1
|
Costaguta A, Costaguta G, Álvarez F. Autoimmune hepatitis: Towards a personalized treatment. World J Hepatol 2024; 16:1225-1242. [PMID: 39606175 PMCID: PMC11586748 DOI: 10.4254/wjh.v16.i11.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Autoimmune hepatitis is an uncommon condition that affects both adults and children and is characterized by chronic and recurrent inflammatory activity in the liver. This inflammation is accompanied by elevated IgG and autoantibody levels. Historically, treatment consists of steroids with the addition of azathioprine, which results in remission in approximately 80% of patients. Despite significant advancements in our understanding of the immune system over the past two decades, few modifications have been made to treatment algorithms, which have remained largely unchanged since they were first proposed more than 40 years ago. This review summarized the various treatment options currently available as well as our experiences using them. Although steroids are the standard treatment for induction therapy, other medications may be considered. Cyclosporin A, a calcineurin inhibitor that decreases T cell activation, has proven effective for induction of remission, but its long-term side effects limit its appeal for maintenance. Tacrolimus, a drug belonging to the same family, has been used in patients with refractory diseases with fewer side effects. Sirolimus and everolimus have interesting effects on regulatory T cell populations and may become viable options in the future. Mycophenolate mofetil is not effective for induction but is a valid alternative for patients who are intolerant to azathioprine. B cell-depleting drugs, such as rituximab and belimumab, have been successfully used in refractory cases and are useful in both the short and long term. Other promising treatments include anti-tumor necrosis factors, Janus kinases inhibitors, and chimeric antigen receptor T cell therapy. This growing armamentarium allows us to imagine a more tailored approach to the treatment of autoimmune hepatitis in the near future.
Collapse
Affiliation(s)
- Alejandro Costaguta
- Department of Hepatology and Liver Transplant Unit, Sanatorio de Niños de Rosario, Rosario 2000, Santa Fe, Argentina.
| | - Guillermo Costaguta
- Department of Gastroenterology, Hepatology, and Nutrition, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| | - Fernando Álvarez
- Department of Pediatrics, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| |
Collapse
|
2
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
3
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
4
|
Van Meerhaeghe T, Néel A, Brouard S, Degauque N. Regulation of CD8 T cell by B-cells: A narrative review. Front Immunol 2023; 14:1125605. [PMID: 36969196 PMCID: PMC10030846 DOI: 10.3389/fimmu.2023.1125605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Activation of CD4 T cells by B cells has been extensively studied, but B cell-regulated priming, proliferation, and survival of CD8 T cells remains controversial. B cells express high levels of MHC class I molecules and can potentially act as antigen-presenting cells (APCs) for CD8 T cells. Several in vivo studies in mice and humans demonstrate the role of B cells as modulators of CD8 T cell function in the context of viral infections, autoimmune diseases, cancer and allograft rejection. In addition, B-cell depletion therapies can lead to impaired CD8 T-cell responses. In this review, we attempt to answer 2 important questions: 1. the role of B cell antigen presentation and cytokine production in the regulation of CD8 T cell survival and cell fate determination, and 2. The role of B cells in the formation and maintenance of CD8 T cell memory.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Department of Nephrology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Antoine Néel
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- Internal Medicine Department, Nantes University Hospital, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- *Correspondence: Nicolas Degauque,
| |
Collapse
|
5
|
Tischer-Zimmermann S, Bonifacius A, Santamorena MM, Mausberg P, Stoll S, Döring M, Kalinke U, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Reinforcement of cell-mediated immunity driven by tumor-associated Epstein-Barr virus (EBV)-specific T cells during targeted B-cell therapy with rituximab. Front Immunol 2023; 14:878953. [PMID: 37033971 PMCID: PMC10079996 DOI: 10.3389/fimmu.2023.878953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction In immunocompromised patients, Epstein-Barr virus (EBV) infection or reactivation is associated with increased morbidity and mortality, including the development of B-cell lymphomas. The first-line treatment consists of reduction of immunosuppression and administration of rituximab (anti-CD20 antibody). Furthermore, the presence of EBV-specific T cells against latent EBV proteins is crucial for the control of EBV-associated diseases. Therefore, in addition to effective treatment strategies, appropriate monitoring of T cells of high-risk patients is of great importance for improving clinical outcome. In this study, we hypothesized that rituximab-mediated lysis of malignant EBV-infected B cells leads to the release and presentation of EBV-associated antigens and results in an augmentation of EBV-specific effector memory T-cell responses. Methods EBV-infected B lymphoblastoid cell lines (B-LCLs) were used as a model for EBV-associated lymphomas, which are capable of expressing latency stage II and III EBV proteins present in all known EBV-positive malignant cells. Rituximab was administered to obtain cell lysates containing EBV antigens (ACEBV). Efficiency of cross-presentation of EBV-antigen by B-LCLs compared to cross-presentation by professional antigen presenting cells (APCs) such as dendritic cells (DCs) and B cells was investigated by in vitro T-cell immunoassays. Deep T-cell profiling of the tumor-reactive EBV-specific T cells in terms of activation, exhaustion, target cell killing, and cytokine profile was performed, assessing the expression of T-cell differentiation and activation markers as well as regulatory and cytotoxic molecules by interferon-γ (IFN-γ) EliSpot assay, multicolor flow cytometry, and multiplex analyses. Results By inhibiting parts of the cross-presentation pathway, B-LCLs were shown to cross-present obtained exogenous ACEBV-derived antigens mainly through major histocompatibility complex (MHC) class I molecules. This mechanism is comparable to that for DCs and B cells and resulted in a strong EBV-specific CD8+ cytotoxic T-cell response. Stimulation with ACEBV-loaded APCs also led to the activation of CD4+ T helper cells, suggesting that longer peptide fragments are processed via the classical MHC class II pathway. In addition, B-LCLs were also found to be able to take up exogenous antigens from surrounding cells by endocytosis leading to induction of EBV-specific T-cell responses although to a much lesser extent than cross-presentation of ACEBV-derived antigens. Increased expression of activation markers CD25, CD71 and CD137 were detected on EBV-specific T cells stimulated with ACEBV-loaded APCs, which showed high proliferative and cytotoxic capacity as indicated by enhanced EBV-specific frequencies and increased secretion levels of cytotoxic effector molecules (e.g. IFN-γ, granzyme B, perforin, and granulysin). Expression of the regulatory proteins PD-1 and Tim-3 was induced but had no negative impact on effector T-cell functions. Conclusion In this study, we showed for the first time that rituximab-mediated lysis of EBV-infected tumor cells can efficiently boost EBV-specific endogenous effector memory T-cell responses through cross-presentation of EBV-derived antigens. This promotes the restoration of antiviral cellular immunity and presents an efficient mechanism to improve the treatment of CD20+ EBV-associated malignancies. This effect is also conceivable for other therapeutic antibodies or even for therapeutically applied unmodified or genetically modified T cells, which lead to the release of tumor antigens after specific cell lysis.
Collapse
Affiliation(s)
- Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Philip Mausberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sven Stoll
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Marius Döring
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Paediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- *Correspondence: Britta Eiz-Vesper,
| |
Collapse
|
6
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol 2022; 13:954936. [PMID: 36159874 PMCID: PMC9493130 DOI: 10.3389/fimmu.2022.954936] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
B cells have been long studied for their role and function in the humoral immune system. Apart from generating antibodies and an antibody-mediated memory response against pathogens, B cells are also capable of generating cell-mediated immunity. It has been demonstrated by several groups that B cells can activate antigen-specific CD4 and CD8 T cells, and can have regulatory and cytotoxic effects. The function of B cells as professional antigen presenting cells (APCs) to activate T cells has been largely understudied. This, however, requires attention as several recent reports have demonstrated the importance of B cells within the tumor microenvironment, and B cells are increasingly being evaluated as cellular therapies. Antigen presentation through B cells can be through antigen-specific (B cell receptor (BCR) dependent) or antigen non-specific (BCR independent) mechanisms and can be modulated by a variety of intrinsic and external factors. This review will discuss the pathways and mechanisms by which B cells present antigens, and how B cells differ from other professional APCs.
Collapse
|
7
|
Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 2022; 13:949779. [PMID: 36016929 PMCID: PMC9396646 DOI: 10.3389/fimmu.2022.949779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.
Collapse
Affiliation(s)
- Yadira Pastor
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Nour Ghazzaui
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Adele Hammoudi
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France
- *Correspondence: Yves Levy,
| |
Collapse
|
8
|
Bevers S, Kooijmans SAA, Van de Velde E, Evers MJW, Seghers S, Gitz-Francois JJJM, van Kronenburg NCH, Fens MHAM, Mastrobattista E, Hassler L, Sork H, Lehto T, Ahmed KE, El Andaloussi S, Fiedler K, Breckpot K, Maes M, Van Hoorick D, Bastogne T, Schiffelers RM, De Koker S. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol Ther 2022; 30:3078-3094. [PMID: 35821637 PMCID: PMC9273295 DOI: 10.1016/j.ymthe.2022.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 12/19/2022] Open
Abstract
mRNA vaccines have recently proven to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP based antitumor immunotherapy.
Collapse
Affiliation(s)
- Sanne Bevers
- eTheRNA Immunotherapies, 2845 Niel, Belgium; Laboratory for Molecular and Cellular Therapy (LMCT), Free University of Brussels, 1090 Jette, Belgium
| | - Sander A A Kooijmans
- CDL Research, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | - Martijn J W Evers
- CDL Research, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | - Nicky C H van Kronenburg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Helena Sork
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Taavi Lehto
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; Department of Laboratory Medicine, Karolinksa Institutet, 141 52 Huddinge, Sweden
| | - Kariem E Ahmed
- Department of Laboratory Medicine, Karolinksa Institutet, 141 52 Huddinge, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinksa Institutet, 141 52 Huddinge, Sweden
| | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Free University of Brussels, 1090 Jette, Belgium
| | | | | | - Thierry Bastogne
- CYBERnano, 54000 Nancy, France; CRAN, Université de Lorraine, CNRS, INRIA BIGS, 54506 Vandœuvre-lès-Nancy, France
| | | | | |
Collapse
|
9
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
10
|
Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. External cues to drive B cell function towards immunotherapy. Acta Biomater 2021; 133:222-230. [PMID: 33636402 DOI: 10.1016/j.actbio.2021.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022]
Abstract
Immunotherapy stands out as a powerful and promising therapeutic strategy in the treatment of cancer, infections, and autoimmune diseases. Adoptive immune therapies are usually centered on modified T cells and their specific expansion towards antigen-specific T cells against cancer and other diseases. However, despite their unmatched features, the potential of B cells in immunotherapy is just beginning to be explored. The main role of B cells in the immune response is to secrete antigen-specific antibodies and provide long-term protection against foreign pathogens. They further function as antigen-presenting cells (APCs) and secrete pro- and anti-inflammatory cytokines and thus exert positive and negative regulatory stimuli on other cells involved in the immune response such as T cells. Therefore, while hyperactivation of B cells can cause autoimmunity, their dysfunctions lead to severe immunodeficiencies. Only suitably activated B cells can play an active role in the treatment of cancers, infections, and autoimmune diseases. As a result, studies have focused on B cell-targeted immunotherapies in recent years. For this, the development, functions, interactions with the microenvironment, and clinical importance of B cells should be well understood. In this review, we summarize the main events during B cell activation. From the viewpoint of mechanobiology we discuss the translation of external cues such as surface topology, substrate stiffness, and biochemical signaling into B cell functions. We further dive into current B cell-targeted therapy strategies and their clinical applications. STATEMENT OF SIGNIFICANCE: B cells are proving as a promising tool in the field of immunotherapy. B cells exhibit various functions such as antibody production, antigen presentation or secretion of immune-regulatory factors which can be utilized in the fight against oncological or immunological disorders. In this review we discuss the importance of external mechanobiological cues such as surface topology, substrate stiffness, and biochemical signaling on B cell function. We further summarize B cell-targeted therapy strategies and their clinical applications, as in the context of anti-tumor responses and autoimmune diseases.
Collapse
|
11
|
Boulet S, Odagiu L, Dong M, Lebel MÈ, Daudelin JF, Melichar HJ, Labrecque N. NR4A3 Mediates Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1055-1064. [PMID: 34312259 DOI: 10.4049/jimmunol.1901228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Central tolerance aims to limit the production of T lymphocytes bearing TCR with high affinity for self-peptide presented by MHC molecules. The accumulation of thymocytes with such receptors is limited by negative selection or by diversion into alternative differentiation, including T regulatory cell commitment. A role for the orphan nuclear receptor NR4A3 in negative selection has been suggested, but its function in this process has never been investigated. We find that Nr4a3 transcription is upregulated in postselection double-positive thymocytes, particularly those that have received a strong selecting signal and are destined for negative selection. Indeed, we found an accumulation of cells bearing a negative selection phenotype in NR4A3-deficient mice as compared with wild-type controls, suggesting that Nr4a3 transcriptional induction is necessary to limit accumulation of self-reactive thymocytes. This is consistent with a decrease of cleaved caspase-3+-signaled thymocytes and more T regulatory and CD4+Foxp3-HELIOS+ cells in the NR4A3-deficient thymus. We further tested the role for NR4A3 in negative selection by reconstituting transgenic mice expressing the OVA Ag under the control of the insulin promoter with bone marrow cells from OT-I Nr4a3 +/+ or OT-I Nr4a3 -/- mice. Accumulation of autoreactive CD8 thymocytes and autoimmune diabetes developed only in the absence of NR4A3. Overall, our results demonstrate an important role for NR4A3 in T cell development.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Marie-Ève Lebel
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | | | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Possamaï D, Pagé G, Panès R, Gagnon É, Lapointe R. CD40L-Stimulated B Lymphocytes Are Polarized toward APC Functions after Exposure to IL-4 and IL-21. THE JOURNAL OF IMMUNOLOGY 2021; 207:77-89. [PMID: 34135061 DOI: 10.4049/jimmunol.2001173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
B lymphocytes have multiple functions central to humoral immunity, including Ag presentation to T cells, cytokine secretion, and differentiation into Ab-secreting plasma cells. In vitro expansion of human B cells by continuous IL-4 stimulation and engagement of their CD40 receptor by CD40L has allowed the use of these IL-4-CD40-B cells in research for the induction of Ag-specific T cell immune responses. However, in vivo, follicular helper T cells also influence B cell activity through the secretion of IL-21. The impact of both cytokines on multiple B cell functions is not clearly defined. To further understand these cytokines in CD40-B cell biology, we stimulated CD40-B cells with IL-4 or IL-21 or both (Combo) and characterized the proliferation, subsets, and functions of these cells. We demonstrate that IL-21- and Combo-CD40-B cells are highly proliferative cells that can be rapidly expanded to high numbers. We show that IL-21-CD40-B cells polarize to Ab-secreting plasma cells, whereas IL-4- and Combo-CD40-B cells are mostly activated mature B cells that express molecules associated with favorable APC functions. We further demonstrate that both IL-4- and Combo-CD40-B cells are efficient in promoting T cell activation and proliferation compared with IL-21-CD40-B cells. Thus, our study provides a better appreciation of CD40-B cell plasticity and biology. In addition, the stimulation of B cells with CD40L, IL-4, and IL-21 allows for the fast generation of high numbers of efficient APC, therefore providing a prospective tool for research and clinical applications such as cancer immunotherapy.
Collapse
Affiliation(s)
- David Possamaï
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Gabriel Pagé
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Rébecca Panès
- Axe de Recherche en Immunobiologie du Cancer, Institut de Recherche en Immunologie et Cancérologie, Montréal, Québec, Canada; and.,Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Gagnon
- Axe de Recherche en Immunobiologie du Cancer, Institut de Recherche en Immunologie et Cancérologie, Montréal, Québec, Canada; and.,Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Réjean Lapointe
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; .,Faculté de Médecine, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Zhang TY, Ren HY, Pan N, Dong HX, Zhao SM, Wen ZF, Wang XR, Wang LX. Tumor cell-derived autophagosomes (DRibbles)-activated B cells induce specific naïve CD8 + T cell response and exhibit antitumor effect. Cancer Immunol Immunother 2021; 70:463-474. [PMID: 32809049 PMCID: PMC10991864 DOI: 10.1007/s00262-020-02695-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/08/2020] [Indexed: 01/28/2023]
Abstract
Dendritic cell (DC) vaccine has been proved to be an effective way in cancer immunotherapy in both preclinical and clinical studies. However, limitations in DC isolation and culture have hampered its practice and promoted the development of other antigen-presenting cells (APCs) sources to fulfill that role. Our previous studies have shown that B cells loaded by tumor cell-derived autophagosomes, which we named as DRibbles (defective ribosomal products-containing blebs), could reactivate DC-induced effector T cell response. In this study, the roles of DRibble-loaded B cells in priming naïve CD8+ T cell responses and controlling tumors were investigated. We found that high-mobility group box 1 protein (HMGB1) on DRibbles was involved in DRibble-induced B cell activation, and the DRibble-triggered B cell phagocytosis via the caveolae-mediated endocytosis pathway. By using OT-I mouse-derived T cells, we demonstrated that DRibble-loaded B cells could activate specific naïve CD8+ T cells in vitro and ex vivo. In a tumor-bearing mouse model, DRibble-loaded B cells elicited systemic antitumor immunity and significantly suppressed the tumor growth. Moreover, the antitumor efficacy of DRibble-loaded B cells was enhanced when they were combined with CpG and anti-CD40 stimulation. These results suggest that DRibble-loaded B cells represent a viable and practical therapeutic vaccination strategy that might have important clinical implications for tumor immunotherapy.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hong-Yan Ren
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
- Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hui-Xia Dong
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Si-Min Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Zhi-Fa Wen
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Xu-Ru Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
14
|
Early programming of CD8 + T cell response by the orphan nuclear receptor NR4A3. Proc Natl Acad Sci U S A 2020; 117:24392-24402. [PMID: 32913051 DOI: 10.1073/pnas.2007224117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enhancing long-term persistence while simultaneously potentiating the effector response of CD8+ T cells has been a long-standing goal in immunology to produce better vaccines and adoptive cell therapy products. NR4A3 is a transcription factor of the orphan nuclear receptor family. While it is rapidly and transiently expressed following T cell activation, its role in the early stages of T cell response is unknown. We show that NR4A3-deficient murine CD8+ T cells differentiate preferentially into memory precursor and central memory cells, but also produce more cytokines. This is explained by an early influence of NR4A3 deficiency on the memory transcriptional program and on accessibility of chromatin regions with motifs for bZIP transcription factors, which impacts the transcription of Fos/Jun target genes. Our results reveal a unique and early role for NR4A3 in programming CD8+ T cell differentiation and function. Manipulating NR4A3 activity may represent a promising strategy to improve vaccination and T cell therapy.
Collapse
|
15
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
16
|
The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 2019; 116:20077-20086. [PMID: 31527231 DOI: 10.1073/pnas.1905080116] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circadian variations of various aspects of the immune system have been described. However, the circadian control of T cells has been relatively unexplored. Here, we investigated the role of circadian clocks in regulating CD8 T cell response to antigen presentation by dendritic cells (DCs). The in vivo CD8 T cell response following vaccination with DCs loaded with the OVA257-264 peptide antigen (DC-OVA) leads to a higher expansion of OVA-specific T cells in response to vaccination done in the middle of the day, compared to other time points. This rhythm was dampened when DCs deficient for the essential clock gene Bmal1 were used and abolished in mice with a CD8 T cell-specific Bmal1 deletion. Thus, we assessed the circadian transcriptome of CD8 T cells and found an enrichment in the daytime of genes and pathways involved in T cell activation. Based on this, we investigated early T cell activation events. Three days postvaccination, we found higher T cell activation markers and related signaling pathways (including IRF4, mTOR, and AKT) after a vaccination done during the middle of the day compared to the middle of the night. Finally, the functional impact of the stronger daytime response was shown by a more efficient response to a bacterial challenge at this time of day. Altogether, these results suggest that the clock of CD8 T cells modulates the response to vaccination by shaping the transcriptional program of these cells and making them more prone to strong and efficient activation and proliferation according to the time of day.
Collapse
|
17
|
The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother 2019; 41:385-398. [PMID: 30273198 DOI: 10.1097/cji.0000000000000246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.
Collapse
|
18
|
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2019; 16:377-387. [PMID: 31403344 PMCID: PMC7062441 DOI: 10.1080/21645515.2019.1653744] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TNF Receptor Superfamily (TNF-R-SF) signaling is a structurally well-defined event that requires proper receptor clustering and trimerization. While the TNF-SF ligands naturally exist as trivalent functional units, the receptors are usually separated on the cell surface. Critically, receptor assembly into functional trimeric signaling complexes occurs through binding of the natural ligand unit. TNF-R-SF members, including CD40, have been key immunotherapeutic targets for over 20 years. CD40, expressed by antigen-presenting cells, endothelial cells, and many tumors, plays a fundamental role in connecting innate and adaptive immunity. The multiple investigated strategies to induce CD40 signaling can be broadly grouped into antibody-based or CD40L-based approaches. Currently, seven different antibodies and one CD40L-based hexavalent fusion protein are in active clinical trials. In this review, we describe the biology and structural properties of CD40, requirements for agonistic signal transduction through CD40 and summarize current attempts to exploit the CD40 signaling pathway for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Oliver Hill
- Research and Development, Apogenix AG, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Heidelberg, Germany
| |
Collapse
|
19
|
De Sousa DM, Duval F, Daudelin JF, Boulet S, Labrecque N. The Notch signaling pathway controls CD8+ T cell differentiation independently of the classical effector HES1. PLoS One 2019; 14:e0215012. [PMID: 30951556 PMCID: PMC6450647 DOI: 10.1371/journal.pone.0215012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/25/2019] [Indexed: 01/14/2023] Open
Abstract
During CD8+ T cell response, Notch signaling controls short-lived-effector-cell (SLEC) generation, but the exact mechanisms by which it does so remains unclear. The Notch signaling pathway can act as a key regulator of Akt signaling via direct transcriptional induction of Hes1, which will then repress the transcription of Pten, an inhibitor of Akt signaling. As both Notch and Akt signaling can promote effector CD8+ T cell differentiation, we asked whether Notch signaling influences SLEC differentiation via the HES1-PTEN axis. Here, we demonstrate that HES1 deficiency in murine CD8+ T cells did not impact SLEC differentiation. Moreover, we show that Pten transcriptional repression in effector CD8+ T cells is not mediated by Notch signaling although Akt activation requires Notch signaling. Therefore, HES1 is not an effector of Notch signaling during CD8+ T cell response.
Collapse
Affiliation(s)
- Dave Maurice De Sousa
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
20
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
21
|
Wennhold K, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. B Cell-Based Cancer Immunotherapy. Transfus Med Hemother 2019; 46:36-46. [PMID: 31244580 PMCID: PMC6558332 DOI: 10.1159/000496166] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
B cells are not only producers of antibodies, but also contribute to immune regulation or act as potent antigen-presenting cells. The potential of B cells for cellular therapy is still largely underestimated, despite their multiple diverse effector functions. The CD40L/CD40 signaling pathway is the most potent activator of antigen presentation capacity in B lymphocytes. CD40-activated B cells are potent antigen-presenting cells that induce specific T-cell responses in vitro and in vivo. In preclinical cancer models in mice and dogs, CD40-activated B cell-based cancer immunotherapy was able to induce effective antitumor immunity. So far, there have been only few early-stage clinical studies involving B cell-based cancer vaccines. These trials indicate that B cell-based immunotherapy is generally safe and associated with little toxicity. Furthermore, these studies suggest that B-cell immunotherapy can elicit antitumor T-cell responses. Alongside the recent advances in cellular therapies in general, major obstacles for generation of good manufacturing practice-manufactured B-cell immunotherapies have been overcome. Thus, a first clinical trial involving CD40-activated B cells might be in reach.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Michael von Bergwelt-Baildon
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Center Munich, LMU Munich, Munich, Germany
| |
Collapse
|
22
|
Lessard M, Blais M, Beaudoin F, Deschene K, Verso LL, Bissonnette N, Lauzon K, Guay F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Vet Immunol Immunopathol 2018; 206:25-34. [PMID: 30502909 DOI: 10.1016/j.vetimm.2018.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the effect of the piglet growth during the first week of life on ileal expression of genes and on development of the immune system. Eight litters adjusted to 12 piglets were used. Within each litter, the piglet that showed the lowest weight gain (LWG; n = 8) and the one that showed the highest weight gain (HWG; n = 8) in their first week of life were enrolled. Peripheral blood mononuclear cells (PBMC) were isolated on days 8 and 16 to characterize cellular population profiles and to assess ex-vivo secretion of interleukin-10 (IL-10), IL-6 and tumor necrosis factor-α (TNF-α). On day 16, piglets were euthanized and ileum samples were collected to extract RNA for microarray analysis and gene expression by qPCR. As expected, growth performance of LWG piglet was impaired compared to HWG piglets (P < 0.05). From day 8 to 16, the percentage of CD21+ B cells significantly increased in blood of heavier HWG piglets while the percentage remained constant in smaller LWG piglets (P weight x day = 0.01). For the CD4+CD8α- Th cells, a marked increase was observed in LWG piglets from 8 to 16 days of age (P = 0.002) whereas no significant change occurred in HWG piglets. Percentages of CD14+ monocytes and other MHC-II+ cells were respectively higher and lower on day 8 compared to day 16 for both groups of piglets (P < 0.01). On day 8, LPS-activated PBMC from LWG piglets produced less IL-6 compared to HWG piglets (P < 0.05). Microarray analysis of gene expression in piglets' ileum tissue indicated that several genes involed in defense response and response to oxidative stress were modulated differently in LWG compared to HWG. Gene analysis by Q-PCR confirmed microarray results and revealed that IL-10, SOD1, NOS2, NOD2, TLR4, TLR9, CD40 and CD74 expressions were significantly decreased (P < 0.05) in LWG in comparison to HWG piglets, while MYD88 and NFkBiA showed a tendency to decrease (0.05 ≤ P < 0.07). These results suggest that birth weight and milk intake affect the growth performances and the development of immunity by modulating the expression of genes associated with immunity and oxidative stress in piglets' intestinal tissue, and by affecting the leukocyte populations involved in innate and cell-mediated immunity in nursing piglets. Therefore, impaired development of immune system in LWG piglets might have an impact on their resistance to infections later in life.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada.
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Beaudoin
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karine Deschene
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karoline Lauzon
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Guay
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
23
|
Moritoki Y, Tsuneyama K, Nakamura Y, Kikuchi K, Shiota A, Ohsugi Y, Lian ZX, Zhang W, Yang GX, Ueki S, Takeda M, Omokawa A, Saga T, Saga A, Watanabe D, Miura M, Ueno Y, Leung PSC, Tanaka A, Gershwin ME, Hirokawa M. Anti-drug Antibodies Against a Novel Humanized Anti-CD20 Antibody Impair Its Therapeutic Effect on Primary Biliary Cholangitis in Human CD20- and FcγR-Expressing Mice. Front Immunol 2018; 9:2534. [PMID: 30450101 PMCID: PMC6224429 DOI: 10.3389/fimmu.2018.02534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
There is considerable interest in expanding B cell-targeted therapies in human autoimmune diseases. However, clinical trials in human primary biliary cholangitis (PBC) using a chimeric antibody against human CD20 (hCD20) have showed limited efficacy. Two potential explanations for these disappointing results are the appearance of anti-drug antibodies (ADAs) and the high frequency of patients with moderate PBC or patients who had failed ursodeoxycholic acid treatment. Here, we studied a novel humanized IgG1 antibody against hCD20 and explored its efficacy in early stage PBC using a well-defined murine model. We developed a unique murine model consisting of dnTGF-βRII mice expressing hCD20 and human Fcγ receptors (hFcγRs). Beginning at 4–6 weeks of age, equivalent to stage I/II human PBC, female mice were given weekly injections of an anti-hCD20 antibody (TKM-011) or vehicle control, and monitored for liver histology as well as a broad panel of immunological readouts. After 16 weeks' treatment, we observed a significant reduction in portal inflammation, a decrease in liver-infiltrating mononuclear cells as well as a reduction in liver CD8+ T cells. Importantly, direct correlations between numbers of liver non-B cells and B cells (r = 0.7426, p = 0.0006) and between numbers of liver memory CD8+ T cells and B cells (r = 0.6423, p = 0.0054) were apparent. Accompanying these changes was a dramatic reduction in anti-mitochondrial antibodies (AMAs), interleukin (IL)-12p40 and IL-5, and elevated levels of the anti-inflammatory chemokine CXCL1/KC. In mice that developed ADAs, clinical improvements were less pronounced. Sustained treatment with B cell-targeted therapies may broadly inhibit effector pathways in PBC, but may need to be administered early in the natural history of PBC.
Collapse
Affiliation(s)
- Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan.,Center for Medical Education and Training, Akita University Hospital, Akita, Japan.,SimTiki Simulation Center, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Science, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Yuka Nakamura
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Kentaro Kikuchi
- Department of Fourth Internal Medicine, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Akira Shiota
- Institute of Immunology, Co., Ltd., Tokyo, Japan
| | | | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Ayumi Omokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoo Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | | | - Masahito Miura
- Department of Gastroenterology, Omagari Kosei Medical Center, Omagari, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
24
|
Houghtelin A, Bollard CM. Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol 2017; 8:1272. [PMID: 29075259 PMCID: PMC5641550 DOI: 10.3389/fimmu.2017.01272] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.
Collapse
Affiliation(s)
- Amy Houghtelin
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, The George Washington University, Washington, DC, United States
| |
Collapse
|
25
|
Mathieu M, Odagiu L, Gaudot L, Daudelin JF, Melichar HJ, Lapointe R, Labrecque N. Inflammation enhances the vaccination potential of CD40-activated B cells in mice. Eur J Immunol 2016; 47:269-279. [PMID: 27873323 DOI: 10.1002/eji.201646568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
Vaccination with antigen-pulsed CD40-activated B (CD40-B) cells can efficiently lead to the in vivo differentiation of naive CD8+ T cells into fully functional effectors. In contrast to bone marrow-derived dendritic cell (BMDC) vaccination, CD40-B cell priming does not allow for memory CD8+ T-cell generation but the reason for this deficiency is unknown. Here, we show that compared to BMDCs, murine CD40-B cells induce lower expression of several genes regulated by T-cell receptor signaling, costimulation, and inflammation (signals 1-3) in mouse T cells. The reduced provision of signals 1 and 2 by CD40-B cells can be explained by a reduction in the quality and duration of the interactions with naive CD8+ T cells as compared to BMDCs. Furthermore, CD40-B cells produce less inflammatory mediators, such as IL-12 and type I interferon, and increasing inflammation by coadministration of polyriboinosinic-polyribocytidylic acid with CD40-B-cell immunization allowed for the generation of long-lived and functional CD8+ memory T cells. In conclusion, it is possible to manipulate CD40-B-cell vaccination to promote the formation of long-lived functional CD8+ memory T cells, a key step before translating the use of CD40-B cells for therapeutic vaccination.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Léa Gaudot
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | | | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Medicine, University of Montreal, Montréal, Québec, Canada
| | - Réjean Lapointe
- Department of Medicine, University of Montreal, Montréal, Québec, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada.,Department of Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Su KY, Watanabe A, Yeh CH, Kelsoe G, Kuraoka M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. THE JOURNAL OF IMMUNOLOGY 2016; 197:4163-4176. [PMID: 27815447 DOI: 10.4049/jimmunol.1502193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B cell culture is the capacity to support mature B cell proliferation. We developed a culture method to support the efficient activation and proliferation of naive and memory human B cells. This culture supports extensive B cell proliferation, with ∼103-fold increases following 8 d in culture and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naive B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved and, when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHC class II, CD80, and CD86. CD B cells act as APCs and present alloantigens and microbial Ags to T cells. We are able to activate and expand Ag-specific memory B cells; these cultured cells are highly effective in presenting Ag to T cells. We characterized the TCR repertoire of rare Ag-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual.
Collapse
Affiliation(s)
- Kuei-Ying Su
- Department of Immunology, Duke University, Durham, NC 27710.,Tzu Chi Medical Center, Hualien 970, Taiwan; and
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710
| | - Chen-Hao Yeh
- Department of Immunology, Duke University, Durham, NC 27710
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710; .,Human Vaccine Institute, Duke University, Durham, NC 27710
| | | |
Collapse
|
27
|
Becker HJ, Kondo E, Shimabukuro-Vornhagen A, Theurich S, von Bergwelt-Baildon MS. Processing and MHC class II presentation of exogenous soluble antigen involving a proteasome-dependent cytosolic pathway in CD40-activated B cells. Eur J Haematol 2015; 97:166-74. [DOI: 10.1111/ejh.12699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Hans Jiro Becker
- Cologne Interventional Immunology; Cologne University Hospital; Cologne Germany
| | - Eisei Kondo
- Department of General Medicine; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | | | - Sebastian Theurich
- Cologne Interventional Immunology; Cologne University Hospital; Cologne Germany
- Max Planck Institute for Metabolism Research; Cologne Germany
| | | |
Collapse
|
28
|
Mathieu M, Duval F, Daudelin JF, Labrecque N. The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5654-62. [PMID: 25972473 DOI: 10.4049/jimmunol.1402837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/19/2015] [Indexed: 11/19/2022]
Abstract
Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Notch is a key regulator of cell fate decision relevant in many immunological pathways. In this study, we add to the role of Notch in cell fate decision and demonstrate that the Notch signaling pathway controls the MPEC/SLEC differentiation choice following both Listeria infection and dendritic cell immunization of mice. Although fewer SLECs were generated, Notch deficiency did not alter the rate of memory CD8(+) T cell generation. Moreover, we reveal that the Notch signaling pathway plays a context-dependent role for optimal cytokine production by effector CD8(+) T cells. Together, our results unravel critical functions for the Notch signaling pathway during effector CD8(+) T cell differentiation.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
29
|
Boulet S, Daudelin JF, Labrecque N. IL-2 induction of Blimp-1 is a key in vivo signal for CD8+ short-lived effector T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1847-54. [PMID: 25015830 DOI: 10.4049/jimmunol.1302365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During infection or vaccination, only a small proportion of CD8(+) T cells differentiate into memory cells. The mechanisms underlying the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) or memory precursor effector cells are poorly defined. It was recently shown in infectious models that the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) enhances the formation of SLECs. The factors controlling Blimp-1 expression leading to the in vivo formation of SLECs are still not known. However, it has been shown that cytokines such as IL-2 induce Blimp-1 expression in vitro. In this study, we took advantage of the low-inflammation model of dendritic cell immunization to study the role of the IL-2/Blimp-1 axis in SLEC differentiation as well as the importance of Blimp-1 expression in memory precursor effector cells for proper CD8(+) memory generation. Our results show that Blimp-1 deficiency affects effector differentiation and function in the absence of inflammation. Unexpectedly, memory generation was not affected in Blimp-1-deficient OT-I cells responding to vaccination. In addition, modulation of the bioavailability of IL-2 by injection either of a blocking Ab or of the cytokine, demonstrates a link between IL-2, Blimp-1 induction, and SLEC formation in wild-type cells. Conversely, injection of IL-2 had less effect on Blimp-1-deficient CD8(+) T cells, indicating that the effect of IL-2 on in vivo SLEC differentiation is mediated by Blimp-1. In conclusion, IL-2 induction of Blimp-1 expression is a key regulator of SLEC differentiation in vivo.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Microbiology, Immunology and Infectiology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
30
|
The catalytic activity of the mitogen-activated protein kinase extracellular signal-regulated kinase 3 is required to sustain CD4+ CD8+ thymocyte survival. Mol Cell Biol 2014; 34:3374-87. [PMID: 25002529 DOI: 10.1128/mcb.01701-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family whose function is largely unknown. Given the central role of MAPKs in T cell development, we hypothesized that ERK3 may regulate thymocyte development. Here we have shown that ERK3 deficiency leads to a 50% reduction in CD4(+) CD8(+) (DP) thymocyte number. Analysis of hematopoietic chimeras revealed that the reduction in DP thymocytes is intrinsic to hematopoietic cells. We found that early thymic progenitors seed the Erk3(-/-) thymus and can properly differentiate and proliferate to generate DP thymocytes. However, ERK3 deficiency results in a decrease in the DP thymocyte half-life, associated with a higher level of apoptosis. As a consequence, ERK3-deficient DP thymocytes are impaired in their ability to make successful secondary T cell receptor alpha (TCRα) gene rearrangement. Introduction of an already rearranged TCR transgene restores thymic cell number. We further show that knock-in of a catalytically inactive allele of Erk3 fails to rescue the loss of DP thymocytes. Our results uncover a unique role for ERK3, dependent on its kinase activity, during T cell development and show that this atypical MAPK is essential to sustain DP survival during RAG-mediated rearrangements.
Collapse
|
31
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
32
|
Koni PA, Bolduc A, Takezaki M, Ametani Y, Huang L, Lee JR, Nutt SL, Kamanaka M, Flavell RA, Mellor AL, Tsubata T, Shimoda M. Constitutively CD40-activated B cells regulate CD8 T cell inflammatory response by IL-10 induction. THE JOURNAL OF IMMUNOLOGY 2013; 190:3189-96. [PMID: 23440421 DOI: 10.4049/jimmunol.1203364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
B cells are exposed to high levels of CD40 ligand (CD40L, CD154) in chronic inflammatory diseases. In addition, B cells expressing both CD40 and CD40L have been identified in human diseases such as autoimmune diseases and lymphoma. However, how such constitutively CD40-activated B cells under inflammation may impact on T cell response remains unknown. Using a mouse model in which B cells express a CD40L transgene (CD40LTg) and receive autocrine CD40/CD40L signaling, we show that CD40LTg B cells stimulated memory-like CD4 and CD8 T cells to express IL-10. This IL-10 expression by CD8 T cells was dependent on IFN-I and programmed cell death protein 1, and was critical for CD8 T cells to counterregulate their overactivation. Furthermore, adoptive transfer of naive CD8 T cells in RAG-1(-/-) mice normally induces colitis in association with IL-17 and IFN-γ cytokine production. Using this model, we show that adoptive cotransfer of CD40LTg B cells, but not wild-type B cells, significantly reduced IL-17 response and regulated colitis in association with IL-10 induction in CD8 T cells. Thus, B cells expressing CD40L can be a therapeutic goal to regulate inflammatory CD8 T cell response by IL-10 induction.
Collapse
Affiliation(s)
- Pandelakis A Koni
- Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hua C, Sun L, Yang Y, Tan R, Hou Y. Mechanisms of CpG-induced CD40 expression on murine bone marrow-derived dendritic cells. Autoimmunity 2013; 46:177-87. [PMID: 23244216 DOI: 10.3109/08916934.2012.751980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aberrant CD40 expression by dendritic cells (DCs), induced by microbial stimuli, such as CpG, contributes to the pathogenesis of many human/murine diseases, particularly autoimmune and inflammatory diseases. Given the importance of CD40 in these diseases, and the contribution of DCs to the diseases process, it is very important to investigate the mechanisms of CD40 expression induced by CpG on DCs. In this study, we made the observation that CpG-B is a potent inducer on CD40 expression on murine bone marrow-derived DCs. Based on this finding, we undertook an analysis of the molecular basis of CpG-induced CD40 expression on DCs. By using selective inhibitors, it was demonstrated that MAPKs (JNK and p38 MAPK but not ERK) and NF-κB were involved in CpG-induced CD40 expression on DCs. In addition, RNA interference analysis revealed that IRF8 was a key transcription factor in the basal expression of CD40 upon CpG stimulation. Moreover, up-regulating miRNA-146a in DCs effectively decreased CD40 expression by targeting TRAF6 and IRAK1. Thus, our results have elucidated the molecular mechanisms underlying CpG-induced CD40 expression and DC maturation.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Medicine, Nanjing University, Immunology and Reproductive Biology Lab & Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|
34
|
IL-6 production by dendritic cells is dispensable for CD8+ memory T-cell generation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:126189. [PMID: 23484075 PMCID: PMC3591162 DOI: 10.1155/2013/126189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/19/2012] [Indexed: 01/08/2023]
Abstract
Following activation, naïve CD8+ T cells will differentiate into effectors that differ in their ability to survive: some will persist as memory cells while the majority will die by apoptosis. Signals given by antigen-presenting cells (APCs) at the time of priming modulate this differential outcome. We have recently shown that, in opposition to dendritic cell (DC), CD40-activated B-(CD40-B) cell vaccination fails to efficiently produce CD8+ memory T cells. Understanding why CD40-B-cell vaccination does not lead to the generation of functional long-lived memory cells is essential to define the signals that should be provided to naïve T cells by APCs. Here we show that CD40-B cells produce very low amount of IL-6 when compared to DCs. However, supplementation with IL-6 during CD40-B-cell vaccination did not improve memory generation. Furthermore, IL-6-deficient DCs maintained the capacity to promote the formation of functional CD8+ effectors and memory cells. Our results suggest that in APC vaccination models, IL-6 provided by the APCs is dispensable for proper CD8+ T-cell memory generation.
Collapse
|
35
|
Kornbluth RS, Stempniak M, Stone GW. Design of CD40 agonists and their use in growing B cells for cancer immunotherapy. Int Rev Immunol 2012; 31:279-88. [PMID: 22804572 DOI: 10.3109/08830185.2012.703272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD40 stimulation has produced impressive results in early-stage clinical trials of patients with cancer. Further progress will be facilitated by a better understanding of how the CD40 receptor becomes activated and the subsequent functions of CD40-stimulated immune cells. This review focuses on two aspects of this subject. The first is the recent recognition that signaling by CD40 is initiated when the receptors are induced to cluster within the membrane of responding cells. This requirement for CD40 clustering explains the stimulatory effects of certain anti-CD40 antibodies and the activity of many-trimer, but not one-trimer, forms of CD40 ligand (CD40L, CD154). The second topic is the use of these CD40 activators to expand B cells ("CD40-B cells"). As antigen-presenting cells (APCs), CD40-B cells are as effective as dendritic cells, with the important difference that CD40 B cells can be induced to proliferate in vitro, whereas DCs proliferate poorly if at all. As a result, the use of CD40-B cells as antigen-presenting cells (APCs) promises to streamline the generation of anti-tumor CD8(+) T cells for the adoptive cell therapy (ACT) of cancer.
Collapse
|
36
|
Shimabukuro-Vornhagen A, Draube A, Liebig TM, Rothe A, Kochanek M, von Bergwelt-Baildon MS. The immunosuppressive factors IL-10, TGF-β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. J Exp Clin Cancer Res 2012; 31:47. [PMID: 22592077 PMCID: PMC3443023 DOI: 10.1186/1756-9966-31-47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background Progress in recent years strengthened the concept of cellular tumor vaccinations. However, a crucial barrier to successful cancer immunotherapy is tumor-mediated immunosuppression. Tumor-derived soluble factors such as IL-10, TGF-β, and VEGF suppress effector cells either directly or indirectly by disruption of dendritic cell (DC) differentiation, migration and antigen presentation. Human B cells acquire potent immunostimulatory properties when activated via CD40 and have been shown to be an alternative source of antigen-presenting cells (APCs) for cellular cancer vaccines. Nevertheless, in contrast to DCs little knowledge exists about their susceptibility to tumor derived immunosuppressive factors. Thus, we assessed whether IL-10, TGF-β, or VEGF do affect key aspects of the immunostimulatory function of human CD40-activated B cells. Methods Cell surface expression of adhesion and costimulatory molecules and the proliferation capacity of CD40-activated B cells were compared to untreated controls by flow cytometry. Migration towards important chemokines of secondary lymph organs was measured with or without exposure to the immunosuppressive cytokines. Finally, an influence on T cell stimulation was investigated by allogeneic mixed lymphocyte reactions. For statistical analysis Student’s t test or two-way analysis of variance followed by Bonferroni's post-hoc test was used to compare groups. P values of <0.05 were considered statistically significant. Results Neither cell adhesion nor the expression of MHC class II and costimulatory molecules CD80 and CD86 was inhibited by addition of IL-10, TGF-β, or VEGF. Likewise, the proliferation of CD40-activated B cells was not impaired. Despite being exposed to IL-10, TGF-β, or VEGF the B cells migrated equally well as untreated controls to the chemokines SLC and SDF-1α. Most importantly, the capacity of CD40-activated B cells to stimulate CD4+ and CD8+ T cells remained unaffected. Conclusion Our findings suggest that key immunostimulatory functions of CD40-activated B cells are resistant to inhibition by the immunosuppressive factors IL-10, TGF-β, and VEGF. This supports considerations to use ex vivo generated CD40-activated B cells as a promising alternative or additional APC for cellular immunotherapy, especially in settings where these immunosuppressive cytokines are present in tumor environment.
Collapse
|