1
|
Maltsev DI, Mellanson KA, Belousov VV, Enikolopov GN, Podgorny OV. The bioavailability time of commonly used thymidine analogues after intraperitoneal delivery in mice: labeling kinetics in vivo and clearance from blood serum. Histochem Cell Biol 2022; 157:239-250. [PMID: 34757474 PMCID: PMC10411052 DOI: 10.1007/s00418-021-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.
Collapse
Affiliation(s)
- Dmitry I Maltsev
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia, 117997
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
| | - Kennelia A Mellanson
- Molecular and Cellular Pharmacology Graduate Program and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia, 117997
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Grigori N Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
2
|
Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. J Biol Chem 2021; 297:101345. [PMID: 34717955 PMCID: PMC8592869 DOI: 10.1016/j.jbc.2021.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.
Collapse
|
3
|
Anda S, Boye E, Schink KO, Grallert B. Cosegregation of asymmetric features during cell division. Open Biol 2021; 11:210116. [PMID: 34343465 PMCID: PMC8331232 DOI: 10.1098/rsob.210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish 'old' from 'new' and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beata Grallert
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Wudarski J, Egger B, Ramm SA, Schärer L, Ladurner P, Zadesenets KS, Rubtsov NB, Mouton S, Berezikov E. The free-living flatworm Macrostomum lignano. EvoDevo 2020; 11:5. [PMID: 32158530 PMCID: PMC7053086 DOI: 10.1186/s13227-020-00150-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.![]()
Collapse
Affiliation(s)
- Jakub Wudarski
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Bernhard Egger
- 2Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Steven A Ramm
- 3Department of Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Lukas Schärer
- 4Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- 2Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Kira S Zadesenets
- 5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| | - Nikolay B Rubtsov
- 5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| | - Stijn Mouton
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Eugene Berezikov
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
5
|
Mouton S, Wudarski J, Grudniewska M, Berezikov E. The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:551-558. [PMID: 29938766 DOI: 10.1387/ijdb.180077eb] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the process of regeneration has been one of the longstanding scientific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macrostomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell population, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes biological features of M. lignano and recent technological advances towards experimentation with this animal. In addition, we discuss the experimental potential of this model organism for different research questions related to regeneration and stem cell biology.
Collapse
Affiliation(s)
- Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
6
|
Lengerer B, Hennebert E, Flammang P, Salvenmoser W, Ladurner P. Adhesive organ regeneration in Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2016; 16:20. [PMID: 27255153 PMCID: PMC4890501 DOI: 10.1186/s12861-016-0121-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. RESULTS We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. CONCLUSION Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell-fate decisions during regeneration.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Elise Hennebert
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Arbore R, Sekii K, Beisel C, Ladurner P, Berezikov E, Schärer L. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits. Front Zool 2015; 12:14. [PMID: 26146508 PMCID: PMC4490696 DOI: 10.1186/s12983-015-0106-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on existing functional gene annotation, which is usually limited in emerging model organisms, especially when they are only distantly related to traditional genetic model organisms. A case in point is the free-living flatworm Macrostomum lignano (Lophotrochozoa: Platyhelminthes: Rhabditophora), an increasingly powerful model organism for evolutionary studies of sex in simultaneous hermaphrodites. To overcome the limitation of sparse functional annotation, we have performed a positional RNA-Seq analysis on different body fragments in order to identify organ-specific candidate transcripts. We then performed gene expression (in situ hybridization) and gene function (RNAi) analyses on 23 candidate transcripts, both to evaluate the predictive potential of this approach and to obtain preliminary functional characterizations of these candidate genes. RESULTS We identified over 4000 transcripts that could be expected to show specific expression in different reproductive organs (including testis, ovary and the male and female genital systems). The predictive potential of the method could then be verified by confirming organ-specific expression for several candidate transcripts, some of which yielded interesting trait-specific knock-down phenotypes that can now be followed up in future phenotypic engineering studies. CONCLUSIONS Our positional RNA-Seq analysis represents a highly useful resource for the identification of candidate transcripts for functional and phenotypic engineering studies in M. lignano, and it has already been used successfully in several studies. Moreover, this approach can overcome some inherent limitations of homology-based candidate selection and thus should be applicable to a broad range of emerging model organisms.
Collapse
Affiliation(s)
- Roberto Arbore
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Kiyono Sekii
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | - Peter Ladurner
- />Institute of Zoology and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Eugene Berezikov
- />ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lukas Schärer
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
8
|
Abstract
Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.
Collapse
Affiliation(s)
- Niraimathi Govindasamy
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Supriya Murthy
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Yashoda Ghanekar
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
9
|
Vandenplas S, De Clercq A, Huysseune A. Tooth replacement without a dental lamina: the search for epithelial stem cells in Polypterus senegalus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:281-93. [PMID: 24890316 DOI: 10.1002/jez.b.22577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
Most actinopterygians replace their teeth continuously throughout life. To address the question of where and how replacement teeth form in actinopterygians, it is advisable to investigate well-chosen representatives within the lineage. The African bichir, Polypterus senegalus, belongs to the earliest diverged group of the actinopterygian lineage with currently living representatives. Its well characterized dentition, together with its phylogenetic position, make this species an attractive model to answer following questions: (1) when and where does the replacement tooth form and how is it connected with the dental organ of the predecessor, and (2) is there any evidence for the presence of epithelial stem cells, hypothesized to play a role in replacement? Serial sections show that one tooth family can contain up to three members, which are all interconnected by dental epithelium. Replacement teeth develop without the presence of a successional dental lamina. We propose that this is the plesiomorphic condition for tooth replacement in actinopterygians. BrdU pulse-chase experiments reveal cells in the outer and middle dental epithelium, proliferating at the time of initiation of a new replacement tooth. It is tempting to assume that these cell layers provide a stem cell niche. The observed absence of label-retaining cells after long chase times (up to 8 weeks) is held against the light of divergent views on cell cycling properties of stem cells. At present, our data do not support, neither reject, the hypothesis on involvement of epithelial stem cells within the process of continuous tooth replacement.
Collapse
Affiliation(s)
- Sam Vandenplas
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
10
|
Waghmare SK, Tumbar T. Adult hair follicle stem cells do not retain the older DNA strands in vivo during normal tissue homeostasis. Chromosome Res 2014; 21:203-12. [PMID: 23681654 DOI: 10.1007/s10577-013-9355-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue stem cells have been proposed to segregate the chromosomes asymmetrically (in a non-random manner), thereby retaining preferentially the older "immortal" DNA strands bearing the stemness characteristics into one daughter cell, whereas the newly synthesized strands are segregated to the other daughter cell that will commit to differentiation. Moreover, this non-random segregation would protect the stem cell genome from accumulating multiple mutations during repeated DNA replication. This long-standing hypothesis remains an active subject of study due to conflicting results for some systems and lack of consistency among different tissue stem cell populations. In this review, we will focus on work done in the hair follicle, which is one of the best-understood vertebrate tissue stem cell system to date. In cell culture analysis of paired cultured keratinocytes derived from hair follicle, stem cells suggested a non-random segregation of chromosome with respect to the older DNA strand. In vivo, the hair follicle stem cells appear to self-renew and differentiate at different phases of their homeostatic cycle. The fate decisions occur in quiescence when some stem cells migrate out of their niche and commit to differentiation without self-renewal. The stem cells left behind in the niche self-renew symmetrically and randomly segregate the chromosomes at each division, making more stem cells. This model seems to apply to at least a few other vertebrate tissue stem cells in vivo.
Collapse
Affiliation(s)
- Sanjeev K Waghmare
- Advanced Centre for Treatment, Research and Education in Cancer ACTREC, Tata Memorial Centre, Navi Mumbai, 410210, India.
| | | |
Collapse
|
11
|
Anda S, Boye E, Grallert B. Cell-cycle analyses using thymidine analogues in fission yeast. PLoS One 2014; 9:e88629. [PMID: 24551125 PMCID: PMC3923809 DOI: 10.1371/journal.pone.0088629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.
Collapse
Affiliation(s)
- Silje Anda
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Beata Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
- * E-mail:
| |
Collapse
|
12
|
Lengerer B, Pjeta R, Wunderer J, Rodrigues M, Arbore R, Schärer L, Berezikov E, Hess MW, Pfaller K, Egger B, Obwegeser S, Salvenmoser W, Ladurner P. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Front Zool 2014; 11:12. [PMID: 24520881 PMCID: PMC4016567 DOI: 10.1186/1742-9994-11-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. RESULTS In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. CONCLUSION Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of the animals to adhere. The RNAi mediated changes of the anchor cell morphology are comparable to situations observed in human gut epithelia. Therefore, our current findings and future investigations using this powerful flatworm model system might contribute to a better understanding of the function of intermediate filaments and their associated human diseases.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Roberto Arbore
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel CH-4051, Switzerland
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel CH-4051, Switzerland
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen NL-9713 AV, The Netherlands
| | - Michael W Hess
- Division of Histology and Embryology, Medical University Innsbruck, Müllerstrasse 59, Innsbruck A-6020, Austria
| | - Kristian Pfaller
- Division of Histology and Embryology, Medical University Innsbruck, Müllerstrasse 59, Innsbruck A-6020, Austria
| | - Bernhard Egger
- Department of Genetics, Evolution and Environment, University College London, Gower St, London WC1E 6BT, UK
| | - Sabrina Obwegeser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, Innsbruck A-6020, Austria
| |
Collapse
|
13
|
Measurement of S-phase duration of adult stem cells in the flatworm Macrostomum lignano by double replication labelling and quantitative colocalization analysis. Cell Biol Int 2013; 36:1251-9. [PMID: 23005924 DOI: 10.1042/cbi20120187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platyhelminthes are highly attractive models for addressing fundamental aspects of stem cell biology in vivo. These organisms possess a unique stem cell system comprised of neoblasts that are the only proliferating cells during adulthood. We have investigated Ts (S-phase duration) of neoblasts during homoeostasis and regeneration in the flatworm, Macrostomum lignano. A double immunohistochemical technique was used, performing sequential pulses with the thymidine analogues CldU (chlorodeoxyuridine) and IdU (iododeoxyuridine), separated by variable chase times in the presence of colchicine. Owing to the localized nature of the fluorescent signals (cell nuclei) and variable levels of autofluorescence, standard intensity-based colocalization analyses could not be applied to accurately determine the colocalization. Therefore, an object-based colocalization approach was devised to score the relative number of double-positive cells. Using this approach, Ts (S-phase duration) in the main population of neoblasts was ∼13 h. During early regeneration, no significant change in Ts was observed.
Collapse
|