1
|
Ong J, Wu Q, Sasaki K, Isoda H, Szele FG. Nutraceuticals: using food to enhance brain health by modulating postnatal neurogenesis in animal models and patient populations. Stem Cells Transl Med 2025; 14:szaf006. [PMID: 40387786 PMCID: PMC12087346 DOI: 10.1093/stcltm/szaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/30/2024] [Indexed: 05/20/2025] Open
Abstract
Adult hippocampal neurogenesis, while occurring throughout life, decreases with age and in some neurodegenerative diseases. As decreased hippocampal neurogenesis is correlated with cognitive decline, efforts have been made to increase levels of neurogenesis, either through natural compounds, environmental interventions or novel pharmacological compounds. Nutraceuticals are food products with medical benefits such as antioxidation, anti-inflammation or neuroprotection. There has been increasing interest in these "functional foods" and their active compounds in recent years, providing natural alternatives to de novo pharmaceuticals. This review highlights key nutraceuticals that promote neurogenesis and/or improve cognitive outcomes. By outlining the effects of these compounds in the animal models employed and in clinical populations, we also suggest further investigations. We examine common targets and pathways through which these nutraceuticals are believed to exert pro-neurogenic effects. Most nutraceutical preparations contain multiple components, any of which may exert effects on neurogenesis. Identifying key active compounds in nutraceuticals may enable researchers to better understand their effects and standardize doses across studies. The less stringent regulatory requirements for nutraceuticals can be a double-edged sword. While allowing easier access to the beneficial effects, higher doses of these compounds may have detrimental effects. Hence, research in this field should not only aim to identify the benefits of these compounds but also to identify efficacious and safe dosages for them. Our aims are to provide understanding of nutraceuticals, provide evidence for their benefits on neurogenesis and neurogenesis-related behaviors and finally to summarize potential mechanisms and help guide future work.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Qingqing Wu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
2
|
Raise-Abdullahi P, Rezvani M, Yousefi F, Rahmani S, Meamar M, Raeis-Abdollahi E, Vafaei AA, Rashidipour H, Rashidy-Pour A. Natural polyphenols as therapeutic candidates for mitigating neuropsychiatric symptoms in post-traumatic stress disorder: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111230. [PMID: 39722290 DOI: 10.1016/j.pnpbp.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a challenging mental health condition that affects millions of people worldwide after they experience traumatic events. The current medications often do not fully address the wide range of PTSD symptoms or the underlying brain mechanisms, prompting the need to explore new treatments. Polyphenols, which are natural compounds found in many plant-based foods, have gained interest due to their brain-protective, anti-inflammatory, and antioxidant benefits. This review looks at how polyphenols might help treat PTSD by influencing important brain pathways related to the disorder. We explored how polyphenols affect the stress-response system, fear-related memories, brain chemicals, and inflammation. Specifically, we discuss how compounds like resveratrol, curcumin, green tea extract, and quercetin can balance stress hormones, help reduce fear memories, regulate brain chemicals, and decrease brain inflammation. Studies with animals have provided insights into how these compounds might work to ease PTSD symptoms. Based on the preclinical studies, the present review suggests that polyphenols could be a valuable addition or alternative to current PTSD treatments. However, more research is needed to confirm these findings and to determine the best ways to use polyphenols in treating PTSD.
Collapse
Affiliation(s)
| | - Mehrnaz Rezvani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Yousefi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sadaf Rahmani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Rashidipour
- College of International Education, Dalian Medical University, Dalian, China
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
4
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
5
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Fan L, Zhang Z. Therapeutic potential of curcumin on the cognitive decline in animal models of Alzheimer's disease: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4499-4509. [PMID: 38265680 DOI: 10.1007/s00210-024-02946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Curcumin, a polyphenol derived from the herb turmeric, has emerged as a prospective potential therapy in the treatment of Alzheimer's disease (AD). However, the efficacy of curcumin treatment in improving cognitive decline caused controversy recently. We aimed to systematically review the effect of curcumin on cognitive impairment in an animal model of AD. We conducted an exhaustive database search of related studies. Two investigators identified studies and independently extracted data. Stratified meta-analyses and meta-regression analyses were carried out to explore the sources of heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Our systematic review included 33 articles. A meta-analysis of 29 publications showed that curcumin exerts significant positive effects on cognitive performance. For acquisition, the global estimated effect of curcumin was - 2.027 (95% CI - 2.435 to - 1.619, p < 0.001); for retention, the global estimated effect of curcumin was 1.606 (95% CI 1.101 to 2.111, p < 0.001). The stratified meta-analysis demonstrated that an increased effect size depended on diverse study characteristics. Additionally, publication bias was detected. We conclude that curcumin may reduce cognitive deficits in experimental AD. Furthermore, we emphasize that additional well-designed and well-reported animal studies are needed to inform further clinical studies.
Collapse
Affiliation(s)
- Longmin Fan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
8
|
Wade U, Pascual-Figal DA, Rabbani F, Ernst M, Albert A, Janssens I, Dierckxsens Y, Iqtadar S, Khokhar NA, Kanwal A, Khan A. The Possible Synergistic Pharmacological Effect of an Oral Berberine (BBR) and Curcumin (CUR) Complementary Therapy Alleviates Symptoms of Irritable Bowel Syndrome (IBS): Results from a Real-Life, Routine Clinical Practice Settings-Based Study. Nutrients 2024; 16:1204. [PMID: 38674895 PMCID: PMC11053504 DOI: 10.3390/nu16081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent chronic functional gastrointestinal disorder, characterised by recurrent abdominal discomfort and altered bowel movements. IBS cause a significantly negative impact on quality of life (QoL). Growing pharmacological evidence suggests that berberine (BBR) and curcumin (CUR) may mitigate IBS symptoms through multiple complementary synergistic mechanisms, resulting in the attenuation of intestinal inflammation and regulation of bowel motility and gut functions. In the present observational study conducted under real-life routine clinical practice settings, 146 patients diagnosed with IBS were enrolled by general practitioner clinics and pharmacies in Belgium. For the first time, this study assessed the potential synergistic pharmacological effect of a combined oral BBR/CUR supplement (Enterofytol® PLUS, containing 200 mg BBR and 49 mg CUR) (two tablets daily for 2 months), serving as complementary therapy in the management of IBS. Following the 2-month supplementation, significant improvements were observed in the patients' IBS severity index (IBSSI) (47.5%) and all the primary IBS symptoms, such as abdominal discomfort (47.2%), distension (48.0%), intestinal transit (46.8%), and QoL (48.1%) (all p < 0.0001). The improvement in the patients' IBSSI was independent of age, sex, and IBS sub-types. The patients' weekly maximum stool passage frequency decreased significantly (p < 0.0001), and the stool status normalized (p < 0.0001). The patients' need for concomitant conventional IBS treatment decreased notably: antispasmodics by 64.0% and antidiarrhoeals by 64.6%. Minor adverse effects were reported by a small proportion (7.1%) of patients, mostly gastrointestinal. The majority (93.1%) experienced symptom improvement or resolution, with a high satisfaction rate (82.6%) and willingness to continue the supplementation (79.0%). These findings support the potential synergistic pharmacological role of BBR and CUR in IBS, and their co-supplementation may alleviate IBS symptoms and improve QoL.
Collapse
Affiliation(s)
- Ursula Wade
- Department of Basic and Clinical Neuroscience, Kings College London, London SE5 9RT, UK;
| | - Domingo A. Pascual-Figal
- Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, 30120 Murcia, Spain;
| | - Fazale Rabbani
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Marie Ernst
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | - Adelin Albert
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | | | | | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan;
| | - Nisar A. Khokhar
- Department of Medicine, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan;
| | - Ayesha Kanwal
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Amjad Khan
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
9
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Lashgari NA, Roudsari NM, Momtaz S, Niazi Shahraki F, Zandi N, Pazoki B, Farzaei MH, Ghasemi M, Abdollahi M, Abdolghaffari AH. Systematic Review on Herbal Preparations for Controlling Visceral Hypersensitivity in Functional Gastrointestinal Disorders. Curr Pharm Biotechnol 2024; 25:1632-1650. [PMID: 38258770 DOI: 10.2174/0113892010261502231102040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Visceral hypersensitivity (VH) is an overreaction of the gastrointestinal (GI) tract to various stimuli and is characterized by hyperalgesia and/or allodynia. VH contributes to the etiology of many GI dysfunctions, particularly irritable bowel syndrome (IBS). Although the exact mechanisms underlying VH are yet to be found, inflammation and oxidative stress, psychosocial factors, and sensorimotor alterations may play significant roles in it. OBJECTIVE In this review, we provide an overview of VH and its pathophysiological function in GI disorders. Adverse effects of synthetic drugs may make herbal agents a good candidate for pain management. Therefore, in this review, we will discuss the efficacy of herbal agents in the management of VH with a focus on their anti-inflammatory and antioxidant potentials. METHODS Data were extracted from clinical and animal studies published in English between 2004 and June, 2020, which were collected from PubMed, Google Scholar, Scopus, and Cochrane Library. RESULTS Overall, Radix, Melissia, Glycyrrhizae, Mentha, and Liquorice were the most efficient herbals for VH management in IBS and dyspepsia, predominantly through modulation of the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and suppression of 5- hydroxytryptamine 3 (5-HT3) or the serotonin receptors. CONCLUSION Considering the positive effects of herbal formulations in VH management, further research on novel herbal and/or herbal/chemical preparations is warranted.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Pharmacology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Benyamin Pazoki
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
11
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease. ACS OMEGA 2023; 8:35499-35522. [PMID: 37810693 PMCID: PMC10552500 DOI: 10.1021/acsomega.3c04855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Nowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly. The current review summarizes the experimental evidence of the neuroprotective capacity of nutraceuticals against Alzheimer's disease, describing their mechanisms of action and the in vitro and in vivo models applied to evaluate their neuroprotective potential.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería
y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C. 45201 Zapopan, Jalisco, Mexico
| |
Collapse
|
12
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, Rahimian K, Shahrbabaki AS, Talebi A, Parsaiyan H, Shiravand S, Darbandi N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 2023; 26:156-172. [PMID: 35152858 DOI: 10.1080/1028415x.2022.2028058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Kimia Rahimian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aisa Talebi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Parsaiyan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shiravand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
15
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
16
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Abu-El-Rub E, Khasawneh RR, Almahasneh FA, Aloud BM, Zegallai HM. The Molecular and Functional Changes of Neural Stem Cells in Alzheimer's Disease: Can They be Reinvigorated to Conduct Neurogenesis. Curr Stem Cell Res Ther 2023; 18:580-594. [PMID: 36045542 DOI: 10.2174/1574888x17666220831105257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is considered one of the most complicated neurodegenerative disorders, and it is associated with progressive memory loss and remarkable neurocognitive dysfunction that negatively impacts the ability to perform daily living activities. AD accounts for an estimated 60-80% of dementia cases. AD's previously known pathological basis is the deposition of amyloid β (Aβ) aggregates and the formation of neurofibrillary tangles by tau hyperphosphorylation in the cell bodies of neurons that are located in the hippocampus, neocortex, and certain other regions of the cerebral hemispheres and limbic system. The lack of neurotransmitter acetylcholine and the activation of oxidative stress cascade may also contribute to the pathogenesis of AD. These pathological events can lead to irreversible loss of neuronal networks and the emergence of memory impairment and cognitive dysfunction that can engender an abnormal change in the personality. AD cannot be cured, and to some extent, the prescribed medications can only manage the symptoms associated with this disease. Several studies have reported that the regenerative abilities of neural stem/progenitor cells (NSCs) remarkably decline in AD, which disturbs the balancing power to control its progression. Exogenous infusion or endogenous activation of NSCs may be the ultimate solution to restore the neuronal networks in the brain of AD patients and regenerate the damaged areas responsible for memory and cognition. In this mini-review, we will touch upon the fate of NSCs in AD and the utilization of neurogenesis using modified NSCs to restore cognitive functions in AD.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Fatimah A Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Basma Milad Aloud
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Hana M Zegallai
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
- DREAM, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Roles of Curcumin on Cognitive Impairment Induced by a Mixture of Heavy Metals. Neurotox Res 2022; 40:1774-1792. [PMID: 36197595 DOI: 10.1007/s12640-022-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/31/2022]
Abstract
We aimed to explore the molecular mechanisms of curcumin's protective action against heavy metal-related cognitive impairment (CI). In silico analysis, CTD, SwissADME, AutoDock Vina, Metascape, GeneMania, and MIENTURNET were key approaches. The server-predicted interactions (41.7%) and physical interactions (35.7%) were found to be the most important interactions in the gene network analysis. The most important pathways involved in curcumin's protective activity against heavy metals were categorized as "regulation of neuron apoptotic process" and "negative regulation of apoptotic signaling route". These pathways were also emphasized in the protein-protein interaction enrichment analysis. Curcumin was also well-positioned inside the CASP3 binding region. Three key miRNAs linked to CI, mixed heavy metals, and curcumin (hsa-miR-34a-5p, hsa-miR-24-3p, and hsa-miR-128-3p) were observed. These miRNAs were found to be related to the important pathways related to CI and involved in curcumin's protective activity against mixed heavy metals such as "apoptosis multiple species", "apoptosis", and "Alzheimer's disease". We also created and tested in silico sponges that inhibited these miRNAs. Curcumin's physicochemical characteristics and pharmacokinetics are consistent with its therapeutic benefits in CI, owing to its high gastrointestinal absorption and ability to cross the blood-brain barrier, and it is not a P-glycoprotein substrate. Our findings emphasize the protective effects of curcumin in CI caused by heavy metal mixtures and pave the way for molecular mechanisms involved in CI pathology.
Collapse
|
20
|
Lambuk L, Suhaimi NAA, Sadikan MZ, Jafri AJA, Ahmad S, Nasir NAA, Uskoković V, Kadir R, Mohamud R. Nanoparticles for the treatment of glaucoma-associated neuroinflammation. EYE AND VISION 2022; 9:26. [PMID: 35778750 PMCID: PMC9250254 DOI: 10.1186/s40662-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Recently, a considerable amount of literature has emerged around the theme of neuroinflammation linked to neurodegeneration. Glaucoma is a neurodegenerative disease characterized by visual impairment. Understanding the complex neuroinflammatory processes underlying retinal ganglion cell loss has the potential to improve conventional therapeutic approaches in glaucoma. Due to the presence of multiple barriers that a systemically administered drug has to cross to reach the intraocular space, ocular drug delivery has always been a challenge. Nowadays, studies are focused on improving the current therapies for glaucoma by utilizing nanoparticles as the modes of drug transport across the ocular anatomical and physiological barriers. This review offers some important insights on the therapeutic advancements made in this direction, focusing on the use of nanoparticles loaded with anti-inflammatory and neuroprotective agents in the treatment of glaucoma. The prospect of these novel therapies is discussed in relation to the current therapies to alleviate inflammation in glaucoma, which are being reviewed as well, along with the detailed molecular and cellular mechanisms governing the onset and the progression of the disease.
Collapse
|
21
|
Pal A, Cerchiaro G, Rani I, Ventriglia M, Rongioletti M, Longobardi A, Squitti R. Iron in Alzheimer's Disease: From Physiology to Disease Disabilities. Biomolecules 2022; 12:1248. [PMID: 36139084 PMCID: PMC9496246 DOI: 10.3390/biom12091248] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in the neurodegeneration processes. Increased oxidative stress damages lipids, proteins, and nucleic acids in brain tissue, and it is tied to the loss of biometal homeostasis. For this reason, attention has been focused on transition metals involved in several biochemical reactions producing ROS. Even though a bulk of evidence has uncovered the role of metals in the generation of the toxic pathways at the base of Alzheimer's disease (AD), this matter has been sidelined by the advent of the Amyloid Cascade Hypothesis. However, the link between metals and AD has been investigated in the last two decades, focusing on their local accumulation in brain areas known to be critical for AD. Recent evidence revealed a relation between iron and AD, particularly in relation to its capacity to increase the risk of the disease through ferroptosis. In this review, we briefly summarize the major points characterizing the function of iron in our body and highlight why, even though it is essential for our life, we have to monitor its dysfunction, particularly if we want to control our risk of AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André 09210-580, SP, Brazil
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar University (MMU), Mullana, Ambala 133203, Haryana, India
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Rosanna Squitti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
22
|
Ma W, Xu D, Zhao L, Yuan M, Cui YL, Li Y. Therapeutic role of curcumin in adult neurogenesis for management of psychiatric and neurological disorders: a scientometric study to an in-depth review. Crit Rev Food Sci Nutr 2022; 63:9379-9391. [PMID: 35482938 DOI: 10.1080/10408398.2022.2067827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant neurogenesis is a major factor in psychiatric and neurological disorders that have significantly attracted the attention of neuroscientists. Curcumin is a primary constituent of curcuminoid that exerts several positive pharmacological effects on aberrant neurogenesis. First, it is important to understand the different processes of neurogenesis, and whether their dysfunction promotes etiology as well as the development of many psychiatric and neurological disorders; then investigate mechanisms by which curcumin affects neurogenesis as an active participant in pathophysiological events. Based on scientometric studies and additional extensive research, we explore the mechanisms by which curcumin regulates adult neurogenesis and in turn affects psychiatric diseases, i.e., depression and neurological disorders among them traumatic brain injury (TBI), stroke, Alzheimer's disease (AD), Gulf War Illness (GWI) and Fragile X syndrome (FXS). This review aims to elucidate the therapeutic effects and mechanisms of curcumin on adult neurogenesis in various psychiatric and neurological disorders. Specifically, we discuss the regulatory role of curcumin in different activities of neural stem cells (NSCs), including proliferation, differentiation, and migration of NSCs. This is geared toward providing novel application prospects of curcumin in treating psychiatric and neurological disorders by regulating adult neurogenesis.
Collapse
Affiliation(s)
- Wenxin Ma
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lucy Zhao
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mengmeng Yuan
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Ng TP, Nyunt MSZ, Gao Q, Gwee X, Chua DQL, Yap KB. Curcumin-Rich Curry Consumption and Neurocognitive Function from 4.5-Year Follow-Up of Community-Dwelling Older Adults (Singapore Longitudinal Ageing Study). Nutrients 2022; 14:nu14061189. [PMID: 35334842 PMCID: PMC8952785 DOI: 10.3390/nu14061189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The potential neurocognition protective effects of dietary curcumin in curry consumed with food was investigated in this study of 2734 community-dwelling adults (aged ≥ 55, mean ± SD: 65.9 ± 7.4). We analyzed longitudinal data of baseline curry consumption (“never or rarely”, “occasionally”: <once a month, “often”: >once a month and <once a week, “very often”: >once a week or daily) and baseline and 4.5-year follow-up cognitive function in mixed model analyses controlling for confounding risk factors. Significant between-exposure differences were found for Digit Span-Backward (DS-B), Verbal Fluency-Animals (VF-A) and Block Design (BD). Compared to “never or rarely” consumption, “very often” and “often” consumptions were associated with higher DS-B performance; “very often”—with higher VF-A, and “occasional”, “often” and “very often” consumptions—with higher BD: Cohen’s d: from 0.130 to 0.186. Among participants with cardiometabolic and cardiac diseases (CMVD), curry consumption was associated with significantly higher DS-B and VF-A. Among CMVD-free participants, curry consumption was associated with significantly higher DS-B, VF-A and BD: Cohen’s d: from 0.098 to 0.305. The consumption of dietary curcumin was associated with the maintenance over time of higher functioning on attention, short-term working memory, visual spatial constructional ability, language and executive function among community-dwelling older Asian adults.
Collapse
Affiliation(s)
- Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (X.G.); (D.Q.L.C.)
- Geriatric Education and Research Institute, Singapore 768024, Singapore
- Correspondence: ; Tel.: +65-67724518 or +65-67723478
| | - Ma Shwe Zin Nyunt
- Office of the Senior Deputy President and Provost, National University of Singapore, Singapore 119077, Singapore;
| | - Qi Gao
- National Public Health and Epidemiology Unit, National Centre for Infectious Diseases, Singapore 308442, Singapore;
| | - Xinyi Gwee
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (X.G.); (D.Q.L.C.)
| | - Denise Qian Ling Chua
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (X.G.); (D.Q.L.C.)
| | - Keng Bee Yap
- Department of Medicine, Ng Teng Fong General Hospital, Singapore 609606, Singapore;
| |
Collapse
|
24
|
A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6168199. [PMID: 35069976 PMCID: PMC8769857 DOI: 10.1155/2022/6168199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Sleep disturbances, as well as sleep-wake rhythm disorders, are characteristic symptoms of Alzheimer's disease (AD) that may head the other clinical signs of this neurodegenerative disease. Age-related structural and physiological changes in the brain lead to changes in sleep patterns. Conditions such as AD affect the cerebral cortex, basal forebrain, locus coeruleus, and the hypothalamus, thus changing the sleep-wake cycle. Sleep disorders likewise adversely affect the course of the disease. Since the sleep quality is important for the proper functioning of the memory, impaired sleep is associated with problems in the related areas of the brain that play a key role in learning and memory functions. In addition to synthetic drugs, utilization of medicinal plants has become popular in the treatment of neurological diseases. Curcuminoids, which are in a diarylheptanoid structure, are the main components of turmeric. Amongst them, curcumin has multiple applications in treatment regimens of various diseases such as cardiovascular diseases, obesity, cancer, inflammatory diseases, and aging. Besides, curcumin has been reported to be effective in different types of neurodegenerative diseases. Scientific studies exclusively showed that curcumin leads significant improvements in the pathological process of AD. Yet, its low solubility hence low bioavailability is the main therapeutic limitation of curcumin. Although previous studies have focused different types of advanced nanoformulations of curcumin, new approaches are needed to solve the solubility problem. This review summarizes the available scientific data, as reported by the most recent studies describing the utilization of curcumin in the treatment of AD and sleep deprivation-related consequences.
Collapse
|
25
|
Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions. Int J Mol Sci 2021; 22:12697. [PMID: 34884513 PMCID: PMC8657487 DOI: 10.3390/ijms222312697] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy.
Collapse
Affiliation(s)
| | | | - Alonso Martinez-Canabal
- Cell Biology Department, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, ON M6A 2E1, Canada;
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
26
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
27
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
ELBini-Dhouib I, Doghri R, Ellefi A, Degrach I, Srairi-Abid N, Gati A. Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease. Molecules 2021; 26:3011. [PMID: 34070220 PMCID: PMC8158738 DOI: 10.3390/molecules26103011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Despite research efforts, currently there are no effective pharmacotherapeutic options for the prevention and treatment of AD. Recently, numerous studies highlighted the beneficial effects of curcumin (CUR), a natural polyphenol, in the neuroprotection. Especially, its dual antioxidant and anti-inflammatory properties attracted the interest of researchers. In fact, besides its antioxidant and anti-inflammatory properties, this biomolecule is not degraded in the intestinal tract. Additionally, CUR is able to cross the blood-brain barrier and could therefore to be used to treat neurodegenerative pathologies associated with oxidative stress, inflammation and apoptosis. The present study aimed to assess the ability of CUR to induce neuronal protective and/or recovery effects on a rat model of neurotoxicity induced by aluminum chloride (AlCl3), which mimics the sporadic form of Alzheimer's disease. Our results showed that treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats. Additionally, histopathological analysis of hippocampus revealed the potential of CUR in decreasing the hallmarks in the AlCl3-induced AD. We also showed that CUR post-treatment significantly improved the behavioral, oxidative stress and inflammation in AlCl3-exposed rats. Taken together, our data presented CUR as a nutraceutical potential through its protective effects that are more interesting than recovery ones in sporadic model of AD.
Collapse
Affiliation(s)
- Ines ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Raoudha Doghri
- Laboratory of Anatomo-Pathology, Institut Salah Azaiez, 1006 Tunis, Tunisia;
| | - Amenallah Ellefi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Imen Degrach
- Animal Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia;
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, 1002 Tunis, Tunisia; (A.E.); (N.S.-A.)
| | - Asma Gati
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia;
| |
Collapse
|
29
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
30
|
Khan NH, Mir M, Ngowi EE, Zafar U, Khakwani MMAK, Khattak S, Zhai YK, Jiang ES, Zheng M, Duan SF, Wei JS, Wu DD, Ji XY. Nanomedicine: A Promising Way to Manage Alzheimer's Disease. Front Bioeng Biotechnol 2021; 9:630055. [PMID: 33996777 PMCID: PMC8120897 DOI: 10.3389/fbioe.2021.630055] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating disease of the aging population characterized by the progressive and slow brain decay due to the formation of extracellular plaques in the hippocampus. AD cells encompass tangles of twisted strands of aggregated microtubule binding proteins surrounded by plaques. Delivering corresponding drugs in the brain to deal with these clinical pathologies, we face a naturally built strong, protective barrier between circulating blood and brain cells called the blood-brain barrier (BBB). Nanomedicines provide state-of-the-art alternative approaches to overcome the challenges in drug transport across the BBB. The current review presents the advances in the roles of nanomedicines in both the diagnosis and treatment of AD. We intend to provide an overview of how nanotechnology has revolutionized the approaches used to manage AD and highlight the current key bottlenecks and future perspective in this field. Furthermore, the emerging nanomedicines for managing brain diseases like AD could promote the booming growth of research and their clinical availability.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Ujala Zafar
- School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuan-Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institutes of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Fukutomi R, Ohishi T, Koyama Y, Pervin M, Nakamura Y, Isemura M. Beneficial Effects of Epigallocatechin-3- O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021; 26:E415. [PMID: 33466849 PMCID: PMC7829779 DOI: 10.3390/molecules26020415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.
Collapse
Affiliation(s)
- Ryuuta Fukutomi
- Quality Management Division, Higuchi Inc. Minato-ku, Tokyo 108-0075, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan;
| | - Yu Koyama
- Shizuoka Eiwa Gakuin University Junior College, Suruga-ku, Shizuoka 422-8545, Japan;
| | - Monira Pervin
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Yoriyuki Nakamura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Mamoru Isemura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| |
Collapse
|
32
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
33
|
Zhong H, Xiao R, Ruan R, Liu H, Li X, Cai Y, Zhao J, Fan X. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl) 2020; 237:3539-3552. [PMID: 32803366 DOI: 10.1007/s00213-020-05634-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders characterized by deficits in social communication and interaction, repetitive stereotyped behaviors, and cognitive impairments. Curcumin has been indicated to be neuroprotective against neurological and psychological disorders. However, the role of curcumin in autistic phenotypes remains unclear. OBJECTIVES In the current study, we evaluated the effects of neonatal curcumin treatment on behavior and hippocampal neurogenesis in BTBRT+ltpr3tf/J (BTBR) mice, a model of autism. METHODS C57BL/6J (C57) and BTBR mouse pups were treated with 0.1% dimethyl sulfoxide (DMSO) or curcumin (20 mg/kg) from postnatal day 6 (P6) to P8. Neural progenitor cells (NPCs) in the hippocampal dentate gyrus (DG) were evaluated on P8, and neurogenesis was measured on P24 by immunofluorescence. A battery of behavioral tests was carried out when the mice were 8 weeks of age. RESULTS Neonatal curcumin treatment improved autism-related symptoms in BTBR mice, enhancing sociability, reducing repetitive behaviors, and ameliorating cognitive impairments. Furthermore, the suppression of hippocampal neurogenesis in BTBR mice was greatly rescued after neonatal curcumin treatment, leading to an increase in neurogenic processes and an increase in NPC proliferation concomitant with an expansion of the NPC pool on P8, and NPC differentiation towards the neuronal lineage was promoted in the DG of BTBR mice on P24. CONCLUSIONS Our findings suggest that neonatal curcumin treatment elicits a therapeutic response through the restoration of hippocampal neurogenesis in BTBR mice and thus may represent a promising novel pharmacological strategy for ASD treatment.
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruotong Ruan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Hui Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China. .,Institute of Brain and Intelligence, Chongqing, 400038, China.
| |
Collapse
|
34
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
35
|
Yilmaz EN, Bay S, Ozturk G, Ucisik MH. Neuroprotective Effects of Curcumin-Loaded Emulsomes in a Laser Axotomy-Induced CNS Injury Model. Int J Nanomedicine 2020; 15:9211-9229. [PMID: 33244233 PMCID: PMC7685369 DOI: 10.2147/ijn.s272931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Curcumin, a polyphenol isolated from the rhizomes of turmeric, holds great potential as a neuroprotective agent in addition to its anti-inflammatory and antioxidant characteristics. The poor bioavailability and low stability of curcumin are the greatest barriers to its clinical use. This study aims to investigate the neuroprotective effect of curcumin on axonal injury, by delivering the lipophilic polyphenol to a primary hippocampal neuron culture by means of a lipid-based drug delivery system, named emulsomes. METHODS To study neuroregeneration ex vivo, an injury model was established through single-cell laser axotomy on hippocampal neurites. Upon treatment with curcumin-loaded emulsomes (CurcuEmulsomes), curcumin and CurcuEmulsome uptake into neurons was verified by three-dimensional Z-stack images acquired with confocal microscopy. Neuron survival after axonal injury was tracked by propidium iodide (PI) and Hoechst staining. Alterations in expression levels of physiological markers, such as anti-apoptotic marker Bcl2, apoptotic marker cleaved caspase 3, neuroprotective marker Wnt3a and the neuronal survival marker mTOR, were investigated by immunocytochemistry analyses. RESULTS The results indicated significant improvement in the survival rate of injured neurons upon CurcuEmulsome treatment. Bcl2 expression was significantly higher for injured neurons treated with curcumin or CurcuEmulsome. Reduction in caspase 3 expression was seen in both curcumin and CurcuEmulsome treatment, whereas there were no significant changes in Wnt3a and mTOR expression. CONCLUSION The established laser-axotomy model was proven as a reliable methodology to study neurodegenerative models ex vivo. CurcuEmulsomes delivered curcumin to primary hippocampal neurons successfully. Treated with CurcuEmulsomes, injured hippocampal neurons benefit from the neuroprotective effects of curcumin, exhibiting a higher survival rate and increased anti-apoptotic marker levels.
Collapse
Affiliation(s)
- Elif Nur Yilmaz
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Sadik Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| |
Collapse
|
36
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
37
|
Rueda N, Vidal V, García-Cerro S, Puente A, Campa V, Lantigua S, Narcís O, Bartesaghi R, Martínez-Cué C. Prenatal, but not Postnatal, Curcumin Administration Rescues Neuromorphological and Cognitive Alterations in Ts65Dn Down Syndrome Mice. J Nutr 2020; 150:2478-2489. [PMID: 32729926 DOI: 10.1093/jn/nxaa207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory. OBJECTIVES We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment. METHODS To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs. RESULTS Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice. CONCLUSION The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine, Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
38
|
Zhang Y, Li L, Zhang J. Curcumin in antidepressant treatments: An overview of potential mechanisms, pre‐clinical/clinical trials and ongoing challenges. Basic Clin Pharmacol Toxicol 2020; 127:243-253. [DOI: 10.1111/bcpt.13455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yinfeng Zhang
- International Medical Center Beijing Friendship HospitalCapital Medical University Beijing China
| | - Li Li
- International Medical Center Beijing Friendship HospitalCapital Medical University Beijing China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy School of Life Sciences Beijing Institute of Technology Beijing China
| |
Collapse
|
39
|
Visentin APV, Colombo R, Scotton E, Fracasso DS, da Rosa AR, Branco CS, Salvador M. Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2972968. [PMID: 32351669 PMCID: PMC7178465 DOI: 10.1155/2020/2972968] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of psychiatric disorders has increased in recent years. Among existing mental disorders, major depressive disorder (MDD) has emerged as one of the leading causes of disability worldwide, affecting individuals throughout their lives. Currently, MDD affects 15% of adults in the Americas. Over the past 50 years, pharmacotherapy, psychotherapy, and brain stimulation have been used to treat MDD. The most common approach is still pharmacotherapy; however, studies show that about 40% of patients are refractory to existing treatments. Although the monoamine hypothesis has been widely accepted as a molecular mechanism to explain the etiology of depression, its relationship with other biochemical phenomena remains only partially understood. This is the case of the link between MDD and inflammation, mitochondrial dysfunction, and oxidative stress. Studies have found that depressive patients usually exhibit altered inflammatory markers, mitochondrial membrane depolarization, oxidized mitochondrial DNA, and thus high levels of both central and peripheral reactive oxygen species (ROS). The effect of antidepressants on these events remains unclear. Nevertheless, the effects of ROS on the brain are well known, including lipid peroxidation of neuronal membranes, accumulation of peroxidation products in neurons, protein and DNA damage, reduced antioxidant defenses, apoptosis induction, and neuroinflammation. Antioxidants such as ascorbic acid, tocopherols, and coenzyme Q have shown promise in some depressive patients, but without consensus on their efficacy. Hence, this paper provides a review of MDD and its association with inflammation, mitochondrial dysfunction, and oxidative stress and is aimed at thoroughly discussing the putative links between these events, which may contribute to the design and development of new therapeutic approaches for patients.
Collapse
Affiliation(s)
| | - Rafael Colombo
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Soligo Fracasso
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Adriane Ribeiro da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Catia Santos Branco
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Mirian Salvador
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| |
Collapse
|
40
|
Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3β and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer's Disease. Nutrients 2020; 12:nu12041032. [PMID: 32283762 PMCID: PMC7230780 DOI: 10.3390/nu12041032] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Dietary supplementation with curcumin has been previously reported to have beneficial effects in people with insulin resistance, type 2 diabetes (T2D) and Alzheimer’s disease (AD). This study investigated the effects of dietary supplementation with curcumin on key peptides implicated in insulin resistance in individuals with high risk of developing T2D. Plasma samples from participants recruited for a randomised controlled trial with curcumin (180 mg/day) for 12 weeks were analysed for circulating glycogen synthase kinase-3 β (GSK-3β) and islet amyloid polypeptide (IAPP). Outcome measures were determined using ELISA kits. The homeostasis model for assessment of insulin resistance (HOMA-IR) was measured as parameters of glycaemic control. Curcumin supplementation significantly reduced circulating GSK-3β (−2.4 ± 0.4 ng/mL vs. −0.3 ± 0.6, p = 0.0068) and IAPP (−2.0 ± 0.7 ng/mL vs. 0.4 ± 0.6, p = 0.0163) levels compared with the placebo group. Curcumin supplementation significantly reduced insulin resistance (−0.3 ± 0.1 vs. 0.01 ± 0.05, p = 0.0142) compared with placebo group. Dietary supplementation with curcumin reduced circulating levels of IAPP and GSK-3β, thus suggesting a novel mechanism through which curcumin could potentially be used for alleviating insulin resistance related markers for reducing the risk of T2D and AD.
Collapse
Affiliation(s)
- Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Jessica I Rosato
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cintia B Dias
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Biomedical Sciences, Macquarie University, Macquarie, NSW 2109, Australia;
| | - Tracy L Burrows
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ralph N Martins
- School of Biomedical Sciences, Macquarie University, Macquarie, NSW 2109, Australia;
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- Correspondence: ; Tel.: +61-2-4921-5647; Fax: +61-2-49212028
| |
Collapse
|
41
|
Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, Pasqua L, Taheri Y, Marina Salgado Castillo C, Martorell M, Martins N, Iriti M, Suleria HAR, Sharifi-Rad J. Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. J Clin Med 2020; 9:E430. [PMID: 32033365 PMCID: PMC7074182 DOI: 10.3390/jcm9020430] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The brain is the body's control center, so when a disease affects it, the outcomes are devastating. Alzheimer's and Parkinson's disease, and multiple sclerosis are brain diseases that cause a large number of human deaths worldwide. Curcumin has demonstrated beneficial effects on brain health through several mechanisms such as antioxidant, amyloid β-binding, anti-inflammatory, tau inhibition, metal chelation, neurogenesis activity, and synaptogenesis promotion. The therapeutic limitation of curcumin is its bioavailability, and to address this problem, new nanoformulations are being developed. The present review aims to summarize the general bioactivity of curcumin in neurological disorders, how functional molecules are extracted, and the different types of nanoformulations available.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | - Sushant Aryal
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | | | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. HernâniMonteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
| | | | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
42
|
Neuroinflammation and Neurogenesis in Alzheimer's Disease and Potential Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21030701. [PMID: 31973106 PMCID: PMC7037892 DOI: 10.3390/ijms21030701] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
In adult brain, new neurons are generated throughout adulthood in the subventricular zone and the dentate gyrus; this process is commonly known as adult neurogenesis. The regulation or modulation of adult neurogenesis includes various intrinsic pathways (signal transduction pathway and epigenetic or genetic modulation pathways) or extrinsic pathways (metabolic growth factor modulation, vascular, and immune system pathways). Altered neurogenesis has been identified in Alzheimer's disease (AD), in both human AD brains and AD rodent models. The exact mechanism of the dysregulation of adult neurogenesis in AD has not been completely elucidated. However, neuroinflammation has been demonstrated to alter adult neurogenesis. The presence of various inflammatory components, such as immune cells, cytokines, or chemokines, plays a role in regulating the survival, proliferation, and maturation of neural stem cells. Neuroinflammation has also been considered as a hallmark neuropathological feature of AD. In this review, we summarize current, state-of-the art perspectives on adult neurogenesis, neuroinflammation, and the relationship between these two phenomena in AD. Furthermore, we discuss the potential therapeutic approaches, focusing on the anti-inflammatory and proneurogenic interventions that have been reported in this field.
Collapse
|
43
|
Abstract
Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.
Collapse
|
44
|
Deb S, Phukan BC, Dutta A, Paul R, Bhattacharya P, Manivasagam T, Thenmozhi AJ, Babu CS, Essa MM, Borah A. Natural Products and Their Therapeutic Effect on Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:601-614. [PMID: 32006376 DOI: 10.1007/978-3-030-30402-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Autism is a complex neurodevelopmental disorder that is evident in early childhood and can persist throughout the entire life. The disease is basically characterized by hurdles in social interaction where the individuals demonstrate repetitive and stereotyped interests or patterns of behavior. A wide number of neuroanatomical studies with autistic patients revealed alterations in brain development which lead to diverse cellular and anatomical processes including atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech and language therapy, have been employed for the amelioration of behavioral deficits in autism. Although commonly prescribed antidepressants, antipsychotics, anticonvulsants, and stimulants have revealed satisfactory responses in autistic individuals, adverse side effects and increased risk of several other complications including obesity, dyslipidemia, diabetes mellitus, thyroid disorders, etc. have compelled the researchers to turn their attention toward herbal remedies. Alternative approaches with natural compounds are on continuous clinical trial to confirm their efficacy and to understand their potential in autism treatment. This chapter aims to cover the major plant-based natural products which hold promising outcomes in the field of reliable therapeutic interventions for autism.
Collapse
Affiliation(s)
- Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Chidambaram Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
45
|
De A, Beligala DH, Birkholz TM, Geusz ME. Anticancer Properties of Curcumin and Interactions With the Circadian Timing System. Integr Cancer Ther 2019. [PMCID: PMC6902383 DOI: 10.1177/1534735419889154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The phytochemical curcumin is a major component of turmeric. It has recognized activity against cancer cells and affects several intracellular signaling pathways. Many molecules targeted by curcumin also regulate the circadian timing system that has effects on carcinogenesis, tumor growth, and metastasis. Although the circadian clock within cells may be suppressed in tumors, cancer cells are subjected to daily hormonal and neural activity that should be considered when timing optimal curcumin treatments. Rapid curcumin degradation in blood and tissues provides a challenge to maintaining sustained levels suitable for inducing cancer cell death, increasing the need to identify when during the circadian cycle rhythmically expressed molecular targets are present. Curcumin is well tolerated by individuals ingesting it for possible cancer prevention or in combination with conventional cancer therapies, and it shows low toxicity toward noncancerous cells at low dosages. In contrast, curcumin is particularly effective against cancer stem cells, which are treatment-resistant, aggressive, and tumor-initiating. Although curcumin has poor bioavailability, more stable curcumin analogs retain the anti-inflammatory, antioxidant, antimitotic, and pro-apoptotic benefits of curcumin. Anticancer properties are also present in congeners of curcumin in turmeric and after curcumin reduction by intestinal microbes. Various commercial curcuminoid products are highly popular dietary supplements, but caution is warranted. Although antioxidant properties of curcumin may prevent carcinogenesis, studies suggest curcumin interferes with certain chemotherapeutic agents. This review delves into the complex network of curcuminoid effects to identify potential anticancer strategies that may work in concert with daily physiological cycles controlled by the circadian timing system.
Collapse
Affiliation(s)
- Arpan De
- Bowling Green State University, Bowling Green, OH, USA
| | | | | | | |
Collapse
|
46
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
47
|
The effect of curcumin on cognition in Alzheimer's disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725:146476. [PMID: 31560864 DOI: 10.1016/j.brainres.2019.146476] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease constitutes a growing cause of cognitive impairment in aging population. Given that current treatments do not produce the desired therapeutic effects, the need for finding alternative biological and pharmacological approaches is critical. Accumulating evidence suggests inflammatory and oxidative stress responses as potential causal factors of cognitive impairments in Alzheimer's disease and healthy aging. Curcumin has received increased interest due to its unique molecular structure that targets inflammatory and antioxidant pathways as well as (directly) amyloid aggregation; one of the major hallmarks of Alzheimer's disease. Therefore, this review summarizes preclinical and clinical findings on curcumin as a potential cognitive enhancer in Alzheimer's disease and normal aging. Databases used for literature searches include PubMed, EMBASE and Web of Science; in addition, clinicaltrials.gov was used to search for clinical studies. Overall, animal research has shown very promising results in potentiating cognition, both physiologically and behaviourally. However, human studies are limited and results are less consistent, complicating their interpretation. These inconsistencies may be related to differences in methodology and the included population. Taking into account measurements of important inflammatory and antioxidant biomarkers, optimal dosages of curcumin, food interactions, and duration of treatment would increase our understanding on curcumin's promising effects on cognition. In addition, increasing curcumin's bioavailability could benefit future research.
Collapse
|
48
|
Kamali Dolatabadi L, Emamghoreishi M, Namavar MR, Badeli Sarkala H. Curcumin Effects on Memory Impairment and Restoration of Irregular Neuronal Distribution in the Hippocampal CA1 Region After Global Cerebral Ischemia in Male Rats. Basic Clin Neurosci 2019; 10:527-539. [PMID: 32284841 PMCID: PMC7149957 DOI: 10.32598/bcn.9.10.365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 10/03/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction: Global Cerebral Ischemia (GCI) causes neuronal damage with subsequent neurological and cognitive impairments. Curcumin has anti-inflammatory, antioxidant, and neuroprotective properties, which makes it a potential candidate for improving GCI-induced impairments. This study aimed to investigate the effects of curcumin on the neurological and memory deficits, as well as spatial neuronal distribution in the Cornu Ammonis 1 region after GCI in rats. Methods: 56 Sprague-Dawley male rats were randomly assigned into 4 groups of sham (n=14), control (n=14), curcumin 50 mg/kg (n=14), and curcumin 100 mg/kg (n=14). Each group was divided into the two subgroups of short-term (7 days) and long-term (28 days) treatment periods. The Neurological Severity Score (NSS), passive avoidance task, and the traction test were performed at postoperative days of 0, 1, 2, 3, 7, 14, 21, and 28. The novel object recognition test and Voronoi tessellation were carried out on days 7 and 28 after GCI. Results: Curcumin 100 mg/kg significantly decreased neurological severity score on postoperative days of 7 and 28 compared with the control (P<0.001) and curcumin 50 mg/kg groups (P<0.05–P<0.001), respectively. Also, curcumin 100 mg/kg significantly increased step-through latency times on postoperative days of 3–28 and 14–28 compared with the control (P<0.05–P<0.001) and curcumin 50 mg/kg groups (P<0.01–P<0.001). Moreover, it increased the novelty preference index during the novel object recognition test in the 28-day treatment subgroup after GCI. Curcumin (100 mg/kg) could maintain the neuronal aggregation in the CA1 region after GCI at a level near to what is generally observed in normal rats. Conclusion: Curcumin could improve memory and neurological deficits and restore irregular neuronal distribution in the CA1 region after GCI in a time-dependent manner, and its higher dose was more effective than its lower dose. Curcumin may have beneficial effects on reducing brain complications after ischemia.
Collapse
Affiliation(s)
- Leila Kamali Dolatabadi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Emamghoreishi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamze Badeli Sarkala
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Chavoshinezhad S, Mohseni Kouchesfahani H, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer's disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109661. [PMID: 31152860 DOI: 10.1016/j.pnpbp.2019.109661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis and impaired hippocampal neurogenesis are major players in cognitive/memory dysfunctions including Alzheimer's disease (AD). Interferon beta (IFNβ) is a cytokine with anti-apoptotic and neuroprotective properties on the central nervous system (CNS) cells which specifically affects neural progenitor cells (NPCs) even in the adult brain. In this study, we examined the effect of IFNβ on memory impairment as well as hippocampal neurogenesis and apoptosis in a rat model of AD. AD model was induced by lentiviral-mediated overexpression of mutant APP in the hippocampus of adult rats. Intranasal (IN) administration of IFNβ (0.5 μg/kg and 1 μg/kg doses) was started from day 23 after virus injection and continued every other day to the final day of experiments. The expression levels of APP, neurogenesis (Nestin, Ki67, DCX, and Reelin) and apoptosis (Bax/Bcl-2 ratio, cleaved-caspase-3 and seladin-1) markers were evaluated by immunohistochemistry, real-time PCR, immunofluorescence and western blotting. Moreover, thioflavin T and Nissl stainings were used to assess Aβ plaque levels and neuronal degeneration in the hippocampus, respectively. Our results showed that IFNβ treatment reduced APP expression and Aβ plaque formation, and concomitantly ameliorated spatial learning and memory deficits examined in Y-maze and Morris water maze tests. Moreover, in parallel with reducing apoptosis and neural loss in the hippocampal subfields, IFNβ decreased ectopic neurogenesis in the CA1 and CA3 regions of the AD rat hippocampus. However, IFNβ increased neurogenesis in the dentate gyrus neurogenic niche. Our findings suggest that IFNβ exerts neuroprotective effects at least partly by inhibition of apoptosis and modulation of neurogenesis. Taken together, IFNβ can be a promising therapeutic approach to improve cognitive performance in AD-like neurodegenerative context.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Curcumin as Add-On to Antipsychotic Treatment in Patients With Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Clin Neuropharmacol 2019; 42:117-122. [DOI: 10.1097/wnf.0000000000000344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|