1
|
Lenskaya V, Yang RK, Aung PP, Prieto VG, Nagarajan P, Cho WC. NSD3::FGFR1 : A Novel Gene Fusion First to Be Described in Merkel Cell Carcinoma. Am J Dermatopathol 2025; 47:400-403. [PMID: 40036479 DOI: 10.1097/dad.0000000000002953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
ABSTRACT Merkel cell carcinomas (MCCs) exhibit diverse molecular profiles, often categorized by their association with Merkel cell polyoma virus (MCPyV). MCPyV-associated MCCs typically display a low tumor mutational burden (TMB), lacking both somatic mutations and ultraviolet signature. By contrast, MCPyV-negative MCCs commonly arise in sun-exposed skin and frequently exhibit a high TMB, along with TERT promoter mutation (TPM) and somatic mutations, particularly in TP53 and RB1 . Gene fusions are exceedingly rare in MCCs, and their specific frequency and fusion transcripts remain largely unexplored. Here, we present a unique case of MCPyV-associated MCC characterized by NSD3::FGFR1 fusion, representing a novel fusion transcript not previously reported in MCCs. A 72-year-old White man presented with a cyst-like nodule on the left elbow, which had progressively increased in size over a span of 6 months. Excisional biopsy specimen revealed a neuroendocrine carcinoma diffusely expressing CK20 (perinuclear dot-like), synaptophysin, CD56, NSE, and MCPyV, consistent with MCC. Next-generation sequencing identified a NSD3::FGFR1 fusion without any additional somatic mutations, including TP53 and RB1 mutations, or TPM. Although NSD3::FGFR1 fusion has been sporadically reported in other solid tumors, such as pulmonary squamous cell carcinoma, its identification in an MCC is unprecedented to our knowledge. This novel finding not only underscores the uniqueness of our case but also contributes to the evolving understanding of the molecular landscape of MCCs, particularly MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Volha Lenskaya
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | |
Collapse
|
2
|
Konstantaraki M, Berdiaki A, Neagu M, Zurac S, Krasagakis K, Nikitovic D. Understanding Merkel Cell Carcinoma: Pathogenic Signaling, Extracellular Matrix Dynamics, and Novel Treatment Approaches. Cancers (Basel) 2025; 17:1212. [PMID: 40227764 PMCID: PMC11987840 DOI: 10.3390/cancers17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer, driven by either Merkel cell polyomavirus (MCPyV) integration or ultraviolet (UV)-induced mutations. In MCPyV-positive tumors, viral T antigens inactivate tumor suppressors pRb and p53, while virus-negative MCCs harbor UV-induced mutations that activate similar oncogenic pathways. Key signaling cascades, including PI3K/AKT/mTOR and MAPK, support tumor proliferation, survival, and resistance to apoptosis. Histologically, MCC consists of small round blue cells with neuroendocrine features, high mitotic rate, and necrosis. The tumor microenvironment (TME) plays a central role in disease progression and immune escape. It comprises a mix of tumor-associated macrophages, regulatory and cytotoxic T cells, and elevated expression of immune checkpoint molecules such as PD-L1, contributing to an immunosuppressive niche. The extracellular matrix (ECM) within the TME is rich in proteoglycans, collagens, and matrix metalloproteinases (MMPs), facilitating tumor cell adhesion, invasion, and interaction with stromal and immune cells. ECM remodeling and integrin-mediated signaling further promote immune evasion and therapy resistance. Although immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in treating MCC, resistance remains a major hurdle. Therapeutic strategies that concurrently target the TME-through inhibition of ECM components, MMPs, or integrin signaling-may enhance immune responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Konstantaraki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| | - Monica Neagu
- Immunology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
| | - Sabina Zurac
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
- Faculty of Dentistry, University of Medicine and Pharmacy, 8 Eroilor Sanitari Boulevard, 050474 Bucharest, Romania
| | | | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| |
Collapse
|
3
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Sol S, Boncimino F, Todorova K, Waszyn SE, Mandinova A. Therapeutic Approaches for Non-Melanoma Skin Cancer: Standard of Care and Emerging Modalities. Int J Mol Sci 2024; 25:7056. [PMID: 39000164 PMCID: PMC11241167 DOI: 10.3390/ijms25137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Skin cancer encompasses a range of cutaneous malignancies, with non-melanoma skin cancers (NMSCs) being the most common neoplasm worldwide. Skin exposure is the leading risk factor for initiating NMSC. Ultraviolet (UV) light induces various genomic aberrations in both tumor-promoting and tumor-suppressing genes in epidermal cells. In conjunction with interactions with a changed stromal microenvironment and local immune suppression, these aberrations contribute to the occurrence and expansion of cancerous lesions. Surgical excision is still the most common treatment for these lesions; however, locally advanced or metastatic disease significantly increases the chances of morbidity or death. In recent years, numerous pharmacological targets were found through extensive research on the pathogenic mechanisms of NMSCs, leading to the development of novel treatments including Hedgehog pathway inhibitors for advanced and metastatic basal cell carcinoma (BCC) and PD-1/PD-L1 inhibitors for locally advanced cutaneous squamous cell carcinoma (cSCC) and Merkel cell carcinoma (MCC). Despite the efficacy of these new drugs, drug resistance and tolerability issues often arise with long-term treatment. Ongoing studies aim to identify alternative strategies with reduced adverse effects and increased tolerability. This review summarizes the current and emerging therapies used to treat NMSC.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Juan HY, Khachemoune A. A review of Merkel cell carcinoma. JAAPA 2023; 36:11-16. [PMID: 37820270 DOI: 10.1097/01.jaa.0000979460.69305.b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
ABSTRACT Merkel cell carcinoma (MCC) is a rare and aggressive type of metastatic, nonmelanoma skin cancer derived from Merkel cells in the epidermis. MCC can be induced by sun exposure or via Merkel cell polyomavirus (MCV) gene expression. MCV is found in most patients with MCC and is associated with a lower recurrence rate of MCC. MCC has a wide range of clinical presentations that make diagnosis challenging. Histologic examination is performed using unique markers to differentiate it from other diagnoses. This article reviews the pathogenesis, clinical presentation, histopathology, differential diagnosis, and treatment of MCC.
Collapse
Affiliation(s)
- Hui Yu Juan
- At the time this article was written, Hui Yu Juan was a student in the Virginia Commonwealth University School of Medicine in Richmond, Va. Amor Khachemoune practices at the Brooklyn (N.Y.) VA Medical Center and SUNY Downstate's Department of Dermatology, also in Brooklyn, N.Y. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | |
Collapse
|
6
|
Banerjee J, Ranjan RP, Alam MT, Deshmukh S, Tripathi PP, Gandhi S, Banerjee S. Virus-associated neuroendocrine cancers: Pathogenesis and current therapeutics. Pathol Res Pract 2023; 248:154720. [PMID: 37542862 DOI: 10.1016/j.prp.2023.154720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise malignancies involving neuroendocrine cells that often lead to fatal pathological conditions. Despite escalating global incidences, NENs still have poor prognoses. Interestingly, research indicates an intricate association of tumor viruses with NENs. However, there is a dearth of comprehension of the complete scenario of NEN pathophysiology and its precise connections with the tumor viruses. Interestingly, several cutting-edge experiments became helpful for further screening of NET for the presence of polyomavirus, Human papillomavirus (HPV), Kaposi sarcoma-associated herpesvirus (KSHV), Epstein Barr virus (EBV), etc. Current research on the neuroendocrine tumor (NET) pathogenesis provides new information concerning their molecular mechanisms and therapeutic interventions. Of note, scientists observed that metastatic neuroendocrine tumors still have a poor prognosis with a palliative situation. Different oncolytic vector has already demonstrated excellent efficacies in clinical studies. Therefore, oncolytic virotherapy or virus-based immunotherapy could be an emerging and novel therapeutic intervention. In-depth understanding of all such various aspects will aid in managing, developing early detection assays, and establishing targeted therapeutic interventions for NENs concerning tumor viruses. Hence, this review takes a novel approach to discuss the dual role of tumor viruses in association with NENs' pathophysiology as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Juni Banerjee
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| | - Ramya P Ranjan
- National Institute of Animal Biotechnology (NIAB), Gachibowli, Hyderabad, Telangana 500032, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (IICB), 4, Raja S. C. Mullick Road, Kolkata 700032, India; IICB-Translational Research Unit of Excellence(IICB-TRUE), Kolkata 700091, India
| | - Sanika Deshmukh
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Prem Prakash Tripathi
- CSIR-Indian Institute of Chemical Biology (IICB), 4, Raja S. C. Mullick Road, Kolkata 700032, India; IICB-Translational Research Unit of Excellence(IICB-TRUE), Kolkata 700091, India.
| | - Sonu Gandhi
- National Institute of Animal Biotechnology (NIAB), Gachibowli, Hyderabad, Telangana 500032, India.
| | - Shuvomoy Banerjee
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
7
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
9
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
10
|
Therapeutic Potential of 5'-Methylschweinfurthin G in Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma. Viruses 2022; 14:v14091848. [PMID: 36146655 PMCID: PMC9506461 DOI: 10.3390/v14091848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.
Collapse
|
11
|
Temblador A, Topalis D, Andrei G, Snoeck R. Synergistic targeting of the PI3K/mTOR and MAPK/ERK pathways in Merkel cell carcinoma. Tumour Virus Res 2022; 14:200244. [PMID: 36007768 PMCID: PMC9449649 DOI: 10.1016/j.tvr.2022.200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 08/08/2022] [Indexed: 01/13/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive type of skin cancer, which is caused either by integration of the oncogenic Merkel cell polyomavirus (MCPyV) or by accumulation of UV-light induced mutations. Since the response to immune-checkpoint inhibitors is limited, new therapeutic agents need to be explored. Previous studies have shown that MCC cell lines and xenografts are sensitive to MLN0128, a dual mTOR1/2 inhibitor. Prompted by these results and considering that the PI3K/mTOR and MAPK/ERK pathways are the most commonly deregulated pathways in cancer, the combination of MLN0128 with the MEK1/2 inhibitor trametinib was investigated. Importantly, the combined targeting showed to be synergistic in MCC cell lines and induced alterations in the protein levels of downstream elements of the targeted pathways. This synergistic activity implies a reduction in the dose of each inhibitor necessary to reach the same effect that when used as single agents. Therefore, this is a promising approach to improve the clinical management of MCC and to overcome the limited efficacy of single drug regimens owed to the appearance of toxicity or drug resistance.
Collapse
Affiliation(s)
- Arturo Temblador
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium
| | - Dimitrios Topalis
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium,Corresponding author. Rega Institute For Medical Research, Herestraat 49, postbus 1030, 3000, Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
12
|
Activation of Oncogenic and Immune-Response Pathways Is Linked to Disease-Specific Survival in Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153591. [PMID: 35892849 PMCID: PMC9331388 DOI: 10.3390/cancers14153591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Developing targeted therapies for MCC requires increased understanding of the mechanisms driving tumor progression. In this study, we aimed to identify genes, signaling pathways, and processes that play crucial roles in determining disease-specific survival in MCC. We analyzed the gene expression of 102 MCC tumors and identified genes that were upregulated among survivors and in patients who died from MCC. We cross-referenced these genes with online databases to identify the pathways and processes in which they function. Genes upregulated among survivors were mostly immune response related and genes upregulated among patients who died from MCC function in various pathways that promote cancer progression. These results could guide future studies investigating whether these genes and pathways could be used as prognostic markers, as markers to guide therapy selection, or as targets of precision therapy in MCC. Abstract Background: Merkel cell carcinoma (MCC) is a rare but highly aggressive neuroendocrine carcinoma of the skin with a poor prognosis. Improving the prognosis of MCC by means of targeted therapies requires further understanding of the mechanisms that drive tumor progression. In this study, we aimed to identify the genes, processes, and pathways that play the most crucial roles in determining MCC outcomes. Methods: We investigated transcriptomes generated by RNA sequencing of formalin-fixed paraffin-embedded tissue samples of 102 MCC patients and identified the genes that were upregulated among survivors and in patients who died from MCC. We subsequently cross-referenced these genes with online databases to investigate the functions and pathways they represent. We further investigated differential gene expression based on viral status in patients who died from MCC. Results: We found several novel genes associated with MCC-specific survival. Genes upregulated in patients who died from MCC were most notably associated with angiogenesis and the PI3K-Akt and MAPK pathways; their expression predominantly had no association with viral status in patients who died from MCC. Genes upregulated among survivors were largely associated with antigen presentation and immune response. Conclusion: This outcome-based discrepancy in gene expression suggests that these pathways and processes likely play crucial roles in determining MCC outcomes.
Collapse
|
13
|
Temblador A, Topalis D, van den Oord J, Andrei G, Snoeck R. Organotypic Epithelial Raft Cultures as a Three-Dimensional In Vitro Model of Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14041091. [PMID: 35205840 PMCID: PMC8870341 DOI: 10.3390/cancers14041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.
Collapse
Affiliation(s)
- Arturo Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Dimitrios Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium;
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
- Correspondence:
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| |
Collapse
|
14
|
Kervarrec T, Berthon P, Thanguturi S, Guyétant S, Macagno N, Jullie ML. Reevaluation of GLI1 Expression in Skin Tumors. Am J Dermatopathol 2021; 43:759-761. [PMID: 33577176 DOI: 10.1097/dad.0000000000001917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des Infections à Polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
- CARADERM, French Network of Rare Cutaneous Cancer
| | - Patricia Berthon
- "Biologie des Infections à Polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Soumanth Thanguturi
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des Infections à Polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Nicolas Macagno
- CARADERM, French Network of Rare Cutaneous Cancer
- Department of Pathology, Timone University Hospital, Marseille, France
| | - Marie-Laure Jullie
- CARADERM, French Network of Rare Cutaneous Cancer
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| |
Collapse
|
15
|
Kervarrec T, Appenzeller S, Samimi M, Sarma B, Sarosi EM, Berthon P, Le Corre Y, Hainaut-Wierzbicka E, Blom A, Benethon N, Bens G, Nardin C, Aubin F, Dinulescu M, Jullie ML, Pekár-Lukacs Á, Calonje E, Thanguturi S, Tallet A, Wobser M, Touzé A, Guyétant S, Houben R, Schrama D. Merkel Cell Polyomavirus‒Negative Merkel Cell Carcinoma Originating from In Situ Squamous Cell Carcinoma: A Keratinocytic Tumor with Neuroendocrine Differentiation. J Invest Dermatol 2021; 142:516-527. [PMID: 34480892 DOI: 10.1016/j.jid.2021.07.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
Although virus-negative Merkel cell carcinoma (MCC) is characterized by a high frequency of UV-induced mutations, the expression of two viral oncoproteins is regarded as a key mechanism driving Merkel cell polyomavirus‒positive MCC. The cells in which these molecular events initiate MCC oncogenesis have yet not been identified for both MCC subsets. A considerable proportion of virus-negative MCC is found in association with squamous cell carcinoma (SCC), suggesting (i) coincidental collision, (ii) one providing a niche for the other, or (iii) one evolving from the other. Whole-exome sequencing of four combined tumors consisting of SCC in situ and Merkel cell polyomavirus‒negative MCC showed many mutations shared between SCC and MCC in all cases, indicating a common ancestry and thereby a keratinocytic origin of these MCCs. Moreover, analyses of the combined cases as well as of pure SCC and MCC suggest that RB1 inactivation in SCC facilitates MCC development and that epigenetic changes may contribute to the SCC/MCC transition.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France; Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France; Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Mahtab Samimi
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France; Department of Dermatology, University Hospital Center of Tours, University of Tours, Tours, France
| | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Berthon
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Yannick Le Corre
- Dermatology Department, LUNAM University, University Hospital Center of Angers, Angers, France
| | - Ewa Hainaut-Wierzbicka
- Dermatology Department, University Hospital Center of Poitiers, University of Poitiers, Poitiers, France
| | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, APHP, Boulogne-Billancourt, France
| | | | - Guido Bens
- Dermatology Department, Hospital Center of Orléans, Orléans, France
| | - Charline Nardin
- Dermatology Department, University Hospital Center of Besançon, University of Franche Comté, Besançon, France
| | - Francois Aubin
- Dermatology Department, University Hospital Center of Besançon, University of Franche Comté, Besançon, France
| | - Monica Dinulescu
- Dermatology Department, University Hospital Center of Rennes, Rennes, France; "Institut Dermatologie du Grand Ouest" (IDGO), Nantes, France
| | - Marie-Laure Jullie
- Department of Pathology, Hôpital Haut-Lévêque, University Hospital Center of Bordeaux, CARADERM network, Pessac, France
| | - Ágnes Pekár-Lukacs
- Department of Oncology and Pathology, Lund University, Lund, Sweden; Department of Dermatopathology, St John's Institute of Dermatology, St Thomas's Hospital, London, United Kingdom
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas's Hospital, London, United Kingdom
| | - Soumanth Thanguturi
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, University Hospital Center of Tours, Université de Tours, Tours, France
| | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Antoine Touzé
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France; Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Das BK, Kannan A, Nguyen Q, Gogoi J, Zhao H, Gao L. Selective Inhibition of Aurora Kinase A by AK-01/LY3295668 Attenuates MCC Tumor Growth by Inducing MCC Cell Cycle Arrest and Apoptosis. Cancers (Basel) 2021; 13:3708. [PMID: 34359608 PMCID: PMC8345130 DOI: 10.3390/cancers13153708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an often-lethal skin cancer with increasing incidence and limited treatment options. Although immune checkpoint inhibitors (ICI) have become the standard of care in advanced MCC, 50% of all MCC patients are ineligible for ICIs, and amongst those treated, many patients develop resistance. There is no therapeutic alternative for these patients, highlighting the urgent clinical need for alternative therapeutic strategies. Using patient-derived genetic insights and data generated in our lab, we identified aurora kinase as a promising therapeutic target for MCC. In this study, we examined the efficacy of the recently developed and highly selective AURKA inhibitor, AK-01 (LY3295668), in six patient-derived MCC cell lines and two MCC cell-line-derived xenograft mouse models. We found that AK-01 potently suppresses MCC survival through apoptosis and cell cycle arrest, particularly in MCPyV-negative MCC cells without RB expression. Despite the challenge posed by its short in vivo durability upon discontinuation, the swift and substantial tumor suppression with low toxicity makes AK-01 a strong potential candidate for MCC management, particularly in combination with existing regimens.
Collapse
Affiliation(s)
- Bhaba K. Das
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Aarthi Kannan
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Quy Nguyen
- Genomics High Throughput Sequencing Facility, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA;
| | - Jyoti Gogoi
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Ling Gao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Goff PH, Bhakuni R, Pulliam T, Lee JH, Hall ET, Nghiem P. Intersection of Two Checkpoints: Could Inhibiting the DNA Damage Response Checkpoint Rescue Immune Checkpoint-Refractory Cancer? Cancers (Basel) 2021; 13:3415. [PMID: 34298632 PMCID: PMC8307089 DOI: 10.3390/cancers13143415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Metastatic cancers resistant to immunotherapy require novel management strategies. DNA damage response (DDR) proteins, including ATR (ataxia telangiectasia and Rad3-related), ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), have been promising therapeutic targets for decades. Specific, potent DDR inhibitors (DDRi) recently entered clinical trials. Surprisingly, preclinical studies have now indicated that DDRi may stimulate anti-tumor immunity to augment immunotherapy. The mechanisms governing how DDRi could promote anti-tumor immunity are not well understood; however, early evidence suggests that they can potentiate immunogenic cell death to recruit and activate antigen-presenting cells to prime an adaptive immune response. Merkel cell carcinoma (MCC) is well suited to test these concepts. It is inherently immunogenic as ~50% of patients with advanced MCC persistently benefit from immunotherapy, making MCC one of the most responsive solid tumors. As is typical of neuroendocrine cancers, dysfunction of p53 and Rb with upregulation of Myc leads to the very rapid growth of MCC. This suggests high replication stress and susceptibility to DDRi and DNA-damaging agents. Indeed, MCC tumors are particularly radiosensitive. Given its inherent immunogenicity, cell cycle checkpoint deficiencies and sensitivity to DNA damage, MCC may be ideal for testing whether targeting the intersection of the DDR checkpoint and the immune checkpoint could help patients with immunotherapy-refractory cancers.
Collapse
Affiliation(s)
- Peter H. Goff
- Department of Radiation Oncology, University of Washington, Seattle, WA 98195, USA;
| | - Rashmi Bhakuni
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Institute for Stem Cell and Regenerative Medicine, Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Evan T. Hall
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA;
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Harms KL, Zhao L, Johnson B, Wang X, Carskadon S, Palanisamy N, Rhodes DR, Mannan R, Vo JN, Choi JE, Chan MP, Fullen DR, Patel RM, Siddiqui J, Ma VT, Hrycaj S, McLean SA, Hughes TM, Bichakjian CK, Tomlins SA, Harms PW. Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. Clin Cancer Res 2021; 27:2494-2504. [PMID: 33547200 DOI: 10.1158/1078-0432.ccr-20-0864] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that can be divided into two classes: virus-positive (VP) MCC, associated with oncogenic Merkel cell polyomavirus (MCPyV); and virus-negative (VN) MCC, associated with photodamage. EXPERIMENTAL DESIGN We classified 346 MCC tumors from 300 patients for MCPyV using a combination of IHC, ISH, and qPCR assays. In a subset of tumors, we profiled mutation status and expression of cancer-relevant genes. MCPyV and molecular profiling results were correlated with disease-specific outcomes. Potential prognostic biomarkers were further validated by IHC. RESULTS A total of 177 tumors were classified as VP-MCC, 151 tumors were VN-MCC, and 17 tumors were indeterminate. MCPyV positivity in primary tumors was associated with longer disease-specific and recurrence-free survival in univariate analysis, and in multivariate analysis incorporating age, sex, immune status, and stage at presentation. Prioritized oncogene or tumor suppressor mutations were frequent in VN-MCC but rare in VP-MCC. TP53 mutation developed with recurrence in one VP-MCC case. Importantly, for the first time we find that VP-MCC and VN-MCC display distinct sets of prognostic molecular biomarkers. For VP-MCC, shorter survival was associated with decreased expression of immune markers including granzyme and IDO1. For VN-MCC, shorter survival correlated with high expression of several genes including UBE2C. CONCLUSIONS MCPyV status is an independent prognostic factor for MCC. Features of the tumor genome, transcriptome, and microenvironment may modify prognosis in a manner specific to viral status. MCPyV status has clinicopathologic significance and allows for identification of additional prognostic subgroups.
Collapse
Affiliation(s)
- Kelly L Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Xiaoming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | | | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Josh N Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - May P Chan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Vincent T Ma
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott A McLean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Tasha M Hughes
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christopher K Bichakjian
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Strata Oncology, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Spurgeon ME, Liem A, Buehler D, Cheng J, DeCaprio JA, Lambert PF. The Merkel Cell Polyomavirus T Antigens Function as Tumor Promoters in Murine Skin. Cancers (Basel) 2021; 13:cancers13020222. [PMID: 33435392 PMCID: PMC7827793 DOI: 10.3390/cancers13020222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Merkel cell polyomavirus, a recently discovered human virus, is linked to the development of a rare form of skin cancer called Merkel cell carcinoma. The virus does not replicate in cancer cells, yet there is continued expression of viral proteins known as T antigens. The T antigens are believed to contribute to Merkel cell carcinoma development, yet how they do so remains an active area of research. In this study, we used transgenic mice expressing the viral T antigens in their skin to determine at which stage of skin cancer development these viral proteins function. We discovered that the Merkel cell polyomavirus T antigens function as tumor promoters, rather than tumor initiators, in the skin. These findings suggest that other tumor-initiating events may cooperate with the tumor-promoting activities of the viral T antigens, thus providing important insight into how Merkel cell polyomavirus can cause cancer in human skin. Abstract Merkel cell polyomavirus (MCPyV) causes the majority of human Merkel cell carcinomas (MCC), a rare but highly aggressive form of skin cancer. We recently reported that constitutive expression of MCC tumor-derived MCPyV tumor (T) antigens in the skin of transgenic mice leads to hyperplasia, increased proliferation, and spontaneous epithelial tumor development. We sought to evaluate how the MCPyV T antigens contribute to tumor formation in vivo using a classical, multi-stage model for squamous cell carcinoma development. In this model, two chemical carcinogens, DMBA and TPA, contribute to two distinct phases of carcinogenesis—initiation and promotion, respectively—that are required for tumors to develop. By treating the MCPyV transgenic mice with each chemical carcinogen, we determined how the viral oncogenes contributed to carcinogenesis. We observed that the MCPyV T antigens synergized with the tumor initiator DMBA, but not with the tumor promoter TPA, cause tumors. Therefore, the MCPyV tumor antigens function primarily as tumor promoters, similar to that seen with human papillomavirus (HPV) oncoproteins. These studies provide insight into the role of MCPyV T antigen expression in tumor formation in vivo and contribute to our understanding of how MCPyV may function as a human DNA tumor virus.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Correspondence: (M.E.S.); (P.F.L.)
| | - Amy Liem
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Jingwei Cheng
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Correspondence: (M.E.S.); (P.F.L.)
| |
Collapse
|
20
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Chteinberg E, Wetzels S, Gerritsen W, Temmerman L, van den Oord J, Biessen E, Kurz AK, Winnepenninckx V, Zenke M, Speel EJ, Zur Hausen A. Navitoclax combined with Alpelisib effectively inhibits Merkel cell carcinoma cell growth in vitro. Ther Adv Med Oncol 2020; 12:1758835920975621. [PMID: 33403016 PMCID: PMC7739210 DOI: 10.1177/1758835920975621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Merkel cell carcinoma (MCC) is a highly malignant skin cancer. Despite major treatment improvements during the last decade, up to 50% of patients do not respond to therapy or develop recurrent disease. For these patients, alternative treatment options are urgently needed. Here, we assessed the efficacy of the combination of the BCL-2 inhibitor Navitoclax and the PI3K p110α inhibitor Alpelisib in MCC cell lines. Methods: The expression of BCL-2 was assessed by immunohistochemistry in MCC and MCC cell lines. Treatment with Navitoclax and Alpelisib alone and in combination was performed on four MCC cell lines. The decrease of cell viability during treatment was assessed by XTT assay and visualized for the combinations by 3D combinatorial index plotting. The increase of apoptotic cells was determined by cleaved PARP Western blotting and Annexin V staining. Results: Some 94% of MCCs and all three MCPyV-positive cell lines showed BCL-2 expression. Navitoclax monotreatment was shown to be highly effective when treating BCL-2-positive cell lines (IC50-values ranging from 96.0 to 323.0 nM). The combination of Alpelisib and Navitoclax resulted in even stronger synergistic and prolonged inhibitions of MCC cell viability through apoptosis up to 4 days. Discussion: Our results show that the anti-apoptotic BCL-2 is frequently expressed in MCC and MCC cell lines. Inhibition of BCL-2 by Navitoclax in combination with Alpelisib revealed a strong synergy and prolonged inhibition of MCC cell viability and induction of apoptosis. The combination of Navitoclax and Alpelisib is a novel potential treatment option for MCC patients.
Collapse
Affiliation(s)
- Emil Chteinberg
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Suzan Wetzels
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Wouter Gerritsen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, University of Leuven, Leuven
| | - Erik Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Nordrhein-Westfalen, Germany
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Aachen, Nordrhein-Westfalen, Germany
| | - Ernst-Jan Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre +, P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| |
Collapse
|
22
|
DeCaprio JA. Molecular Pathogenesis of Merkel Cell Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:69-91. [PMID: 33228463 DOI: 10.1146/annurev-pathmechdis-012419-032817] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with two distinct etiologies. Clonal integration of Merkel cell polyomavirus DNA into the tumor genome with persistent expression of viral T antigens causes at least 60% of all MCC. UV damage leading to highly mutated genomes causes a nonviral form of MCC. Despite these distinct etiologies, both forms of MCC are similar in presentation, prognosis, and response to therapy. At least three oncogenic transcriptional programs feature prominently in both forms of MCC driven by the virus or by mutation. Both forms of MCC have a high proliferative growth rate with increased levels of cell cycle-dependent genes due to inactivation of the tumor suppressors RB and p53, a strong MYC signature due to MYCL activation by the virus or gene amplification, and an attenuated neuroendocrine differentiation program driven by the ATOH1 transcription factor.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Gambichler T, Dreißigacker M, Kasakovski D, Skrygan M, Wieland U, Silling S, Gravemeyer J, Melior A, Cherouny A, Stücker M, Stockfleth E, Sand M, Becker JC. Patched 1 expression in Merkel cell carcinoma. J Dermatol 2020; 48:64-74. [PMID: 33180347 DOI: 10.1111/1346-8138.15611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
The relevance of Hedgehog signaling in Merkel cell carcinoma has only been addressed by a few studies with conflicting results. Thus, we aimed to establish the expression of Hedgehog signaling molecules in Merkel cell carcinoma to characterize causes of aberrant expression and to correlate these findings with the clinical course of the patients. Immunohistochemistry was performed for Sonic, Indian, Patched 1 (PTCH1) and Smoothened on patients' tumor tissue. Respective mRNA expression was analyzed in 10 Merkel cell carcinoma cell lines using quantitative real-time polymerase chain reaction. PTCH1 sequencing and DNA methylation microarray analyses were carried out on tumor tissues as well as cell lines. PTCH1 immunoreactivity in Merkel cell carcinoma was similar to that of basal cell carcinomas, which both significantly differed from PTCH1 immunoreactivity in healthy skin. Most PTCH1 mutations found were synonymous or without known functional impact. However, on average, the promoter regions of both PTCH1 were hypomethylated independently from PTCH1 gene expression or Merkel cell polyomavirus status. PTCH1 and GLI1/2/3 genes were differently expressed in different cell lines; notably, there was a significant correlation between GLI2 and PTCH1 mRNA expression. Similar to PTCH1 protein expression in patient tissues, PTCH1 gene expression in Merkel cell carcinoma cell lines is highly variable, but due to the similar methylation pattern across Merkel cell carcinoma cell lines, effects other than methylation seem to be the reason for the differential expression and PTCH1 appears to be upregulated by GLI as a classical Hedgehog target gene.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Max Dreißigacker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Dimitri Kasakovski
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Marina Skrygan
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Ulrike Wieland
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Steffi Silling
- National Reference Center for Papilloma- and Polyomaviruses, Institute of Virology, University of Cologne, Cologne, Germany
| | - Jan Gravemeyer
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Anita Melior
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Angela Cherouny
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany
| | - Markus Stücker
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Michael Sand
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C Becker
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
25
|
Fang B, Kannan A, Zhao S, Nguyen QH, Ejadi S, Yamamoto M, Camilo Barreto J, Zhao H, Gao L. Inhibition of PI3K by copanlisib exerts potent antitumor effects on Merkel cell carcinoma cell lines and mouse xenografts. Sci Rep 2020; 10:8867. [PMID: 32483262 PMCID: PMC7264292 DOI: 10.1038/s41598-020-65637-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer with steadily increasing incidence and poor prognosis. Despite recent success with immunotherapy, 50% of patients still succumb to their diseases. To date, there is no Food and Drug Administration-approved targeted therapy for advanced MCC. Aberrant activation of phosphatidylinositide-3-kinase (PI3K)/AKT/mTOR pathway is frequently detected in MCC, making it an attractive therapeutic target. We previously found PI3K pathway activation in human MCC cell lines and tumors and demonstrated complete clinical response in a Stage IV MCC patient treated with PI3K inhibitor idelalisib. Here, we found that both PI3K-α and -δ isoforms are abundantly expressed in our MCC cell lines and clinical samples; we therefore examined antitumor efficacy across a panel of five PI3K inhibitors with distinctive isoform-specificities, including idelalisib (PI3K-δ), copanlisib (PI3K-α/δ), duvelisib (PI3K-γ/δ), alpelisib (PI3K-α), and AZD8186 (PI3K-β/δ). Of these, copanlisib exerts the most potent antitumor effects, markedly inhibiting cell proliferation, survival, and tumor growth by suppressing PI3K/mTOR/Akt activities in mouse models generated from MCC cell xenografts and patient-derived tumor xenografts. These results provide compelling preclinical evidence for application of copanlisib in advanced MCC with aberrant PI3K activation for which immunotherapy is insufficient, or patients who are unsuitable for immunotherapy.
Collapse
Affiliation(s)
- Bin Fang
- Department of Dermatology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aarthi Kannan
- Department of Dermatology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Southern California Institute of Research and Education, Long Beach, CA, USA
- Department of Dermatology, University of California - Irvine, Irvine, CA, USA
| | | | - Quy H Nguyen
- Department of Biological Chemistry, University of California - Irvine, Irvine, CA, USA
| | - Samuel Ejadi
- Division of Hematology/Oncology, School of Medicine, University of California - Irvine, Irvine, CA, USA
| | - Maki Yamamoto
- Department of Surgery, School of Medicine, University of California - Irvine, Irvine, CA, USA
| | - J Camilo Barreto
- Department of Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haibo Zhao
- Southern California Institute of Research and Education, Long Beach, CA, USA
| | - Ling Gao
- Department of Dermatology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Southern California Institute of Research and Education, Long Beach, CA, USA.
- Department of Dermatology, University of California - Irvine, Irvine, CA, USA.
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA.
| |
Collapse
|
26
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Cohen L, Tsai KY. Molecular and immune targets for Merkel cell carcinoma therapy and prevention. Mol Carcinog 2019; 58:1602-1611. [PMID: 31116890 DOI: 10.1002/mc.23042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 12/15/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine carcinoma of the skin, for which the exact mechanisms of carcinogenesis remain unknown. Therapeutic options for this highly aggressive malignancy have historically been limited in both their initial response and response durability. Recent improvements in our understanding of MCC tumor biology have expanded therapeutic options for these patients, namely through the use of immunotherapies such as immune checkpoint inhibitors. Further elucidation of the tumor mutational landscape has identified molecular targets for therapies, which have demonstrated success in other cancer types. In this review, we discuss both current and investigational immune and molecular targets of therapy for MCC.
Collapse
Affiliation(s)
- Leah Cohen
- Department of Dermatology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.,Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
28
|
Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, Wong MKK, Brownell I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 2019; 15:763-776. [PMID: 30287935 PMCID: PMC6319370 DOI: 10.1038/s41571-018-0103-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer associated with advanced age and immunosuppression. Over the past decade, an association has been discovered between MCC and either integration of the Merkel cell polyomavirus, which likely drives tumorigenesis, or somatic mutations owing to ultraviolet-induced DNA damage. Both virus-positive and virus-negative MCCs are immunogenic, and inhibition of the programmed cell death protein 1 (PD-1)–programmed cell death 1 ligand 1 (PD-L1) immune checkpoint has proved to be highly effective in treating patients with metastatic MCC; however, not all patients have a durable response to immunotherapy. Despite these rapid advances in the understanding and management of patients with MCC, many basic, translational and clinical research questions remain unanswered. In March 2018, an International Workshop on Merkel Cell Carcinoma Research was held at the US National Cancer Institute, at which academic, government and industry experts met to identify the highest-priority research questions. Here, we review the biology and treatment of MCC and report the consensus-based recommendations agreed upon during the workshop. Merkel cell carcinoma (MCC) is a rare and aggressive form of nonmelanoma skin cancer. The availability of immune checkpoint inhibition has improved the outcomes of a subset of patients with MCC, although many unmet needs continue to exist. In this Consensus Statement, the authors summarize developments in our understanding of MCC while also providing consensus recommendations for future research.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Michael K K Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| | | |
Collapse
|
29
|
Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation. J Invest Dermatol 2018; 139:807-817. [PMID: 30399362 DOI: 10.1016/j.jid.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.
Collapse
|
30
|
Abnormal activation of the Akt signaling pathway in adenoid cystic carcinoma. Eur Arch Otorhinolaryngol 2018; 275:3039-3047. [PMID: 30367261 DOI: 10.1007/s00405-018-5182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is an intriguing lesion because it shows a slow growth in the beginning, but a late poor prognosis due to perineural invasion, metastasis and recurrence. This study aimed to investigate whether Akt signaling would be deregulated in adenoid cystic carcinoma and its consequence in the expression of associated proteins. METHODS The expression of the Akt, p-Akt, NFκB, β-catenin, cyclin D1 and COX-2 was assessed by immunohistochemistry in 10 cases of ACC, 17 cases of pleomorphic adenoma (PA), and 7 cases of normal salivary gland (NSG). RESULTS p-Akt was overexpressed in ACC when compared to NSG. NFκB, β-catenin, and COX-2 were overexpressed in ACC and PA when compared to NSG. Most proteins were slightly higher expressed in ACC than in PA, but they never reached significance. p-Akt expression positively correlated with NFκB, β-catenin, cyclin D1 and COX-2 in ACC and PA, while this correlation trended to be negative in for these proteins (except for NFκB) in NSG using Person's correlation analysis, but without reaching significance. CONCLUSIONS Our results indicate an abnormal activation of Akt signaling pathway, which can be an important regulator of tumor biology in ACC. Activated Akt correlated with the expression of NFκB, β-catenin and COX-2, which can potentially influence cell survival in ACC.
Collapse
|
31
|
Merkel Cell Carcinoma: Updates on Pathogenesis, Diagnosis, and Management. CURRENT DERMATOLOGY REPORTS 2018. [DOI: 10.1007/s13671-018-0221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Zhong JT, Xie XX, Zhou SH, Yao HT, Chen Z, Wu TT, Bao YY, Yu Q, Han HM. True hypopharyngeal carcinosarcoma: a case report and literature review. J Int Med Res 2018; 46:3446-3461. [PMID: 29996673 PMCID: PMC6134673 DOI: 10.1177/0300060518779528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Carcinosarcoma consists of carcinomatous and sarcomatous tissues and is an aggressive malignant tumor. It is rarely reported in the hypopharynx. Methods A 72-year-old man presented with dysphagia and dyspnea. Laryngoscopy, computed tomography (CT), and 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) showed a neoplasm on the left posterior hypopharyngeal wall. The patient underwent bilateral neck dissection and excision of the hypopharyngeal cancer followed by postoperative radiation therapy. Results Immunohistochemistry revealed carcinomatous cells with membrane positivity for cytokeratin, glucose transporter-1 (GLUT-1), phosphoinositide-3 kinase (PI3K), hypoxia-inducible factor-1α (HIF-1α), and hexokinase-II as well as sarcomatous cells with membrane positivity for smooth muscle actin, GLUT-1, HIF-1α, and PI3K. Histopathology and immunohistochemistry revealed a true carcinosarcoma of the hypopharynx (pT3N0M0, Stage III). Conclusions Thorough immunohistochemistry is required for a correct diagnosis of hypopharyngeal carcinosarcoma. 18F-FDG PET/CT may help to distinguish hypopharyngeal carcinosarcoma from benign tumors.
Collapse
Affiliation(s)
- Jiang-Tao Zhong
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Xiao-Xing Xie
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Shui-Hong Zhou
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Hong-Tian Yao
- 2 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Pathology, Zhejiang, China
| | - Zhe Chen
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Ting-Ting Wu
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Yang-Yang Bao
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - Qi Yu
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| | - He-Ming Han
- 1 The First Affiliated Hospital, College of Medicine, Zhejiang University, Department of Otolaryngology, Zhejiang, China
| |
Collapse
|
33
|
Chteinberg E, Rennspiess D, Sambo R, Tauchmann S, Kelleners-Smeets NWJ, Winnepenninckx V, Speel EJ, Kurz AK, Zenke M, Zur Hausen A. Phosphatidylinositol 3-kinase p110δ expression in Merkel cell carcinoma. Oncotarget 2018; 9:29565-29573. [PMID: 30038704 PMCID: PMC6049866 DOI: 10.18632/oncotarget.25619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
The prognosis of stage III/IV Merkel cell carcinoma (MCC) is very poor. The Phosphatidylinositol 3-kinase p110δ specific inhibitor idelalisib has recently been reported to induce complete clinical remission in a stage IV MCC patient. Here we assessed the expression of p110δ in primary MCC and MCC cell lines including its functionality. Immunofluorescence microscopy revealed a specific cytoplasmic p110δ expression in 71.4% of the tested MCCs and in all tested MCC cell lines. Compared to the B cell leukemia cell line REH all MCC cell lines, except MKL-1, revealed a lower response towards the treatment with idelalisib. MKL-1 showed a 10-fold higher IC50 compared to REH which was accompanied by a significant decrease of Akt phosphorylation. However, treating the MCC cells with the specific PI3K p110α subunit inhibitor BYL719 led to a more effective decrease of the cell viability compared to idelalisib: WaGa cells 30-fold, PeTa cells 15-fold and all other MCC cell lines 3-fold. Although PI3K p110δ is expressed in the majority of MCCs and cell lines its inhibition by idelalisib alone does not suffice to effectively affect MCC cells viability.
Collapse
Affiliation(s)
- Emil Chteinberg
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dorit Rennspiess
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ryan Sambo
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Samantha Tauchmann
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicole W J Kelleners-Smeets
- Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ernst-Jan Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
34
|
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer with neuroendocrine features. MCC pathogenesis is associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet light (UV), which can cause a characteristic pattern of multiple DNA mutations. Notably, in the Northern hemisphere, the majority of MCC cases are of viral aetiology; by contrast, in areas with high UV exposure, UV-mediated carcinogenesis is predominant. The two aetiologies share similar clinical, histopathological and prognostic characteristics. MCC presents with a solitary cutaneous or subcutaneous nodule, most frequently in sun-exposed areas. In fact, UV exposure is probably involved in both viral-mediated and non-viral-mediated carcinogenesis, by contributing to immunosuppression or DNA damage, respectively. Confirmation of diagnosis relies on analyses of histological features and immunological marker expression profiles of the lesion. At primary diagnosis, loco-regional metastases are already present in ∼30% of patients. Excision of the tumour is the first-line therapy; if not feasible, radiotherapy can often effectively control the disease. Chemotherapy was the only alternative in advanced-stage or refractory MCC until several clinical trials demonstrated the efficacy of immune-checkpoint inhibitors.
Collapse
|
35
|
Cassler NM, Merrill D, Bichakjian CK, Brownell I. Merkel Cell Carcinoma Therapeutic Update. Curr Treat Options Oncol 2017; 17:36. [PMID: 27262710 DOI: 10.1007/s11864-016-0409-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OPINION STATEMENT Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine tumor of the skin. Early-stage disease can be cured with surgical resection and radiotherapy (RT). Sentinel lymph node biopsy (SLNB) is an important staging tool, as a microscopic MCC is frequently identified. Adjuvant RT to the primary excision site and regional lymph node bed may improve locoregional control. However, newer studies confirm that patients with biopsy-negative sentinel lymph nodes may not benefit from regional RT. Advanced MCC currently lacks a highly effective treatment as responses to chemotherapy are not durable. Recent work suggests that immunotherapy targeting the programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) checkpoint holds great promise in treating advanced MCC and may provide durable responses in a portion of patients. At the same time, high-throughput sequencing studies have demonstrated significant differences in the mutational profiles of tumors with and without the Merkel cell polyomavirus (MCV). An important secondary endpoint in the ongoing immunotherapy trials for MCC will be determining if there is a response difference between the virus-positive MCC tumors that typically lack a large mutational burden and the virus-negative tumors that have a large number of somatic mutations and predicted tumor neoantigens. Interestingly, sequencing studies have failed to identify a highly recurrent activated driver pathway in the majority of MCC tumors. This may explain why targeted therapies can demonstrate exceptional responses in case reports but fail when treating all comers with MCC. Ultimately, a precision medicine approach may be more appropriate for treating MCC, where identified driver mutations are used to direct targeted therapies. At a minimum, stratifying patients in future clinical trials based on tumor viral status should be considered as virus-negative tumors are more likely to harbor activating driver mutations.
Collapse
Affiliation(s)
- Nicole M Cassler
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Dean Merrill
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Isaac Brownell
- Dermatology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1908, USA.
| |
Collapse
|
36
|
Improta G, Ritter C, Pettinato A, Vasta V, Schrama D, Fraggetta F, Becker JC. MGMT promoter methylation status in Merkel cell carcinoma: in vitro versus invivo. J Cancer Res Clin Oncol 2017; 143:1489-1497. [PMID: 28405827 DOI: 10.1007/s00432-017-2413-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Expression of O6-methylguanine-DNA methyltransferase (MGMT) in Merkel cell carcinoma (MCC) is very variable; thus, we tested whether this may be due to differential methylation of the MGMT gene promoter. METHODS Quantitative analysis of MGMT mRNA and protein expression, as well as MGMT promoter methylation status, was performed in a series of tissue samples of MCC tumors, representing both primary and metastatic lesions, as well as in six MCC cell lines. RESULTS These analyses revealed a very heterogeneous MGMT mRNA and protein expression in MCC both in vivo and in vitro. However, neither the MGMT mRNA nor protein expression correlated with the sensitivity of MCC cell lines toward the alkylating agent dacarbazine in vitro. Notably, increased methylation at the promoter of the MGMT gene was observed in 2/6 (33%) of the MCC cell lines; however, MGMT promoter methylation was absent in all MCC tissue samples. According to our results, albeit aberrant methylation of MGMT gene promoter can be observed in in vitro propagated MCC cell lines, it seems to be absent or very rare in MCC lesions in situ. CONCLUSION Thus, the evaluation of this marker has no or only little significance for predicting response to therapy or for improving efficacy of demethylating agents in the treatment of MCC. Microenvironmental factors may play a role in explaining the different results between MCC cell lines and MCC samples.
Collapse
Affiliation(s)
- Giuseppina Improta
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture, Italy
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Universitätstraße 1, 45141, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Pettinato
- Department of Pathology, Azienda Ospedaliera per l' Emergenza Cannizzaro, Catania, Italy
| | - Valeria Vasta
- Department of Pathology, Azienda Ospedaliera per l' Emergenza Cannizzaro, Catania, Italy
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Filippo Fraggetta
- Department of Pathology, Azienda Ospedaliera per l' Emergenza Cannizzaro, Catania, Italy
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Universitätstraße 1, 45141, Essen, Germany.
- German Cancer Consortium (DKTK), Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
37
|
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous neuroendocrine malignancy. Merkel cell polyomavirus, a tumorigenic DNA virus, is present in most MCC tumors, with implications for tumor biology, diagnosis, and management. Merkel cell polyomavirus-negative tumors have a high burden of UV-signature mutations, similar to melanoma. The histopathologic diagnosis of MCC requires immunohistochemistry to exclude morphologically similar entities. Therapies for advanced disease are currently lacking. Here, the features of MCC are reviewed, including recent molecular discoveries with implications for improved therapy for advanced disease.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-5602, USA; Department of Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-5602, USA.
| |
Collapse
|
38
|
González-Vela MDC, Curiel-Olmo S, Derdak S, Beltran S, Santibañez M, Martínez N, Castillo-Trujillo A, Gut M, Sánchez-Pacheco R, Almaraz C, Cereceda L, Llombart B, Agraz-Doblas A, Revert-Arce J, López Guerrero JA, Mollejo M, Marrón PI, Ortiz-Romero P, Fernandez-Cuesta L, Varela I, Gut I, Cerroni L, Piris MÁ, Vaqué JP. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas. J Invest Dermatol 2017; 137:197-206. [PMID: 27592799 DOI: 10.1016/j.jid.2016.08.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/27/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients.
Collapse
Affiliation(s)
- María Del Carmen González-Vela
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Soraya Curiel-Olmo
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Nerea Martínez
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | - Martha Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Carmen Almaraz
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Laura Cereceda
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Beatriz Llombart
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Antonio Agraz-Doblas
- IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain; Josep Carreras Leukemia Research Institute and School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Revert-Arce
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | | | | | - Pablo Ortiz-Romero
- Dermatology Service, Instituto I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lynnette Fernandez-Cuesta
- International Agency for Research on Cancer (IARC-WHO), Lyon, France; Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ignacio Varela
- IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lorenzo Cerroni
- Department of Dermatology Medical University of Graz, Austria
| | - Miguel Ángel Piris
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - José Pedro Vaqué
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; IBBTEC-UC-CSIC-SODERCAN Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain.
| |
Collapse
|
39
|
Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget 2016; 7:6576-92. [PMID: 26536665 PMCID: PMC4872734 DOI: 10.18632/oncotarget.5878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. Pathologic activation of PI3K/mTOR pathway and elevated expression of c-Myc are frequently detected in MCC. Yet, there is no targeted therapy presently available for this lethal disease. Recently, MLN0128, a second-generation dual TORC1/2 inhibitor is shown to have therapeutic efficacy in preclinical studies. MLN0128 is currently in clinical trials as a potential therapy for advanced cancers. Here we characterize the therapeutic efficacy of MLN0128 in the preclinical setting of MCC and delineate downstream targets of mTORC1/2 in MCC cellular systems. MLN0128 significantly attenuates xenograft MCC tumor growth independent of Merkel cell polyomavirus. Moreover, MLN0128 markedly diminishes MCC cell proliferation and induces apoptosis. Further investigations indicate that senescence does not contribute to MLN0128-mediated repression of xenograft MCC tumor growth. Finally, we also observe robust antitumor effects of MLN0128 when administered as a dual therapy with JQ1, a bromodomain protein BRD4 inhibitor. These results suggest dual blockade of PI3K/mTOR pathway and c-Myc axis is effective in the control of MCC tumor growth. Our results demonstrate that MLN0128 is potent as monotherapy or as a member of combination therapy with JQ1 for advanced MCC.
Collapse
|
40
|
Schadendorf D, Lebbé C, Zur Hausen A, Avril MF, Hariharan S, Bharmal M, Becker JC. Merkel cell carcinoma: Epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer 2016; 71:53-69. [PMID: 27984768 DOI: 10.1016/j.ejca.2016.10.022] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 01/19/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer that is associated with Merkel cell polyomavirus infection in most cases. Incidence rates of MCC have increased in past decades. Risk factors for MCC include ultraviolet light exposure, immunosuppression and advanced age. MCC is an aggressive malignancy with frequent recurrences and a high mortality rate, although patient outcomes are generally more favourable if the patient is referred for treatment at an early stage. Although advances have been made recently in the MCC field, large gaps remain with regard to definitive biomarkers and prognostic indicators. Although MCC is chemosensitive, responses in advanced stages are mostly of short duration, and the associated clinical benefit on overall survival is unclear. Recent nonrandomised phase 2 clinical trials with anti-PD-L1/PD-1 antibodies have demonstrated safety and efficacy; however, there are still no approved treatments for patients with metastatic MCC. Patients with advanced disease are encouraged to participate in clinical trials for treatment, indicating the largely unmet need for durable, safe treatment within this population.
Collapse
Affiliation(s)
- Dirk Schadendorf
- Dermatology, Essen University Hospital, Essen, Germany; German Cancer Consortium Partner Site Essen/Düsseldorf, Essen University Hospital, Essen, Germany.
| | - Céleste Lebbé
- APHP, Dermatology and CIC, Hôpital Saint-Louis, INSERM U976, University Paris 7 Diderot, Paris, France.
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.
| | | | | | - Murtuza Bharmal
- Merck KGaA, Global Evidence & Value Development, Darmstadt, Germany.
| | - Jürgen C Becker
- Translational Skin Cancer Research (TSCR), German Cancer Consortium Partner Site Essen/Düsseldorf, Dermatology, Essen University Hospital, Essen, Germany.
| |
Collapse
|
41
|
Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, Stafstrom K, Moshiri A, Yelistratova L, Levinsohn J, Chan TA, Nghiem P, Lifton RP, Choi J. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget 2016; 7:3403-15. [PMID: 26655088 PMCID: PMC4823115 DOI: 10.18632/oncotarget.6494] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.
Collapse
Affiliation(s)
- Gerald Goh
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, USA
| | - Trent Walradt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Vladimir Markarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Astrid Blom
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ryan Doumani
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | - Krista Stafstrom
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | - Ata Moshiri
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | - Lola Yelistratova
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | | | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, USA
| | - Jaehyuk Choi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Department of Dermatology, Veterans Affairs Healthcare, West Haven, CT, USA.,Current address: Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Cohen PR, Tomson BN, Elkin SK, Marchlik E, Carter JL, Kurzrock R. Genomic portfolio of Merkel cell carcinoma as determined by comprehensive genomic profiling: implications for targeted therapeutics. Oncotarget 2016; 7:23454-67. [PMID: 26981779 PMCID: PMC5029639 DOI: 10.18632/oncotarget.8032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022] Open
Abstract
Merkel cell carcinoma is an ultra-rare cutaneous neuroendocrine cancer for which approved treatment options are lacking. To better understand potential actionability, the genomic landscape of Merkel cell cancers was assessed. The molecular aberrations in 17 patients with Merkel cell carcinoma were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes) and analyzed by N-of-One, Inc. (Lexington, MA). There were 30 genes harboring aberrations and 60 distinct molecular alterations identified in this patient population. The most common abnormalities involved the TP53 gene (12/17 [71% of patients]) and the cell cycle pathway (CDKN2A/B, CDKN2C or RB1) (12/17 [71%]). Abnormalities also were observed in the PI3K/AKT/mTOR pathway (AKT2, FBXW7, NF1, PIK3CA, PIK3R1, PTEN or RICTOR) (9/17 [53%]) and DNA repair genes (ATM, BAP1, BRCA1/2, CHEK2, FANCA or MLH1) (5/17 [29%]). Possible cognate targeted therapies, including FDA-approved drugs, could be identified in most of the patients (16/17 [94%]). In summary, Merkel cell carcinomas were characterized by multiple distinct aberrations that were unique in the majority of analyzed cases. Most patients had theoretically actionable alterations. These results provide a framework for investigating tailored combinations of matched therapies in Merkel cell carcinoma patients.
Collapse
Affiliation(s)
- Philip R. Cohen
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|
43
|
Tothill R, Estall V, Rischin D. Merkel cell carcinoma: emerging biology, current approaches, and future directions. Am Soc Clin Oncol Educ Book 2016:e519-26. [PMID: 25993218 DOI: 10.14694/edbook_am.2015.35.e519] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine cutaneous cancer that predominantly occurs in patients who are older, and is associated with a high rate of distant failure and mortality. Current management strategies that incorporate surgery and radiotherapy achieve high rates of locoregional control, but distant failure rates remain problematic, highlighting the need for new effective systemic therapies. Chemotherapy can achieve high response rates of limited duration in the metastatic setting, but its role in definitive management remains unproven. Recent developments in our knowledge about the biology of MCC have led to the identification of new potential therapeutic targets and treatments. A key finding has been the discovery that a human polyomavirus may be a causative agent. However, emerging data suggests that MCC may actually be two distinct entities, viral-associated and viral-negative MCC, which is likely to have implications for the management of MCC in the future and for the development of new treatments. In this review, we discuss recent discoveries about the biology of MCC, current approaches to management, and new therapeutic strategies that are being investigated.
Collapse
Affiliation(s)
- Richard Tothill
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Vanessa Estall
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Danny Rischin
- From the Division of Research, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology and Skin and Melanoma Tumour Stream, Peter MacCallum Cancer Centre, and the Department of Pathology, University of Melbourne, Melbourne, Australia; Division of Cancer Medicine, and Head and Neck Tumour Stream, Peter MacCallum Cancer Centre, the Sir Peter MacCallum Department of Oncology and Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Shiver MB, Mahmoud F, Gao L. More on Merkel-Cell Carcinoma. N Engl J Med 2016; 374:494-5. [PMID: 26840148 DOI: 10.1056/nejmc1514347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Wang KR, Jia YJ, Zhou SH, Wang QY, Bao YY, Feng ZY, Yao HT, Fan J. Cutaneous and Subcutaneous Metastases From Atypical Laryngeal Carcinoids: Case Report and Review of the Literature. Medicine (Baltimore) 2016; 95:e2796. [PMID: 26886629 PMCID: PMC4998629 DOI: 10.1097/md.0000000000002796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The incidence of cutaneous and subcutaneous metastases from atypical laryngeal carcinoids is approximately 20%. However, the pathogenesis and natural history of, and prognostic factors for, the condition remain poorly understood. We reported a 54-year-old female presented with cutaneous and subcutaneous metastases from atypical laryngeal carcinoid. Laryngoscopy revealed a 0.5 × 1.5-cm reddish mass on the laryngeal surface of the epiglottis. Under general anesthesia, a biopsy sample was obtained via suspension laryngoscopy. Routine pathology revealed atypical laryngeal carcinoid. Immunohistochemical staining of the sections of primary tumor was positive for cytokeratin, chromogranin A, synaptophysin, hypoxia-inducible factor-1α, P53, and CD56. GLUT-1, p-Akt, and PI3K were negative. The Ki-67 index was 15%. Supraglottic laryngectomy and selective right-neck dissection were performed. After 6 months, the patient complained of pain in the right wall of the chest; multiple cutaneous and subcutaneous nodules were evident at that site and in the abdomen. An abdominal nodule was biopsied and pathology revealed that the atypical metastatic carcinoid had metastasized to both cutaneous and subcutaneous areas of the abdomen. Chemotherapy was then prescribed. Currently, the intrathecal drug delivery system remains in place. No local recurrence has been detected. Furthermore, we systematically reviewed clinical manifestations of the disease, pathogenesis, prognostic factors, and treatment. The metastasis rate (cutaneous and subcutaneous) was approximately 12.2%. Thirty patients (62.5%) with cutaneous and subcutaneous metastases exhibited contemporaneous lymph node invasion. The 3-, 5-, and 10-year survival rates were 44.0%, 22.0%, and 13.0%, respectively. The prognosis of patients with atypical laryngeal carcinoids was poor. Relevant prognostic factors included the level of p53, human papilloma virus status, certain hypoxic markers, and distant metastasis. No optimal treatment for such metastases has yet been defined.
Collapse
Affiliation(s)
- Kui-Rong Wang
- From the Department of Anaesthesia (K-RW, Z-YF); Department of Otolaryngology (Y-JJ, S-HZ, Q-YW, Y-YB); Department of Pathology (H-TY); and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, China (JF)
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mauzo SH, Ferrarotto R, Bell D, Torres-Cabala CA, Tetzlaff MT, Prieto VG, Aung PP. Molecular characteristics and potential therapeutic targets in Merkel cell carcinoma. J Clin Pathol 2016; 69:382-90. [PMID: 26818033 DOI: 10.1136/jclinpath-2015-203467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/03/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin tumour occurring preferentially in elderly and immunosuppressed individuals. Multiple studies have provided insight into the molecular alterations of MCC, leading to the design of several ongoing clinical trials testing chemotherapy, targeted therapy and immunotherapy in patients with recurrent or metastatic disease. The results of some of these studies are available, whereas others are eagerly awaited and will likely shed light on the understanding of MCC biology and potentially improve the clinical outcomes of patients with this rare disease.
Collapse
Affiliation(s)
- Shakuntala H Mauzo
- Department of Pathology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Wong SQ, Waldeck K, Vergara IA, Schröder J, Madore J, Wilmott JS, Colebatch AJ, De Paoli-Iseppi R, Li J, Lupat R, Semple T, Arnau GM, Fellowes A, Leonard JH, Hruby G, Mann GJ, Thompson JF, Cullinane C, Johnston M, Shackleton M, Sandhu S, Bowtell DDL, Johnstone RW, Fox SB, McArthur GA, Papenfuss AT, Scolyer RA, Gill AJ, Hicks RJ, Tothill RW. UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Res 2015; 75:5228-34. [PMID: 26627015 DOI: 10.1158/0008-5472.can-15-1877] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
Abstract
Merkel cell carcinoma (MCC) is an uncommon, but highly malignant, cutaneous tumor. Merkel cell polyoma virus (MCV) has been implicated in a majority of MCC tumors; however, viral-negative tumors have been reported to be more prevalent in some geographic regions subject to high sun exposure. While the impact of MCV and viral T-antigens on MCC development has been extensively investigated, little is known about the etiology of viral-negative tumors. We performed targeted capture and massively parallel DNA sequencing of 619 cancer genes to compare the gene mutations and copy number alterations in MCV-positive (n = 13) and -negative (n = 21) MCC tumors and cell lines. We found that MCV-positive tumors displayed very low mutation rates, but MCV-negative tumors exhibited a high mutation burden associated with a UV-induced DNA damage signature. All viral-negative tumors harbored mutations in RB1, TP53, and a high frequency of mutations in NOTCH1 and FAT1. Additional mutated or amplified cancer genes of potential clinical importance included PI3K (PIK3CA, AKT1, PIK3CG) and MAPK (HRAS, NF1) pathway members and the receptor tyrosine kinase FGFR2. Furthermore, looking ahead to potential therapeutic strategies encompassing immune checkpoint inhibitors such as anti-PD-L1, we also assessed the status of T-cell-infiltrating lymphocytes (TIL) and PD-L1 in MCC tumors. A subset of viral-negative tumors exhibited high TILs and PD-L1 expression, corresponding with the higher mutation load within these cancers. Taken together, this study provides new insights into the underlying biology of viral-negative MCC and paves the road for further investigation into new treatment opportunities.
Collapse
Affiliation(s)
- Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kelly Waldeck
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Jan Schröder
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Walter Eliza Hall Institute, Melbourne, Victoria, Australia. Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Madore
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Colebatch
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ricardo De Paoli-Iseppi
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Richard Lupat
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Timothy Semple
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Andrew Fellowes
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - J Helen Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George Hruby
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - Graham J Mann
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - John F Thompson
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Mark Shackleton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Walter Eliza Hall Institute, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and the University of Sydney, Sydney, New South Wales, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Research Group Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
48
|
Lin Z, Mei H, Fan J, Yin Z, Wu G. Effect of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against human Merkel cell carcinoma MKL-1 cells. Oncol Lett 2015; 10:3663-3667. [PMID: 26788188 DOI: 10.3892/ol.2015.3791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with an increasing incidence. Aberrant activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is common in human cancers and has been revealed to play an important function in cell proliferation, metabolism and tumorigenesis. In the present study, NVP-BEZ235, a dual PI3K/mTOR inhibitor, was revealed to be effective in inhibiting proliferation and inducing cell cycle arrest in MKL-1 cells. Additional investigations revealed that NVP-BEZ235 attenuated PI3K/Akt/mTOR signaling and upregulated the levels of the cell cycle inhibitors p21 and p27. Overall, the present results possess considerable implications for future development of dual PI3K/mTOR inhibitor as potential agents in the management of MCC.
Collapse
Affiliation(s)
- Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiquan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
49
|
Sengupta D, Kannan A, Kern M, Moreno MA, Vural E, Stack B, Suen JY, Tackett AJ, Gao L. Disruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma. Epigenetics 2015; 10:460-6. [PMID: 25941994 PMCID: PMC4622756 DOI: 10.1080/15592294.2015.1034416] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pathologic c-Myc expression is frequently detected in human cancers, including Merkel cell carcinoma (MCC), an aggressive skin cancer with no cure for metastatic disease. Bromodomain protein 4 (BRD4) regulates gene transcription by binding to acetylated histone H3 lysine 27 (H3K27Ac) on the chromatin. Super-enhancers of transcription are identified by enrichment of H3K27Ac. BET inhibitor JQ1 disrupts BRD4 association with super-enhancers, downregulates proto-oncogenes, such as c-Myc, and displays antitumor activity in preclinical animal models of human cancers. Here we show that an enhancer proximal to the c-Myc promoter is enriched in H3K27Ac and associated with high occupancy of BRD4, and coincides with a putative c-Myc super-enhancer in MCC cells. This observation is mirrored in tumors from MCC patients. Importantly, depleted BRD4 occupancy at the putative c-Myc super-enhancer region by JQ1 correlates with decreased c-Myc expression. Thus, our study provides initial evidence that super-enhancers regulate c-Myc expression in MCC.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- a Department of Biochemistry and Molecular Biology; University of Arkansas for Medical Sciences ; Little Rock , AR , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Samimi M, Gardair C, Nicol JTJ, Arnold F, Touzé A, Coursaget P. Merkel cell polyomavirus in merkel cell carcinoma: clinical and therapeutic perspectives. Semin Oncol 2014; 42:347-58. [PMID: 25843739 DOI: 10.1053/j.seminoncol.2014.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and often aggressive cutaneous cancer with a poor prognosis. The incidence of this cancer increases with age, immunodeficiency and sun exposure. Merkel cell polyomavirus (MCPyV), a new human polyomavirus identified in 2008, is detected in the majority of the MCCs and there is a growing body of evidence that healthy human skin harbors resident or transient MCPyV. A causal link between MCPyV and MCC has been evidenced and this is the first polyomavirus to be clearly implicated as a causal agent underlying a human cancer, and MCPyV was recently classified as a 2A carcinogen. MCC is thus a rare tumor caused by a very common viral skin infection. The aim of this review is to provide a basic overview of the epidemiological, clinical, and pathological characteristics of MCC, to present the current knowledge on MCPyV polyomavirus and its causal association with MCC development, and to describe the therapeutic implications of this causal link.
Collapse
Affiliation(s)
- Mahtab Samimi
- Université François Rabelais, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Charlotte Gardair
- CHRU de Tours-Hôpital Trousseau, Service d׳Anatomie et Cytologie Pathologiques, Tours, France
| | - Jérome T J Nicol
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Francoise Arnold
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Antoine Touzé
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | | |
Collapse
|