.1095/biolreprod.114.121566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Sonu S Goulwara
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Guy S Whitley
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Judith E Cartwright
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
36
|
Duriez M, Quillay H, Madec Y, El Costa H, Cannou C, Marlin R, de Truchis C, Rahmati M, Barré-Sinoussi F, Nugeyre MT, Menu E. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation. Front Microbiol 2014; 5:316. [PMID: 25071732 PMCID: PMC4076550 DOI: 10.3389/fmicb.2014.00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022] Open
Abstract
Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.
Collapse
Affiliation(s)
- Marion Duriez
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France ; Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Sorbonne Universités, UPMC Univ Paris 06 Paris, France
| | - Héloïse Quillay
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France ; Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Yoann Madec
- Unité d'Epidémiologie des Maladies Emergentes, Institut Pasteur Paris, France
| | - Hicham El Costa
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Claude Cannou
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Romain Marlin
- UMR-CNRS-5164-CIRID, Université Bordeaux 2 Bordeaux, France
| | - Claire de Truchis
- Gynecology-Obstetrics Service, A. Béclère Hospital, AP-HP Clamart, France
| | - Mona Rahmati
- Gynecology-Obstetrics Service, Pitié Salpêtrière Hospital AP-HP Paris, France
| | - Françoise Barré-Sinoussi
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Marie-Thérèse Nugeyre
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Elisabeth Menu
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| |
Collapse
|
37
|
Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest 2014; 124:1872-9. [PMID: 24789879 PMCID: PMC4001528 DOI: 10.1172/jci68107] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pregnancy presents an immunological conundrum because two genetically different individuals coexist. The maternal lymphocytes at the uterine maternal-fetal interface that can recognize mismatched placental cells are T cells and abundant distinctive uterine NK (uNK) cells. Multiple mechanisms exist that avoid damaging T cell responses to the fetus, whereas activation of uNK cells is probably physiological. Indeed, genetic epidemiological data suggest that the variability of NK cell receptors and their MHC ligands define pregnancy success; however, exactly how uNK cells function in normal and pathological pregnancy is still unclear, and any therapies aimed at suppressing NK cells must be viewed with caution. Allorecognition of fetal placental cells by uNK cells is emerging as the key maternal-fetal immune mechanism that regulates placentation.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology and
Centre for Trophoblast Research, Physiology Building, University of Cambridge, Cambridge, United Kingdom.
Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge,United Kingdom
| | - Francesco Colucci
- Department of Pathology and
Centre for Trophoblast Research, Physiology Building, University of Cambridge, Cambridge, United Kingdom.
Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge,United Kingdom
| |
Collapse
|
38
|
Fu Q, Tao Y, Piao H, Du MR, Li DJ. Trophoblasts and decidual stromal cells regulate decidual NK cell functions via interaction between collagen and LAIR-1. Am J Reprod Immunol 2014; 71:368-78. [PMID: 24548186 DOI: 10.1111/aji.12211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 11/30/2022] Open
Abstract
PROBLEM To determine the effect of collagen from maternal-fetal interface on decidual natural killer cell (dNK) function. METHOD OF STUDY Decidual and villous samples were collected from normal pregnancy and miscarriage. The phenotype and cytokine production were analyzed, respectively, by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Co-culture was established to investigate the effect of trophoblasts and decidual stromal cells (DSCs) on dNKs. RESULTS Maternal-fetal interface of normal pregnancy showed higher collagen and LAIR-1 expression than that of miscarriage. Co-culture of dNKs with HTR-8/DSCs up-regulated LAIR-1 on dNKs that could be attenuated by pre-treatment with LAIR-2, a competitive inhibitor of LAIR-1. Collagen down-regulated expression of cell surface receptor activity and intracellular perforin, while it up-regulated expression of suppressive receptor on dNKs. Co-culture of dNKs with HTR-8/DSCs decreased perforin expression and Th1-type cytokines production by dNKs, which could be abrogated by LAIR-2. In addition, silence of collagen in HTR-8/DSCs by shRNA significantly attenuated regulation on dNKs. CONCLUSION Trophoblasts and DSCs regulate decidual NK cell functions via secreting collagen, which is involved in the maintenance of human pregnancy.
Collapse
Affiliation(s)
- Qiang Fu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics & Gynecology, Shanghai Medical School, Fudan University, Shanghai, China; Department of Immunology, Binzhou Medical University, Shandong, China
| | | | | | | | | |
Collapse
|
39
|
Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction 2013; 147:R1-14. [PMID: 24149515 DOI: 10.1530/rep-13-0358] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The term 'prostasomes' is generally used to classify the extracellular vesicles (EVs) released into prostatic fluid by prostate epithelial cells. However, other epithelia within the male reproductive tract also release EVs that mix with 'true' prostasomes during semen emission or ejaculation. Prostasomes have been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, as well as to stimulate sperm motility where all three are prerequisite processes for spermatozoa to attain fertilising capacity. Other proposed functions of prostasomes include interfering with the destruction of spermatozoa by immune cells within the female reproductive tract. On the other hand, it is unclear whether the distinct presumed functions are performed collectively by a single type of prostasome or by separate distinct sub-populations of EVs. Moreover, the exact molecular mechanisms through which prostasomes exert their functions have not been fully resolved. Besides their physiological functions, prostasomes produced by prostate tumour cells have been suggested to support prostate cancer spread development, and prostasomes in peripheral blood plasma may prove to be valuable biomarkers for prostate cancer.
Collapse
|
40
|
Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013; 5:208ra145. [PMID: 24154599 PMCID: PMC3918221 DOI: 10.1126/scitranslmed.3006702] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 37 parameters, including 28 NK cell receptors, on peripheral blood NK cells from 5 sets of monozygotic twins and 12 unrelated donors of defined human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6000 to 30,000 phenotypic populations within an individual and >100,000 phenotypes in the donor panel. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation.
Collapse
Affiliation(s)
- Amir Horowitz
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dara M. Strauss-Albee
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Leipold
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jessica Kubo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ozge C. Dogan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sally Mackey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Holden Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gary E. Swan
- Center for Health Sciences, SRI International, Menlo Park, CA, 94025, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paul J. Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manisha Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Catherine A. Blish
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
41
|
Guo Y, Lee CL, So KH, Gao J, Yeung WSB, Yao Y, Lee KF. Soluble human leukocyte antigen-g5 activates extracellular signal-regulated protein kinase signaling and stimulates trophoblast invasion. PLoS One 2013; 8:e76023. [PMID: 24098421 PMCID: PMC3787956 DOI: 10.1371/journal.pone.0076023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022] Open
Abstract
Soluble human leukocyte antigen-G (HLA-G) is a non-classical class Ib HLA molecule that is secreted from blastocysts. Soluble HLA-G modulates the immune tolerance of the mother and can be used as a prognostic factor for the clinical pregnancy rate. However, the underlying mechanism of how soluble HLA-G5 affects pregnancy remains largely unknown. We hypothesized that soluble HLA-G5 promotes successful implantation and pregnancy by modulating trophoblast invasion through receptor binding and activation of extracellular signal-regulated protein kinase (ERK) signaling pathway. Recombinant HLA-G5 protein over-expressed in E. coli BL21 was purified to near homogeneity. We studied the expression of HLA-G5 and its receptors, the leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) and killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4), in primary trophoblasts and trophoblastic (JAr and JEG-3) cell lines by florescence-labeled HLA-G5. HLA-G5 was detected in the primary trophoblasts and JEG-3 cells. The LILRB1 and KIR2DL4 receptors were expressed in both primary trophoblasts and trophoblastic cell lines. HLA-G5 stimulated cell invasion (p<0.05) and increased urokinase (uPA) and matrix metalloproteinases (MMPs) transcripts and their activity (p<0.05) in trophoblastic cells. HLA-G5 activated the ERK signaling pathway and induced ERK1/2 phosphorylation in the trophoblastic cell lines. Addition of ERK inhibitors (U0126 and PD98059) nullified the stimulatory effect of HLA-G5 on trophoblastic cell invasion. Taken together, HLA-G5 induced trophoblast invasion by binding to KIR2DL4 and LILRB1, by increasing uPA and MMPs expressions and by activating the ERK signaling pathway.
Collapse
Affiliation(s)
- YiFan Guo
- Department of Obstetrics and Gynaecology, Chinese PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development and Growth, The University of Hong Kong, Hong Kong SAR, China
| | - Kam-Hei So
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Gao
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development and Growth, The University of Hong Kong, Hong Kong SAR, China
| | - YuanQing Yao
- Department of Obstetrics and Gynaecology, Chinese PLA General Hospital, Beijing, China
- * E-mail: ckflee@ hku.hk (K-FL); (YQY)
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development and Growth, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: ckflee@ hku.hk (K-FL); (YQY)
| |
Collapse
|
42
|
Davidson CL, Cameron LE, Burshtyn DN. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol 2013; 26:21-33. [PMID: 24038602 DOI: 10.1093/intimm/dxt038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukocyte immunoglobulin-like receptor 1 (LILRB1) is an inhibitory receptor that binds classical and non-classical MHC-I as well as UL18, a viral MHC-I homolog. LILRB1 is encoded within the leukocyte receptor complex and is widely expressed on immune cells. Two distinct promoters used differentially by lymphoid and myeloid cells were previously identified, but little is known regarding molecular regulation of each promoter or cell-type-specific usage. Here, we have investigated the transcriptional regulation of human LILRB1 focusing on elements that drive expression in NK cells. We found that while both the distal and proximal promoter regions are active in reporter plasmids in lymphoid and myeloid cells, the proximal promoter is used minimally to transcribe LILRB1 in NK cells compared with monocytes. We defined a 120-bp core region of transcriptional activity in the distal promoter that can bind several factors in NK cell nuclear extracts. Within this region, we investigated overlapping putative AP-1 sites. An inhibitor of JNK decreased LILRB1 transcript in a LILRB1⁺ NK cell line. Upon examining binding of specific AP-1 factors, we found JunD associated with the LILRB1 distal promoter. Finally, depletion of JunD led to a decrease in distal promoter transcript, indicating an activating role for JunD in regulation of LILRB1 transcription. This study presents the first description of regions/factors required for activity of the LILRB1 distal promoter, the first description of a role for JunD in NK cells and suggests a potential mechanism for dynamic regulation of LILRB1 by cytokines.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, 6-043 Katz Building, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
43
|
Xiong S, Sharkey AM, Kennedy PR, Gardner L, Farrell LE, Chazara O, Bauer J, Hiby SE, Colucci F, Moffett A. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J Clin Invest 2013; 123:4264-72. [PMID: 24091323 DOI: 10.1172/jci68991] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
Reduced trophoblast invasion and vascular conversion in decidua are thought to be the primary defect of common pregnancy disorders including preeclampsia and fetal growth restriction. Genetic studies suggest these conditions are linked to combinations of polymorphic killer cell Ig-like receptor (KIR) genes expressed by maternal decidual NK cells (dNK) and HLA-C genes expressed by fetal trophoblast. Inhibitory KIR2DL1 and activating KIR2DS1 both bind HLA-C2, but confer increased risk or protection from pregnancy disorders, respectively. The mechanisms underlying these genetic associations with opposing outcomes are unknown. We show that KIR2DS1 is highly expressed in dNK, stimulating strong activation of KIR2DS1+ dNK. We used microarrays to identify additional responses triggered by binding of KIR2DS1 or KIR2DL1 to HLA-C2 and found different responses in dNK coexpressing KIR2DS1 with KIR2DL1 compared with dNK only expressing KIR2DL1. Activation of KIR2DS1+ dNK by HLA-C2 stimulated production of soluble products including GM-CSF, detected by intracellular FACS and ELISA. We demonstrated that GM-CSF enhanced migration of primary trophoblast and JEG-3 trophoblast cells in vitro. These findings provide a molecular mechanism explaining how recognition of HLA class I molecules on fetal trophoblast by an activating KIR on maternal dNK may be beneficial for placentation.
Collapse
|
44
|
Zhang J, Dunk CE, Lye SJ. Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod 2013; 28:3026-37. [PMID: 24001716 DOI: 10.1093/humrep/det339] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is sphingosine-1-phosphate (S1P) signalling involved in the regulation of the angiogenic function of decidual (d)NK cells during human pregnancy? SUMMARY ANSWER Human dNK cells, characterized by S1P receptor 5 (S1PR5) expression, are reactive to microenvironmental S1P to modify their VEGF expression and to regulate trophoblast migration and endothelial angiogenesis. WHAT IS KNOWN ALREADY S1P signalling can modulate peripheral (p)NK cells migration and function. As a unique NK population, human dNK can produce multiple cytokines and angiogenic growth factors to mediate extravillous trophoblast (EVT) invasion and spiral artery remodelling during pregnancy. STUDY DESIGN, SIZE, DURATION The study was designed to examine S1PR expression and function by freshly isolated human dNK cells in response to different S1P scenarios, created by FTY720, an S1P analogue and S1PR modulator. Ex vivo and in vitro experiments were performed to evaluate the functions of dNK cells. The study was performed between September 2011 and June 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Human peripheral blood and decidual samples were collected and the S1PR expression by the decidual leukocytes population was examined. FTY720-induced dNK phenotypic and functional changes (including VEGF and IL-8 expression) were evaluated by multi-colour flow cytometric assays and transwell migration studies. Human placental explant culture and wound healing assays were performed to investigate whether S1P-activated dNK mediated trophoblast migration while angiogenesis was assessed by human umbilical vein endothelial cells (HUVEC) tube formation assays. Both first and second trimester dNK cells were studied to compare the difference in S1PR expression over time at the fetal-maternal interface. MAIN RESULTS AND THE ROLE OF CHANCE Freshly isolated NK cells (CD45(+)CD56(+)CD16(-)) from blood (pNK) and decidua (dNK) had low S1PR1 reactivity while S1PR5 was prominently expressed by dNK (40%) and, to a lesser extent, by pNK (18%; P < 0.05) cells. S1PR5 expression by dNK was significantly down-regulated by FTY720 treatment, which also impaired decidual leukocyte mobility and cellular contact with invasive EVT. FTY720 significantly reduced VEGF expression by dNK, both in the numbers of VEGF(+) cells and in fluorescence intensity (P < 0.05). IL-8 expression by dNK was not changed by FTY720 and remained low at 8% positivity. Trophoblast migration and HUVEC tube formation were stimulated by control leukocytes, enriched CD56(+) dNK or their conditioned medium, respectively, but this effect was markedly abrogated once they were pretreated with FTY720 (P < 0.05). There was a significant decrease in S1PR5 expression in second trimester dNK cells, compared with those from first trimester (P < 0.05). No significant differences in the levels of angiogenic factors (VEGF or IL-8) were detected between first and second trimester dNK cells. LIMITATIONS, REASONS FOR CAUTION Our ex vivo and in vitro experimental samples were from healthy women undergoing elective pregnancy termination. FTY720 is a chemical ligand for the S1PRs; little is known regarding the levels or actions of the naturally occurring ligand S1P in human gestational tissues. The in vivo function of S1PR5(+) dNK may be further investigated by using a genetically modified animal model. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to investigate the role of S1PR and S1P interaction on dNK cell physiology and their downstream effects on trophoblast migration. We suggest that S1PR5 may represent a potential target for cellular targeted treatments for gestational diseases such as pre-eclampsia and intrauterine growth restriction that are characterized by inadequate dNK/trophoblast-coordinated uterine spiral artery transformation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Canadian Institutes of Health Research (CIHR), MOP82811 to Dr S.J.L.
Collapse
Affiliation(s)
- Jianhong Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada M5T 3H7
| | | | | |
Collapse
|
45
|
Abstract
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Collapse
|
46
|
Hatta K, MacLeod RJ, Gerber SA, Croy BA. Emerging themes in uterine natural killer cell heterogeneity and function. Am J Reprod Immunol 2012; 68:282-9. [PMID: 22626252 DOI: 10.1111/j.1600-0897.2012.01160.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/23/2012] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Understanding of uterine natural killer (uNK) cell functions during normal pregnancy remains incomplete. METHOD OF STUDY Cloud tag analysis of literature was used to document themes addressed experimentally for uNK cells. Immunohistochemistry, including whole-mount staining of early implantation sites, separation of uNK cells into molecularly distinct subsets, and physiologic measurements in normal and mutant mice, are further advancing understanding of uNK cell biology. RESULTS Literature analyses revealed three key, current uNK cell research themes: angiogenesis, spiral arterial remodeling/pre-eclampsia/hypertension and infertility. UNK cells are being defined as cells potentially regulated by Wnt signaling that are heterogeneous in progenitor source and function and make unique contributions to implantation site development prior to spiral arterial remodeling. CONCLUSION Future studies are poised to define uNK cell progenitor cells, identify the signaling pathways supporting established uNK cell functions and move current understanding of mouse uNK cells to clinical research questions.
Collapse
Affiliation(s)
- Kota Hatta
- Division of Cardiovascular Surgery, Toronto General Hospital Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
47
|
Beaman KD, Ntrivalas E, Mallers TM, Jaiswal MK, Kwak-Kim J, Gilman-Sachs A. Immune etiology of recurrent pregnancy loss and its diagnosis. Am J Reprod Immunol 2012; 67:319-25. [PMID: 22380608 DOI: 10.1111/j.1600-0897.2012.01118.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 11/26/2022] Open
Abstract
Recurrent Spontaneous Abortion of Immunological Origin (RSAI) is currently diagnosed by the occurrence of 2-3 consecutive miscarriages of unknown origin. The psychological trauma incurred by these events is a serious ailment which may be potentially avoided if a method of analysis is derived which may forecast these events and in turn prevent them from occurring. This review intends to examine studies of recurrent spontaneous abortion (RSA) which use laboratory diagnosis and also studies of RSA that do not use laboratory diagnosis. We believe that when laboratory results are incorporated into the diagnosis of RSA/RSAI that treatment is highly successful whereas the absence of laboratory results severely hinders the effectiveness of treatment. It is worth noting that correlating treatment versus outcome is imprudent because of the multiple variables involved in patient cases. It is not imprudent, however, to say that incorporation of laboratory data is essential when diagnosing RSA/RSAI.
Collapse
Affiliation(s)
- Kenneth D Beaman
- Clinical Immunology Laboratory, Department of Microbiology & Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|