1
|
Xu Z, Wu J, Lovely B, Li Y, Ponder M, Waterman K, Kim YT, Shuai D, Yin Y, Huang H. Visible light-activated dye-sensitized TiO 2 antibacterial film: A novel strategy for enhancing food safety and quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136296. [PMID: 39481262 DOI: 10.1016/j.jhazmat.2024.136296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Antibacterial packaging holds promise in addressing food spoilage by inactivating bacteria, but current antimicrobial packaging solutions face challenges like depletion of antibacterials and concerns of antibiotic abuse. In response to these limitations of existing packaging materials, we developed a novel antibacterial packaging film by incorporating titanium dioxide (TiO2)- tetra(4-carboxyphenyl) porphyrin (TcPP) conjugates into cellulose nanofibrils (CNF) films. Unlike conventional antimicrobial packaging, this film harnesses visible light energy to excite electrons from TcPP to TiO2, generating reactive oxygen species (ROS) that inactivate bacteria without relying on antibiotics. Results demonstrated that the film reduced 4.5, 4.6, 4.1, and 4.7-log Escherichia coli, Pseudomonas fluorescens, Leuconostoc lactis, and Listeria innocua, respectively, in phosphate-buffered saline within 72 h under 6000 lux light (3.13 mW/cm2). The antimicrobial efficacy decreased as the light intensity decreased. Notably, it retains significant antimicrobial properties even under an extremely low light intensity of 600 lux (0.60 mW/cm2). The analysis also revealed that singlet oxygen and hydrogen peroxide are the major generated ROS from the film under light exposure. When applied to cucumbers, the film reduced E. coli by 3.5 logs after 48-hour light exposure. The designed photocatalytic antibacterial film represents a major advancement in sustainable food preservation, reducing food waste by extending the shelf life of fresh produce.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Jian Wu
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Belladini Lovely
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24060, United States
| | - Yilin Li
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Young-Teck Kim
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24060, United States
| | - Danmeng Shuai
- Department of Civil & Environmental Engineering, The George Washington University, Washington, D.C., 20052, United States
| | - Yun Yin
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, United States.
| |
Collapse
|
2
|
Kubiak A. Comprehensive spectroscopy and photocatalytic activity analysis of TiO 2-Pt systems under LED irradiation. Sci Rep 2024; 14:13827. [PMID: 38879712 PMCID: PMC11180208 DOI: 10.1038/s41598-024-64748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
This study presents a thorough spectroscopic analysis of TiO2-Pt systems under LED irradiation, with a focus on elucidating the photodeposition process of Pt nanoparticles onto TiO2 surfaces. The methodology leverages an innovative LED photoreactor tailored to a specific spectral range, enabling precise characterization of the excitation spectrum of TiO2-Pt composites. Through the identification of Pt precursor species and their excitation under LED-UV light, a photodeposition mechanism is proposed involving concurrent excitation of both the TiO2 semiconductor and the H2PtCl6 precursor. The LED photoreactors are employed to scrutinize the excitation profile of TiO2-Pt materials, revealing that the incorporation of Pt nanoparticles does not expand TiO2's absorption spectrum. Furthermore, UV-A exposure in the absence of Pt did not induce the formation of surface defects, underscoring the lack of visible light activity in TiO2-Pt systems. Spectroscopic analyses, complemented by naproxen photooxidation experiments, indicate the absence of a significant plasmonic effect in Pt nanoparticles within the experimental framework. Mass spectroscopy results corroborate the presence of distinct naproxen degradation pathways, suggesting minimal influence from photocatalyst properties. This research provides a detailed spectroscopic insight into TiO2-Pt photocatalysis, enriching the knowledge of photocatalytic materials in LED lighting.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, PL-61614, Poznan, Poland.
| |
Collapse
|
3
|
Li CC, Jhou SM, Li YC, Ciou JW, Lin YY, Hung SC, Chang JH, Chang JC, Sun DS, Chou ML, Chang HH. Exposure to low levels of photocatalytic TiO 2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Sci Rep 2022; 12:18228. [PMID: 36309586 PMCID: PMC9617883 DOI: 10.1038/s41598-022-23179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.
Collapse
Affiliation(s)
- Chi-Cheng Li
- grid.414692.c0000 0004 0572 899XDepartment of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan ,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Sian-Ming Jhou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Yi-Chen Li
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - You-Yen Lin
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- grid.445052.20000 0004 0639 3773Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Der-Shan Sun
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Lun Chou
- grid.411824.a0000 0004 0622 7222Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Antibacterial effect of Cu2O/TiO2 photocatalytic composite on Pseudomonas marginalis pv. marginalis. Arch Microbiol 2022; 204:462. [DOI: 10.1007/s00203-022-03065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
|
5
|
Wang J, Jia Y, Whalen JK, McShane H, Driscoll BT, Sunahara GI. Evidence that nano-TiO 2 induces acute cytotoxicity to the agronomically beneficial nitrogen-fixing bacteria Sinorhizobium meliloti. Can J Microbiol 2021; 68:1-6. [PMID: 34516930 DOI: 10.1139/cjm-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When nano-sized titanium dioxide (nano-TiO2) absorbs ultra-violet (UV-A) radiation, it produces reactive oxygen species that can be toxic to bacteria. We used the agronomically beneficial nitrogen-fixing bacterium Sinorhizobium meliloti strain 1021 as a model microorganism to detect nano-TiO2 toxicity. Sinorhizobium meliloti was exposed to aqueous dispersions of micrometer-sized TiO2 (micron-TiO2, 44 μm) or nanometer-sized TiO2 (nano-TiO2, 21 nm) at nominal concentrations of 0, 100, 300, 600, 900, and 1800 mg TiO2/L. There were fewer viable S. meliloti cells after exposure to nano-TiO2 under dark and UV-A light conditions. Nano-TiO2 was more toxic to S. meliloti with UV-A irradiation (100% mortality at 100 mg TiO2/L) than under dark conditions (100% mortality at 900 mg TiO2/L). Micron-TiO2 concentrations less than 300 mg TiO2/L had no effect on S. meliloti viability under dark or UV-A light conditions. Exposure to 600 mg/L or more of micron-TiO2 under UV-A light could also photo-kill S. meliloti cells (100% mortality). Further studies are needed to ascertain whether nano-TiO2 interferes with the growth of N2-fixing microorganisms in realistic agricultural environments.
Collapse
Affiliation(s)
- Jieping Wang
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Yu Jia
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 Essex County Rd 20, Harrow, ON N0R 1G0, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Heather McShane
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Brian T Driscoll
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
6
|
Huang CY, Yu WS, Liu GC, Hung SC, Chang JH, Chang JC, Cheng CL, Sun DS, Lin MD, Lin WY, Tzeng YJ, Chang HH. Opportunistic gill infection is associated with TiO2 nanoparticle-induced mortality in zebrafish. PLoS One 2021; 16:e0247859. [PMID: 34283836 PMCID: PMC8291654 DOI: 10.1371/journal.pone.0247859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
The large amounts of engineered titanium dioxide nanoparticles (TiO2NPs) that have been manufactured have inevitably been released into the ecosystem. Reports have suggested that TiO2 is a relatively inert material that has low toxicity to animals. However, as various types of NPs increasingly accumulate in the ocean, their effects on aquatic life-forms remain unclear. In this study, a zebrafish model was used to investigate TiO2NP-induced injury and mortality. We found that the treatment dosages of TiO2NP are positively associated with increased motility of zebrafish and the bacterial counts in the water. Notably, gill but not dorsal fin and caudal fin of the zebrafish displayed considerably increased bacterial load. Metagenomic analysis further revealed that gut microflora, such as phyla Proteobacteria, Bacteroidetes, and Actinobacteria, involving more than 95% of total bacteria counts in the NP-injured zebrafish gill samples. These results collectively suggest that opportunistic bacterial infections are associated with TiO2NP-induced mortality in zebrafish. Infections secondary to TiO2NP-induced injury could be a neglected factor determining the detrimental effects of TiO2NPs on wild fish.
Collapse
Affiliation(s)
- Chiao-Yi Huang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wei-Sheng Yu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Geng-Chia Liu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yin-Jeh Tzeng
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Abstract
Pure titanium dioxide TiO2 photocatalytic substrates exhibit antibacterial activity only when they are irradiated with ultraviolet light, which comprises high-energy wavelengths that damage all life. Impurity doping of TiO2-related materials enables visible light to stimulate photocatalytic activity, which enhances opportunities for TiO2 to be used as a disinfectant in living environments. Boron-doped TiO2 displays visible-light-responsive bactericidal properties. However, because boron-derived compounds also exert notable antibacterial effects, most reports did not clearly demonstrate the extent to which the bactericidal property of boron-doped TiO2 is contributed by visible-light-stimulated photocatalysis. In addition, TiO2 thin films have considerable potential for applications in equipment that requires sterilization; however, the antibacterial properties of boron-doped TiO2 thin films have been examined by only a few studies. We found that boron-doped TiO2 thin films displayed visible-light-driven antibacterial properties. Moreover, because boron compounds may have intrinsic antibacterial properties, using control groups maintained in the dark, we clearly demonstrated that visible light stimulated the photocatalysis of boron-doped TiO2 thin films but not the residue boron compounds display antibacterial property. The bactericidal effects induced by visible light are equally potent for the elimination of the model organism Escherichia coli and human pathogens, such as Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pyogenes. The antibacterial applications of boron-doped TiO2 thin films are described, and relevant perspectives discussed.
Collapse
|
8
|
Dong X, Edmondson R, Yang F, Tang Y, Wang P, Sun YP, Yang L. Carbon dots for effective photodynamic inactivation of virus. RSC Adv 2020; 10:33944-33954. [PMID: 35519058 PMCID: PMC9056736 DOI: 10.1039/d0ra05849a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
The antiviral function of carbon dots (CDots) with visible light exposure was evaluated, for which the model bacteriophages MS2 as a surrogate of small RNA viruses were used. The results show clearly that the visible light-activated CDots are highly effective in diminishing the infectivity of MS2 in both low and high titer samples to the host E. coli cells, and the antiviral effects are dot concentration- and treatment time-dependent. The action of CDots apparently causes no significant damage to the structural integrity and morphology of the MS2 phage or the breakdown of the capsid proteins, but does result in the protein carbonylation (a commonly used indicator for protein oxidation) and the degradation of viral genomic RNA. Mechanistically the results may be understood in the framework of photodynamic effects that are associated with the unique excited state properties and processes of CDots. Opportunities for potentially broad applications of CDots coupled with visible/natural light in the prevention and control of viral transmission and spread are highlighted and discussed. The antiviral function of carbon dots (CDots) with visible light exposure was evaluated, for which the model bacteriophages MS2 as a surrogate of small RNA viruses were used.![]()
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham NC 27707 USA +1-919-530-6705 +1-919-530-6704
| | | | - Fan Yang
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University Clemson SC 29634 USA +1-864-656-5026
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University Durham NC 27707 USA
| | - Ping Wang
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University Clemson SC 29634 USA +1-864-656-5026
| | - Ya-Ping Sun
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University Clemson SC 29634 USA +1-864-656-5026
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham NC 27707 USA +1-919-530-6705 +1-919-530-6704
| |
Collapse
|
9
|
Thioacetamide-induced liver damage and thrombocytopenia is associated with induction of antiplatelet autoantibody in mice. Sci Rep 2019; 9:17497. [PMID: 31767905 PMCID: PMC6877565 DOI: 10.1038/s41598-019-53977-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Thrombocytopenia is usually associated with liver injury, elevated plasma aspartate aminotransferase and alanine aminotransferase levels, and high antiplatelet immunoglobulin (Ig) titers, although the mechanism behind these effects remains elusive. Deciphering the mechanism behind acute liver disease–associated thrombocytopenia may help solve difficulties in routine patient care, such as liver biopsy, antiviral therapy, and surgery. To determine whether liver damage is sufficient per se to elicit thrombocytopenia, thioacetamide (TAA)-induced hepatitis rodent models were employed. The analysis results indicated that TAA treatment transiently induced an elevation of antiplatelet antibody titer in both rats and mice. B-cell-deficient (BCD) mice, which have loss of antibody expression, exhibited markedly less thrombocytopenia and liver damage than wild-type controls. Because TAA still induces liver damage in BCD mice, this suggests that antiplatelet Ig is one of the pathogenic factors, which play exacerbating role in the acute phase of TAA-induced hepatitis. TNF-α was differentially regulated in wild-type versus BCD mice during TAA treatment, and anti-TNF treatment drastically ameliorated antiplatelet Ig induction, thrombocytopenia, and liver injury, suggesting that the TNF pathway plays a critical role in the disease progression.
Collapse
|
10
|
Sun DS, Chang YW, Kau JH, Huang HH, Ho PH, Tzeng YJ, Chang HH. Soluble P-selectin rescues mice from anthrax lethal toxin-induced mortality through PSGL-1 pathway-mediated correction of hemostasis. Virulence 2017; 8:1216-1228. [PMID: 28102766 DOI: 10.1080/21505594.2017.1282027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
As one of the virulence factors of Bacillus anthracis, lethal toxin (LT) induces various pathogenic responses including the suppression of the coagulation system. In this study, we observed that LT markedly increased the circulating soluble P-selectin (sP-sel) levels and microparticle (MP) count in wild-type but not P-selectin (P-sel, Selp-/-) or P-sel ligand-1 (PSGL-1, Selplg-/-) knockout mice. Because sP-sel induces a hypercoagulable state through PSGL-1 pathway to generate tissue factor-positive MPs, we hypothesized that the increase in plasma sP-sel levels can be a self-rescue response in hosts against the LT-mediated suppression of the coagulation system. In agreement with our hypothesis, our results indicated that compared with wild-type mice, Selp-/- and Selplg-/- mice were more sensitive to LT. In addition, the recombinant sP-sel treatment markedly ameliorated LT-mediated pathogenesis and reduced mortality. As a result, elicitation of circulating sP-sel is potentially a self-rescue response, which is beneficial to host recovery from an LT-induced hypocoagulation state. These results suggest that the administration of sP-sel is likely to be useful in the development of a new strategy to treat anthrax.
Collapse
Affiliation(s)
- Der-Shan Sun
- a Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan.,b Center for Vascular Medicine , Tzu-Chi University , Hualien , Taiwan
| | - Yao-Wen Chang
- a Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Jyh-Hwa Kau
- c Institute of Microbiology and Immunology, National Defense Medical Center , Taipei , Taiwan.,d Institute of Preventive Medicine, National Defense Medical Center , Taipei , Taiwan
| | - Hsin-Hsien Huang
- d Institute of Preventive Medicine, National Defense Medical Center , Taipei , Taiwan
| | - Pei-Hsun Ho
- a Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Yin-Jeh Tzeng
- a Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Hsin-Hou Chang
- a Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan.,b Center for Vascular Medicine , Tzu-Chi University , Hualien , Taiwan
| |
Collapse
|
11
|
Visible Light-Responsive Platinum-Containing Titania Nanoparticle-Mediated Photocatalysis Induces Nucleotide Insertion, Deletion and Substitution Mutations. NANOMATERIALS 2016; 7:nano7010002. [PMID: 28336836 PMCID: PMC5295192 DOI: 10.3390/nano7010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
Abstract
Conventional photocatalysts are primarily stimulated using ultraviolet (UV) light to elicit reactive oxygen species and have wide applications in environmental and energy fields, including self-cleaning surfaces and sterilization. Because UV illumination is hazardous to humans, visible light-responsive photocatalysts (VLRPs) were discovered and are now applied to increase photocatalysis. However, fundamental questions regarding the ability of VLRPs to trigger DNA mutations and the mutation types it elicits remain elusive. Here, through plasmid transformation and β-galactosidase α-complementation analyses, we observed that visible light-responsive platinum-containing titania (TiO2) nanoparticle (NP)-mediated photocatalysis considerably reduces the number of Escherichia coli transformants. This suggests that such photocatalytic reactions cause DNA damage. DNA sequencing results demonstrated that the DNA damage comprises three mutation types, namely nucleotide insertion, deletion and substitution; this is the first study to report the types of mutations occurring after photocatalysis by TiO2-VLRPs. Our results may facilitate the development and appropriate use of new-generation TiO2 NPs for biomedical applications.
Collapse
|
12
|
Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax. NANOMATERIALS 2016; 6:nano6120237. [PMID: 28335365 PMCID: PMC5302719 DOI: 10.3390/nano6120237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax.
Collapse
|
13
|
Sun DS, Ho PH, Chang HH. Soluble P-selectin rescues viper venom-induced mortality through anti-inflammatory properties and PSGL-1 pathway-mediated correction of hemostasis. Sci Rep 2016; 6:35868. [PMID: 27779216 PMCID: PMC5078805 DOI: 10.1038/srep35868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
Venomous snakebites are lethal and occur frequently worldwide each year, and receiving the antivenom antibody is currently the most effective treatment. However, the specific antivenom might be unavailable in remote areas. Snakebites by Viperidae usually lead to hemorrhage and mortality if untreated. In the present study, challenges of rattlesnake (Crotalus atrox) venom markedly increased the circulating soluble P-selectin (sP-sel) level, but not P-selectin (P-sel, Selp−/−) mutants, in wild-type mice. Because sP-sel enhances coagulation through the P-selectin ligand 1 (PSGL-1, Selplg) pathway to produce tissue factor–positive microparticles, we hypothesized that increasing the plasma sP-sel level can be a self-rescue response in hosts against snake venom–mediated suppression of the coagulation system. Confirming our hypothesis, our results indicated that compared with wild-type mice, Selp−/− and Selplg−/− mice were more sensitive to rattlesnake venom. Additionally, administration of recombinant sP-sel could effectively reduce the mortality rate of mice challenged with venoms from three other Viperidae snakes. The antivenom property of sP-sel is associated with improved coagulation activity in vivo. Our data suggest that the elevation of endogenous sP-sel level is a self-protective response against venom-suppressed coagulation. The administration of recombinant sP-sel may be developed as a new strategy to treat Viperidae snakebites.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan.,Center for Vascular Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Pei-Hsun Ho
- Center for Vascular Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan.,Center for Vascular Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
14
|
Meziani MJ, Dong X, Zhu L, Jones LP, LeCroy GE, Yang F, Wang S, Wang P, Zhao Y, Yang L, Tripp RA, Sun YP. Visible-Light-Activated Bactericidal Functions of Carbon "Quantum" Dots. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10761-6. [PMID: 27064729 PMCID: PMC5017886 DOI: 10.1021/acsami.6b01765] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carbon dots, generally defined as small carbon nanoparticles with various surface passivation schemes, have emerged as a new class of quantum-dot-like nanomaterials, with their optical properties and photocatalytic functions resembling those typically found in conventional nanoscale semiconductors. In this work, carbon dots were evaluated for their photoinduced bactericidal functions, with the results suggesting that the dots were highly effective in bacteria-killing with visible-light illumination. In fact, the inhibition effect could be observed even simply under ambient room lighting conditions. Mechanistic implications of the results are discussed and so are opportunities in the further development of carbon dots into a new class of effective visible/natural light-responsible bactericidal agents for a variety of bacteria control applications.
Collapse
Affiliation(s)
- Mohammed J. Meziani
- Department of Chemistry and Laboratory for Emerging Materials and Technology Clemson University, Clemson, South Carolina 29634, United States
| | - Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Lu Zhu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Les P. Jones
- Department of Infectious Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory E. LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology Clemson University, Clemson, South Carolina 29634, United States
| | - Fan Yang
- Department of Chemistry and Laboratory for Emerging Materials and Technology Clemson University, Clemson, South Carolina 29634, United States
| | - Shengyuan Wang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology Clemson University, Clemson, South Carolina 29634, United States
| | - Yiping Zhao
- Department of Physics and Astronomy and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, United States
- Corresponding Authors: .; .; .;
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707, United States
- Corresponding Authors: .; .; .;
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia 30602, United States
- Corresponding Authors: .; .; .;
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology Clemson University, Clemson, South Carolina 29634, United States
- Corresponding Authors: .; .; .;
| |
Collapse
|
15
|
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci Rep 2015; 5:11978. [PMID: 26156001 PMCID: PMC4496671 DOI: 10.1038/srep11978] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/12/2015] [Indexed: 11/24/2022] Open
Abstract
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.
Collapse
|
16
|
Wu MS, Sun DS, Lin YC, Cheng CL, Hung SC, Chen PK, Yang JH, Chang HH. Nanodiamonds protect skin from ultraviolet B-induced damage in mice. J Nanobiotechnology 2015; 13:35. [PMID: 25947194 PMCID: PMC4432518 DOI: 10.1186/s12951-015-0094-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Solar ultraviolet (UV) radiation causes various deleterious effects, and UV blockage is recommended for avoiding sunburn. Nanosized titanium dioxide and zinc oxide offer effective protection and enhance cosmetic appearance but entail health concerns regarding their photocatalytic activity, which generates reactive oxygen species. These concerns are absent in nanodiamonds (NDs). Among the UV wavelengths in sunlight, UVB irradiation primarily threatens human health. RESULTS The efficacy and safety of NDs in UVB protection were evaluated using cell cultures and mouse models. We determined that 2 mg/cm(2) of NDs efficiently reduced over 95% of UVB radiation. Direct UVB exposure caused cell death of cultured keratinocyte, fibroblasts and skin damage in mice. By contrast, ND-shielding significantly protected the aforementioned pathogenic alterations in both cell cultures and mouse models. CONCLUSIONS NDs are feasible and safe materials for preventing UVB-induced skin damage.
Collapse
Affiliation(s)
- Meng-Si Wu
- Division of Plastic Surgery, Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
- Nanotechnology Research Center, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
| | - Shih-Che Hung
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Po-Kong Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Jen-Hung Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Department of Dermatology, Buddhist Tzu Chi General Hospital, No. 707 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Research Center of Nanobiomedical Science, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Nanotechnology Research Center, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| |
Collapse
|
17
|
Sun DS, Lee PC, Kau JH, Shih YL, Huang HH, Li CR, Lee CC, Wu YP, Chen KC, Chang HH. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice. Virulence 2015; 6:466-75. [PMID: 25906166 DOI: 10.1080/21505594.2015.1031454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax.
Collapse
Affiliation(s)
- Der-Shan Sun
- a Department of Molecular Biology and Human Genetics; Tzu-Chi University ; Hualien , Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen YS, Shieh WJ, Goldsmith CS, Metcalfe MG, Greer PW, Zaki SR, Chang HH, Chan H, Chen YL. Alteration of the phenotypic and pathogenic patterns of Burkholderia pseudomallei that persist in a soil environment. Am J Trop Med Hyg 2014; 90:469-79. [PMID: 24445207 DOI: 10.4269/ajtmh.13-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Melioidosis is caused by the soil-borne pathogen Burkholderia pseudomallei. To investigate whether the distinct phenotypic and virulent characteristics result from environmental adaptations in the soil or from the host body, two pairs of isogenic strains were generated by passages in soil or mice. After cultivation in soil, the levels of 3-hydroxytetradecanoic acid, biofilm formation, flagellar expression, and ultrastructure were altered in the bacteria. Uniformly fatal melioidosis developed as a result of infection with mouse-derived strains; however, the survival rates of mice infected with soil-derived strains prolonged. After primary infection or reinfection with soil-derived strains, the mice developed a low degree of bacterial hepatitis and bacterial colonization in the liver and bone marrow compared with mice that were infected with isogenic or heterogenic mouse-derived strains. We suggest that specific phenotypic and pathogenic patterns can be induced through infection with B. pseudomallei that has been cultured in different (soil versus mouse) environments.
Collapse
Affiliation(s)
- Yao-Shen Chen
- Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Graduate Institute of Science Education and Environmental Education, National Kaohsiung Normal University, Kaohsiung; Taiwan/Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan; Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan; Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan; Department of Biotechnology, National Kaohsiung Normal University, Kaoshiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Water disinfection through photoactive modified titania. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:310-7. [DOI: 10.1016/j.jphotobiol.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/20/2013] [Accepted: 12/06/2013] [Indexed: 11/20/2022]
|
20
|
Kawano T, Prananingrum W, Ishida Y, Goto T, Naito Y, Watanabe M, Tomotake Y, Ichikawa T. Blue-violet laser modification of titania treated titanium: antibacterial and osteo-inductive effects. PLoS One 2013; 8:e84327. [PMID: 24358355 PMCID: PMC3866166 DOI: 10.1371/journal.pone.0084327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many studies on surface modifications of titanium have been performed in an attempt to accelerate osseointegration. Recently, anatase titanium dioxide has been found to act as a photocatalyst that expresses antibiotic properties and exhibits hydrophilicity after ultraviolet exposure. A blue-violet semiconductor laser (BV-LD) has been developed as near-ultraviolet light. The purpose of this study was to investigate the effects of exposure to this BV-LD on surface modifications of titanium with the goal of enhancing osteoconductive and antibacterial properties. METHODS The surfaces of pure commercial titanium were polished with #800 waterproof polishing papers and were treated with anatase titania solution. Specimens were exposed using BV-LD (λ = 405 nm) or an ultraviolet light-emitting diode (UV-LED, λ = 365 nm) at 6 mW/cm(2) for 3 h. The surface modification was evaluated physically and biologically using the following parameters or tests: surface roughness, surface temperature during exposure, X-ray diffraction (XRD) analysis, contact angle, methylene blue degradation tests, adherence of Porphyromonas gingivalis, osteoblast and fibroblast proliferation, and histological examination after implantation in rats. RESULTS No significant changes were found in the surface roughness or XRD profiles after exposure. BV-LD exposure did not raise the surface temperature of titanium. The contact angle was significantly decreased, and methylene blue was significantly degraded. The number of attached P. gingivalis organisms was significantly reduced after BV-LD exposure compared to that in the no exposure group. New bone was observed around exposed specimens in the histological evaluation, and both the bone-to-specimen contact ratio and the new bone area increased significantly in exposed groups. CONCLUSIONS This study suggested that exposure of titanium to BV-LD can enhance the osteoconductivity of the titanium surface and induce antibacterial properties, similar to the properties observed following exposure to UV-LED.
Collapse
Affiliation(s)
- Takanori Kawano
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Widyasri Prananingrum
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Yuichi Ishida
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Takaharu Goto
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
- * E-mail:
| | - Yoshihito Naito
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Megumi Watanabe
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Yoritoki Tomotake
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| | - Tetsuo Ichikawa
- Department of Oral & Maxillofacial Prosthodontics and Oral Implantology, The University of Tokushima, Institute of Health, Biosciences, Tokushima, Japan
| |
Collapse
|
21
|
Liu PJ, Chen YS, Lin HH, Ni WF, Hsieh TH, Chen HT, Chen YL. Induction of mouse melioidosis with meningitis by CD11b+ phagocytic cells harboring intracellular B. pseudomallei as a Trojan horse. PLoS Negl Trop Dis 2013; 7:e2363. [PMID: 23951382 PMCID: PMC3738478 DOI: 10.1371/journal.pntd.0002363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/30/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Approximately 3-5% of patients with melioidosis manifest CNS symptoms; however, the clinical data regarding neurological melioidosis are limited. METHODS AND FINDINGS We established a mouse model of melioidosis with meningitis characterized by neutrophil infiltration into the meninges histologically and B. pseudomallei in the cerebrospinal fluid (CSF) by bacteriological culturing methods. As the disease progresses, the bacteria successively colonize the spleen, liver, bone marrow (BM) and brain and invade splenic and BM cells by days 2 and 6 post-infection, respectively. The predominant cell types intracellularly infected with B. pseudomallei were splenic and BM CD11b(+) populations. The CD11b(+)Ly6C(high) inflamed monocytes, CD11b(+)Ly6C(low) resident monocytes, CD11b(+)Ly6G(+) neutrophils, CD11b(+)F4/80(+) macrophages and CD11b(+)CD19(+) B cells were expanded in the spleen and BM during the progression of melioidosis. After adoptive transfer of CD11b populations harboring B. pseudomallei, the infected CD11b(+) cells induced bacterial colonization in the brain, whereas CD11b(-) cells only partially induced colonization; extracellular (free) B. pseudomallei were unable to colonize the brain. CD62L (selectin) was absent on splenic CD11b(+) cells on day 4 but was expressed on day 10 post-infection. Adoptive transfer of CD11b(+) cells expressing CD62L (harvested on day 10 post-infection) resulted in meningitis in the recipients, but transfer of CD11b(+) CD62L-negative cells did not. CONCLUSIONS/SIGNIFICANCE We suggest that B. pseudomallei-infected CD11b(+) selectin-expressing cells act as a Trojan horse and are able to transmigrate across endothelial cells, resulting in melioidosis with meningitis.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan
- Graduate Institute of Environmental Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsi-Hsu Lin
- Department of Infectious Disease, E-DA Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Wei-Feng Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Tsung-Han Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsu-Tzu Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Tseng YH, Sun DS, Wu WS, Chan H, Syue MS, Ho HC, Chang HH. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo. Biochim Biophys Acta Gen Subj 2013; 1830:3787-95. [PMID: 23542693 DOI: 10.1016/j.bbagen.2013.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive platinum-containing titania (TiO2-Pt) exerted high performance antibacterial property against soil-borne pathogens even in soil highly contaminated water. However, its physical and photocatalytic properties, and the application in vivo have not been well-characterized. METHODS Transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible absorption spectrum and the removal rate of nitrogen oxides were therefore analyzed. The antibacterial performance under in vitro and in vivo conditions was evaluated. RESULTS The apparent quantum efficiency for visible light illuminated TiO2-Pt is relatively higher than several other titania photocatalysts. The killing effect achieved approximately 2 log reductions of pathogenic bacteria in vitro. Illumination of injected TiO2-Pt successfully ameliorated the subcutaneous infection in mice. CONCLUSIONS This is the first demonstration of in vivo antibacterial use of TiO2-Pt nanoparticles. When compared to nanoparticles of some other visible-light responsive photocatalysts, TiO2-Pt nanoparticles induced less adverse effects such as exacerbated platelet clearance and hepatic cytotoxicity in vivo. GENERAL SIGNIFICANCE These findings suggest that the TiO2-Pt may have potential application on the development of an antibacterial material in both in vitro and in vivo settings.
Collapse
Affiliation(s)
- Yao-Hsuan Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Zuruzi AS, Nurmawati MH, Yeo YH, Wu S, Chee Hoong Lai P, Chen Z. A simple strategy to incorporate Pt into TiO2 nanosponges via wet oxidation of multilayered films. RSC Adv 2013. [DOI: 10.1039/c3ra41162a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz) 2012; 60:267-75. [PMID: 22678625 DOI: 10.1007/s00005-012-0178-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.
Collapse
|